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Abstract — Sex determination is one of the major developmental events in higher metazoans, where complex
molecular mechanisms define two physiologically and behaviorally distinct organisms still genetically compatible.
In honey bees, the sex determination cascade is initiated by the allelic composition of complementary sex determiner
(csd) gene: males develop from hemi or homozygous embryos, whereas females develop from heterozygous
embryos. In females, different alleles of csd lead to the formation of female-specific variants of feminizer (fem)
and doublesex (dsx). In males, male-specific variants of fem and dsx are formed by default. In this paper, we
investigated the genes of sex determination in the stingless bees Melipona quadrifasciata , Scaptotrigona postica ,
and Frieseomelitta varia . Our results revealed that the architecture of fem and dsx transcripts is highly conserved
among the three stingless bee species, and also with honey bees.

stingless bees / sex determination / Melipona quadrifasciata | Scaptotrigona postica | Frieseomelitta varia

1. INTRODUCTION

The sex determination system in the eusocial
Hymenoptera is based on the single locus com-
plementary sex determination (Woyke 1965; de
Camargo 1979; Kerr 1987; Paxton et al. 2003), in
which diploid and heterozygotic eggs give rise to
females while haploid (hemizygotic) or diploid
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homozygotic eggs give rise to males (Dzierzon
1845). The complexity of the molecular events
underlying the molecular mechanisms of sex de-
termination was first hypothesized by Kerr
(1974). He combined the genetic basis of honey
bee sex determination with the Britten and
Davidson (1969) theory and proposed two hy-
potheses: (1) the sex alleles are complementary
and produce a functional activator RNA if the
alleles are different and (2) the functional activator
RNA acts on the production of polypeptides es-
sential to trigger ovary development. The idea of
complementary sex alleles was later confirmed in
honey bees after the identification of 19 sex alleles
(Adams et al. 1977) and functional assays showed
that the complementary sex determiner gene was
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the primary signal for sex determination pathway
(Beye et al. 2003; Beye 2004). In heterozygotic
embryos for the csd locus, heterodimer of Csd
directs the female-specific splicing of feminizer
(fem ) transcripts and produces the active protein
Fem (FemF). In turn, FemF controls the splicing
of the doublesex (dsx) transcripts which leads to
the formation of female-specific transcripts
(dsxF) that controls female differentiation
(Cristino et al. 2006; Hasselmann et al. 2008;
Gempe et al. 2009). In homo - or hemi zygotic
embryos, the absence of a heterodimeric form of
Csd protein results in the formation of a male-
specific transcript of the gene fem (femM ), which
produces a truncated and non-functional protein.
Thus, by default, male-specific transcripts of dsx
are formed and DsxM directs male differentiation.

Consistent with the “bottom-up” hypothesis of
sex determination pathways (WILKINS 1995), csd
is exclusively found in Apis sp. and arose by
duplication of femn (Hasselmann et al. 2008),
while fem and dsx have been found in all bees
with sequenced genomes (Kapheim et al. 2015).
The gene dsx is highly conserved within insects,
vertebrates, and nematodes and encodes a zinc-
finger transcription factor (DSX) that presents the
DM domain and a dimer domain (Burtis 2002).
Both csd and fem code for proteins rich in serine
and arginine (SR-related proteins) (Beye et al.
2003; Beye 2004; Hasselmann et al. 2008), which
are known to participate in RNA splicing through
the recognition of regulatory elements in exons of
primary messenger RNAs (Shepard and Hertel
2009). While the exact mechanism by which fem
controls dsx splicing in honey bee is still un-
known, in Drosophila, the protein coded by
transformer (a homolog of fem ) binds to regula-
tory elements in the female-specific exon of dsx
and signals to the splicing machinery to include
the female exon in the mature mRNA (Hedley and
Maniatis 1991; Heinrichs et al. 1998).

European honey bees are the best studied Hyme-
noptera but are far from representative of the diver-
sity of this group. Stingless bees (Meliponini) dis-
play a rich diversity of life stories and social organi-
zation and differ from honey bees in several aspects.
The most striking differences are the mating system,
caste determination, and participation of workers in
the production of males. Honey bee queens mate
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multiple times (Estoup et al. 1994; Oldroyd et al.
1997) in contrast to the single-mated stingless bee
queens (Peters et al. 1999). Caste determination in
honey bees is triggered by quality of food while in
stingless bees, caste determination is based on mass-
provisioning (for example, Frieseomelitta varia and
Scaptotrigona postica) and can be affected by a
genetic component (Melipona quadrifasciata)
(Hartfelder et al. 2006). Honey bee workers rarely
lay eggs and stingless bee workers display diverse
strategies that ranges from never laying egg
(Frieseomelitta varia)) (Boleli et al. 1999) to being
responsible for 20 to 60% of male production
(Scaptotrigona postica and Melipona
quadrifasciata , respectively) (T6th et al. 2002). This
richness in diversity of stingless bees’ biology
prompted us to investigate the sex determination
cascade in three species of stingless bees which have
major differences in their social organization.

To provide further information on the sex deter-
mination pathways of stingless bees, we character-
ized the architecture of sex-specific transcripts of
fem and dsx in males and females of F varia,
M. quadrifasciata , and S. postica . The combination
of exons to form both female and male transcripts is
highly conserved among the stingless and honey
bees. Additionally, the observation of conserved
short repeats in the female-specific exon of dsx in
stingless bees and honey bees is consistent with
recognition sites for SR-rich proteins (like Fem)
and supports the hypothesis of conservation of the
mechanisms that regulate the alternative splicing of
sex determination genes in bees.

2. METHODS
2.1. Sampling of stingless bees

Adults of workers and males of the stingless
bees F. varia and S. postica were sampled di-
rectly from colonies kept in the meliponary at
the University of Sdo Paulo, Ribeirdo Preto,
Brazil. Newly emerged adults of
M. quadrifasciata were sampled from colonies
kept in the meliponary at the University of Sdo
Paulo, Sdo Paulo, Brazil. Each sex for each
specie was represented in triplicates, individu-
ally stored in Trizol ® (Invitrogen) and kept at
— 80 °C until RNA extraction.
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2.2. Extraction of total RNA and
amplification of sex-specific
transcripts

Total RNA was purified using TRIZOL®
(Invitrogen) according to producer’s protocol.
First-strand cDNA was synthesized by reverse
transcription from 3 pg of total RNA using 100
units of Super Script II reverse transcriptase
(Thermo Fisher) and 2.0 pmol/uL oligo
(dT12-18) primer (Thermo Fisher). Primers
used to amplify fem and dsx transcripts of the
three selected stingless bee species were gener-
ated based on M. quadrifasciata sequences
using Primer 3 tool (RozEN and SKALETSKY
2000) (Table I and Table S1). PCR reactions
were performed using 10 pmol/uL of forward
and reverse primers, 1.0 uL of first-strand
cDNA (diluted 1:5 or 1:10), Master mix
(Promega), or Platinum® Taq DNA Polymer-
ase High Fidelity (Thermo Fisher). The ampli-
fication products were analyzed by electropho-
resis on 1.5% agarose gels containing UniSafe
Dye (Uniscience).

2.3. Cloning and DNA sequencing

Amplicons of fem and dsx from F. varia,
M. quadrifasciata, and S. postica were puri-
fied from agarose gel and cloned using
pGEM-T easy plasmid kit (Promega). Three
to five insert-containing plasmids of each
transcript (for each species) were subjected
to the dideoxy sequencing method and ABI
3500xL Genetic Analyzer (Applied
Biosystems) using the M13-reverse and
M13-forward universal primers. The quality
of the fragments and the assembly was

471

performed by Geneouis 11.0.4 (http://ww.
geneious.com, Kearse et al. (2012)).

2.4. Computational analysis of sex-specific
transcripts of fem and dsx genes

To obtain the complete architecture of the sex-
specific transcripts, the sequences of the amplified
fragments were merged with the predicted gene
models of fem and dsx for F. varia and
M. quadrifasciata. In general, alternative transcripts
are not predicted in first drafts of genomes. Thus, the
predicted sequences for feminizer and doublesex
genes (gene models) in M. quadrifasciata and
F varia do not include alternative usage of exons.
Using cDNA samples of males and females to am-
plify fragments of feminizer and doublesex tran-
scripts, we were able to characterize the sex-
specific exon usage in the three analyzed species.
The amplified fragments did not include the entire
extension of the genes; thus, to obtain full-length
transcripts, we merged the gene model sequences
(predicted annotation of the genes feminizer and
doublesex ) with the sex-specific fragments we have
amplified and sequenced. Transcript architectures
were inferred by aligning the sequenced fragments
against M. quadrifasciata and F. varia genomes
using the BLAST tool available at Hymenoptera
Genome Database. Transcripts of S. postica were
inferred by alignment against M. quadrifasciata ge-
nome; thus, the length of intronic regions could not
be inferred. BLAST results were plotted using
Ugene platform (Okonechnikov et al. 2012). Protein
sequences were inferred using the online tool
EMBOSS-Transeq (Li et al. 2015). Sequences of
fem and dsx transcripts obtained for F varia,
M. quadrifasciata, and S. postica were deposited
into the GenBank database (Clark et al. 2016)

Table 1. List of primers used to amplify transcripts of feminizer and doublesex genes in stingless bee species.

Primer sequence Fragment length (bp)* Tm (°C)
fem-F' CGAATCATGTCAAGTCATTCGC 681 57
fem-R TCGAGGACTGCAACTTTGACTT
dsx-F TCATCGCCTGAAGATCACTG 699 57
dsx-R GGAGGTGGTACAACCCCTATG
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(Table S2). The identification of conserved domains
was performed using NCBI's Conserved Domain
Database (MARCHLER-BAUER et al. 2014). The
percentage of similarity between domains of differ-
ent bee species was calculated using the online tool
Sequence Identity And Similarity (http://imed.med.
ucm.es/Tools/sias.html).

2.5. Search for regulatory elements for SR-
related proteins in female-specific exon
of dsx

To search for putative regulatory elements for
SR-related proteins, we aligned the female-specific
exon of dsx transcripts of A. mellifera,
M. quadrifasciata, F. varia, and S. postica using
MEGA v. 7 (Kumar et al. 2016). Then, we actively
searched for the regulatory elements found in the
fifth exon of honey bee dsx (G/U)YGAAGAU(A/U)
(Bertossa et al. 2009) in the female-specific exon of
dsx 1in stingless bees. The regulatory elements we
found were represented using a logo plotted by the
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online tool WebLogo 3 (http://weblogo.
threeplusone.com/create.cgi).

3. RESULTS

3.1. Sex-specific transcripts of feminizer
and doublesex in stingless bees

Expression of sex-specific transcripts for both
feminizer and doublesex genes were observed
from ¢cDNA samples of F. varia, M.
quadrifasciata , and S. postica (Figure 1). To
uncover the architecture of these sex-specific tran-
scripts in stingless bees, we sequenced and
mapped the transcripts of both feminizer and
doublesex genes of F varia, M. quadrifasciata,
and S. postica. The architecture of male- and
female-specific transcripts of both fem and dsx
genes was highly consistent among F. varia,
M. quadrifasciata , and S. postica (Figures 2 and
3). In both F varia and M. quadrifasciata,
female-specific transcripts of fem are composed
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Figure 1. Expression of feminizer and doublesex in male and females of stingless bees. a Expression of sex-specific fem
transcripts in female and males of F. varia , M. quadrifasciata , and S. postica. b Expression of sex-specific dsx transcripts
in female and males of F varia, M. quadrifasciata , and S. postica. DNA Ladder: 100 bp DNA Ladder (Invitrogen).
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Figure 2. Transcripts and protein variants of feminizer gene in stingless bees. a Architecture of female- and male-
specific fem transcripts reveals that the similar architecture is shared by F varia and M. quadrifasciata . The architecture
of fem transcripts of S. postica was inferred based on the alignment in £ varia genome. Male-specific transcripts of
F varia , M. quadrifasciata , and S. postica present an extra exon that introduces a premature stop codon and generates a
truncated FemM protein. Boxes represent exons. The light green boxes are protein-coding exons. The regions highlighted
in orange and red represent the SPD and SR-rich domains, respectively. Blue boxes highlight the male-specific exon that
contains the premature stop codon. Gray boxes represent the non-translated exons. Numbers indicate the length of exons
and introns in base pairs (bp). The arrows represent both forward and reverse primers. b Effects of sex-specific splicing
events on protein outcomes. The region highlighted in orange represents the SDP domain in both female- and male-
specific Fem protein, while the region highlighted in red represents SR-rich domain in female-specific Fem protein.

by eight exons and male-specific transcripts are  inclusion of exon 3 in the male-specific transcripts
composed of nine exons (Figure 2a). The of fem inserts a premature stop codon and
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produces a truncated Fem protein in males of both
species (Figure 2a). Similar architecture was ob-
served for S. postica as the partial sequences of
fem transcripts revealed that the inclusion of an
extra exon in male-specific transcripts inserts a
premature stop codon in the coding sequence. A
Sex Determination Protein N terminal domain
(SDP N) was identified in the first exon of both
female- and male-specific transcripts and a SR-
rich domain was found in exon 6 of female-
transcripts of F. varia and M. quadrifasciata
(Figure 2b). The protein sequence inferred from
both female- and male-specific transcripts of fem
gene has similar length among stingless bees and
honey bees (Table II). The SDP domain shared by
both female- and male-specific proteins is slightly
longer in stingless bee species (161 amino acids in
M. quadrifasciata and 163 amino acids in
F varia) compared to honey bees (153 amino
acids in A. mellifera) (Figure S1). The compari-
son of SDP N domain sequence among different
bee species revealed moderate similarity between
A. mellifera and F. varia (47.33%, Figure S1) and
lower similarity between A. mellifera and
M. quadrifasciata (27.33%) and between
M. quadrifasciata and F. varia (28.57%). The
SR-rich region, specific of FemF, is also longer
in stingless bees (58 and 52 amino acids long in
M. quadrifasciata and F. varia, respectively)
compared to honey bees (44 amino acids in
A. mellifera) (Figure S1). The SR-rich region is

similar between M. quadrifasciata and F. varia
(55.31%) but it is less similar between stingless
bee species and honey bee species (similarity
between F varia and A. mellifera and between
M. quadrifasciata and A. mellifera is 29.54% and
31.81%, respectively).

Male-specific transcripts of dsx are composed by
four exons (exons 1, 2, 3, and 6) and female-specific
transcripts are composed of six exons (exons 1, 2, 3,
4, 5, and 6). The protein sequence of both female
and male transcripts of dsx genes was inferred from
the mRNA sequences. Fem and Dsx proteins have
similar length among stingless bees and honey bees
(Table II). The DM domain, which characterizes the
gene of this family, was found in the first exon of
both male- and female-specific transcripts of dsx in
each of the three species. The DM domain is 48
amino acids long in A. mellifera and 49 in both
F varia and M. quadrifasciata . 1t is identical be-
tween F varia and M. quadrifasciata (100% simi-
larity, Figure S2) but these diverge from DM domain
of A. mellifera (14.58%, Figure S2). Note that the
differences found between each of F varia,
M. quadrifasciata, and A. mellifera in comparison
to S. postica are affected by the incompleteness of
S. postica sequence. The complete dsx dimer do-
main of stingless bees DsxM protein is 56 amino
acids long and is between 94.64 and 100% similar
among themselves and with honey bees (Figure S2).
The inclusion of exons 4 and 5 inserts a stop codon
that disrupts the dsx dimer domain in DsxF for all

Table II. Transcript and protein length of female- and male-specific transcripts of feminizer and doublesex in
F varia, M. quadrifasciata, S. postica, and A. mellifera . Transcript length for F. varia, M. quadrifasciata , and
S. postica was estimated based on the data generated in this study. Protein length was calculated after translating the
transcripts using the TRANSEQ tool. The sequences of S. postica are partial; thus, the protein product could not be
completely infered. Transcripts and protein lengths of A. mellifera were calculated based on sequences deposited in
GenBank database (dsxF': NM_001134935.1, dsxM: NM_001111255.1, femF: NM _001134828.1, femM:

EU101389.1)

F varia M. quadrifasciata S. postica A. mellifera

Transcript Protein Transcript Protein Transcript Protein Transcript Protein

(nt) (aa) (nt) (aa) (nt) (aa) (nt) (aa)
dsxF 1530 278 1515 275 1000 - 2337 276
dsxM 1014 337 1014 337 699 - 2504 336
femF 1224 407 1293 430 189 - 1495 401
femM 1283 174 1320 172 235 - 2805 170
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analyzed species yielding a partial dsx dimer domain
42 amino acids long (Figure 3a, B). The partial dsx
dimer domain of stingless bee DsxF is also highly
similar between stingless bee species and honey
bees (100 to 92.85%, Figure S2).

3.2. Female-specific exon of dsx transcripts
may be regulated by SR-related protein

We searched for the short repeats
(U/GYGAAGAU(U/A) in the female-specific exons
of dsx transcripts in F varia, M. quadrifasciata,
and S. postica. Three short repeats
(C/G)GAAGAU(C/U) were found in the 3’ end of
the female-specific exon of £ varia and S. postica,
and two were found in M. quadrifasciata
(Figure 3a, b). The repeats found in the female-
specific exon of dsx in the stingless bees are very
similar to the repeats described for A. mellifera,
which are UGAAGAU and GGAAGAA
(BERTOSSA et al. 2009).

4. DISCUSSION

In this paper, we investigated the genes of sex
determination in the stingless bees F. varia,
M. quadrifasciata, and S. postica, which have
been poorly studied in comparison to honey bees.
Stingless bees have a pantropical distribution and
are important pollinators of native plants and
crops (Viana et al. 2014). Stingless bees represent
a valuable group to study because of their stun-
ning diversity of biology life stories and reproduc-
tive behavior that includes colonies preferentially
headed by one singly mated queen to colonies
with transient episodes of multiple queens (as
reported in Melipona bicolor,
M. quadrifasciata, and F. varia) (Vollet-Neto
et al. 2018). Here, we show that despite of the
diversity in mating system and social organiza-
tion, the regulation of sex determination cascade
is conserved among stingless bee species and
honey bees.

fem has been found in all bees with se-
quenced genomes (Kapheim et al. 2015), al-
though its sex-specific transcripts have only
been described for honey bees and Melipona
interrupta (Hasselmann et al. 2008; BriTO
et al. 2015). In honey bees, functional studies
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showed that femF is crucial to the differentia-
tion of ovaries, since its knockdown leads to the
formation of testis in females (Gempe et al.
2009). Here, we show that transcripts of fem
are sex-specific spliced and the architecture of
female- and male-transcripts of fem gene is
highly conserved between stingless bees and
honey bees (HASSELMANN et al. 2008)
(Figure 2a). Surprisingly, extra bands were am-
plified in female samples of F. varia
(Figure 1a), indicating the potential formation
of other alternative transcripts, which may be
investigated in future studies. The analyses of
the protein outcomes of both female- and male-
specific transcripts revealed that FemF and
FemM share the N-terminal SDP N domain
and differ in the C-terminal region, resulting in
the presence of a SR-rich region only in FemF
(Figure 2b). The presence of both N-terminal
SDP N domain and a C-terminal SR-rich region
is characteristic of honey bee fem gene
(Hasselmann et al. 2008) indicating conserva-
tion of the mechanism controlling sex-specific
splicing events of fem transcripts among differ-
ent bee species.

The most conserved gene at the bottom of the
sex determination cascade, dsx, has been found in
all insects investigated so far, including dipteran,
hymenopteran, and lepidopterans, and also in the
crustacean Daphnia magna (Kato et al. 2011).
Here, we described sex-specific transcripts of dsx
in F varia, M. quadrifasciata, and S. postica .
The architecture of the transcripts is highly con-
served among the stingless bees (Figure 3a) and
honey bees (Cristino et al. 2006; Cho et al. 2007).
The female-specific dsx transcript is formed by
the inclusion of one exon in honey bee and two
exons in stingless bees that disrupt the dsx dimer
domain, which results in a shorter protein com-
pared to the protein coded by the male-specific
transcript (Figure 3b). Stingless bees DsxF and
DsxM proteins share an N-terminal DNA binding
domain (DM domain) and the C-terminal domain,
where the dsx dimer is located, differs (Figure 3b).
A similar domain display was observed in DsxF
and DsxM of honey bees (Cho et al. 2007) and
Drosophila (Erdman et al. 1996). The DM do-
main is highly conserved among metazoan spe-
cies (Raymond et al. 1998) and, in Drosophila,
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Figure 3. Transcripts and protein variants of doublesex gene in stingless bees. a Architecture of female- and male-
specific dsx transcripts reveals that a similar architecture is shared by F varia and M. quadrifasciata. The
architecture of dsx transcripts of S. postica was inferred based on the alignment in F varia genome. Female-
specific transcripts present two extra exons in F varia , M. quadrifasciata, and S. postica . Boxes represent exons.
The light green boxes are protein-coding exons. The portion of the first exon marked by diagonal stripes defines the
region occupied by the DM domain. The region highlighted in orange represents partial dsx dimer domain disrupted
by the inclusion of exons 4 and 5 in female-specific dsx transcripts. The regions highlighted in red represent dsx
dimer domain in male-specific dsx transcript. Gray boxes represent the non-translated exons. Numbers indicate the
length of exons and introns in base pairs (bp). The arrows represent both forward and reverse primers. b Effects of
sex-specific splicing events on protein outcomes. The region highlighted by diagonal stripes defines the region
occupied by the DM domain. The region highlighted in orange represents partial dsx dimer domain in female-
specific dsx protein and the regions highlighted in red represent dsx dimer domain in male-specific dsx protein.
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the recognition of DNA motifs by DM domain is
enhanced by the C-terminal dimerization domain
(dsx dimer domain) (Cho and Wensink 1998).
The dsx dimer domain is conserved in insect
species and is proposed to mediate recruitment
of transcriptional co-regulatory factors (Erdman
et al. 1996; Garrett-Engele et al. 2002). Upstream
regions of genes bound by Drosophila DsxF and
DsxM had mouse orthologs also bound by mouse
Dsx pointing to a high degree of conservation of
Dsx target across the animal kingdom (Clough
et al. 2014). Although the specific targets of DsxF
and DsxM are unknown for bees, it is likely that
they also share common genes due to the conser-
vation of both DM and dsx dimer domains.
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The inclusion of the exclusive female-specific
exon that disrupts the dsx dimer domain in stingless
bees seems to require specific signalization to the
splicing machinery mediated by SR-rich proteins as
proposed to Drosophila, wasps, and honey bees. In
Drosophila, regulatory elements in the female-
specific exon are bound by Tra/Tra2 proteins and
thus signal to the splicing machinery that this par-
ticular exon should be included in the final mature
mRNA (Hedley and Maniatis 1991; HEINRICHS
et al. 1998). Short repeats “(U/G)GAAGAU(U/A)”
were also found in the female-specific exons of
Nasonia vitripennis and honey bee dsx transcripts
suggesting that they could act as recognition sites
for factors that lead to the activation of female-

a
Specie Female-specific dsx exons Repeats
CGAAGAUC
CGAAGAUU
F. varia GGAAGAUU
. , CGAAGAUC
T T
CGAAGAUC
. CGAAGAUU
S. postica GGAAGAUU
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A. mellifera I c.acaua
GGAAGAUA
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C
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Figure 4. Short repeats found in honey bee and stingless bees dsx female-specific exons. a Comparison of short
repeats between F. varia , M. quadrifasciata , S. postica, and A. mellifera . Species, architecture of female-specific
exons, and repeats at corresponding exons are indicated. Positions of repeats in female exons (gray) are indicated by
vertical black stripes. The gray box in the repeat column indicates the core sequence, conserved in all repeats and
species analyzed. Information of A. mellifera repeats were obtained from BERTOSSA ET AL. (2009)). b Sequence
motif identified in dsx female-specific exon of F varia, M. quadrifasciata, S. postica, and A. mellifera by

WebLogo 3.
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specific splicing (Bertossa et al. 2009). We also
found highly conserved repeats in the female-
specific exon of dsx in F varia (three repeats),
M. quadrifasciata (two repeats) and S. postica
(three repeats) that share the same core sequence
“GAAGAU” with the four repeats found in
A. mellifera. These sites may act as regulatory
elements that are recognized by fem proteins and
lead to the inclusion of the female-specific exon into
the mature mRNA of dsx found in females of these
species. The number of repeats varies slightly be-
tween bee species, possibly indicating differences in
the number of proteins that can bind to the female-
specific exons of dsx (Figure 4). Additionally, other
mechanisms may be involved in the RNA splicing
variants of genes of sex determination pathway. For
example, in Drosophila, the RNA modification
No6-methyladenosine facilitates the female-specific
splicing of the primary signal of the sex determina-
tion pathway, the gene Sex-lethal (Kan et al. 2017).

The sex determination cascade may also play a
role in caste differentiation. Levels of female-
specific fem transcripts seem to be increased by
juvenile hormone in M. interrupta suggesting that
fem acts as interaction component between sex and
caste determination pathways (Brito et al. 2015).
Recent studies pointed to the co-option of the sex
determination genes to the nutrition-driven devel-
opmental program that leads to dimorphic plastic-
ity in beetles, ants, and honey bees. In honey bees,
feminizer is required for the small size
polyphenism observed in workers (Roth et al.
2019). In the beetles, it was shown that dsx plays
a role in the switch that triggers horn development
in males (Zinna et al. 2018). Klein et al. (2016)
hypothesized that genes that compose sex determi-
nation cascade are able to regulate caste differenti-
ation pathways because these genes evolved to
respond to environmental clues (i.e., quantity of
food) in addition to the genetic signals (i.e., hetero-
dimers or homo-/hemidimers of Csd protein) that
direct sex differentiation. Thus, the investigation of
sex determination cascade may shed light on the
mechanisms behind the caste differentiation across
the diverse group that is the stingless bees.

Our work contributes with the description of sex-
specific variants of fem and dsx genes in three
stingless bee species. The highly conserved archi-
tecture of fem and dsx transcripts and the presence
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of short repeats in the female-specific exon of dsx
suggest conservation of the regulatory mechanisms
involved in the sex-specific splicing of these genes.
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