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Abstract – Most parameters describing queen bee quality are reflected in the queen’s body mass, which is in turn
considered a robust measure and the best indicator of queen quality. State-of-the-art machine learning was used for
the first time to jointly evaluate both biological and rearing parameters influencing queen body mass. Three different
models were developed using different combinations of parameters. Regardless of the model composition, we
achieved high precision of classification. The parameters “ovary mass” and “breeder” were the most important
factors for model predictions. Differences in rearing practices and vegetation were masked by “breeder,” demon-
strating the pitfall of this method. Separate analysis confirmed the importance of the time spent in the hive after
mating and the phytogeographical region as an indirect indication of food sources. Rearing practices together with
phytogeographical information are not enough to explain variation in queen body mass, yet they can contribute to
the prediction of queen body mass if “breeder” is excluded from the model.

queen bodymass / parameter importance / machine learning

1. INTRODUCTION

There is an ongoing debate as to what defines a
good queen bee and which parameters should be
taken into account at the time of purchase. Howev-
er, the beekeeper who wishes to purchase queen
bees has no technical means to assess most of these
parameters. On the other hand, the majority of these
parameters play a role to some degree in queen
body mass (for review, see Hatjina et al. 2014;
Amiri et al. 2017). Incidentally, queen body mass
is also a parameter that seems easy to measure as it
requires only a scale in the milligram range.

Body mass varies throughout the life of the
queen: it decreases with time after hatching and
increases again after mating (Skowronek et al.
2004). The initial decrease in body mass is under-
standable in light of the mating flight, which
affects mating success (Hayworth et al. 2009).
Greater body mass improved queens’ acceptance
into another colony in Apis mellifera anatoliaca
(Akyol et al. 2009). However, bioassays did not
relate queens’ body mass to their attractiveness to
the worker bees (Nelson and Gary 1983;
subspecies not given). Different practices used in
queen rearing play a role in defining body mass.
For example, larval age at the time of grafting has
an important role in the development of reproduc-
tive organs such as ovaria (e.g., Gilley et al. 2003).
Ovaria represent a significant part of the queen’s
abdomen and up to 40% of body mass in fertilized
queens (calculated from data in Hatjina et al.
2014). Some authors report different numbers of
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ovarioles for queens grafted immediately after
eclosion in comparison with queens grafted 2 or
3 days after eclosion, which again is reflected in
the queen’s body mass (Gilley et al. 2003; Woyke
1971), though opinions are divided on the topic
(Hatch et al. 1999; Jackson et al. 2011). The mass
of the ovaria is not stable even after the onset of
oviposition (Kahya et al. 2008), and it is also
dependent on season: winter “break” is reflected
in the developmental stage of eggs and their num-
ber in the ovarioles (Shehata et al. 1981). Param-
eters that are often mentioned in connection with
mating ability and offspring viability are sperm
count and spermatheca volume, which are again
reflected in body mass (Bieńkowska et al. 2009;
Woyke 1987).

The effects of food sources on queen bees are
difficult to study since they are fed indirectly by
workers’ retinue. Increased pollen flow is related
to the production of worker bees (Mattila and Otis
2006), and winter pollen storage is correlated with
the size of the spring population (Farrar 1936).
The composition of royal jelly also depends on the
available food sources (Echigo et al. 1986). It was
observed, however, that the availability of pollen
in the diet of workers influenced egg laying (Fine
et al. 2018). One could also assume that diet
directly influences the mass of ovaria.

The Slovenian breeding program for Apis
mellifera carnica (SBP; Kozmus et al. 2018)
binds commercial queen breeders with research
institutions. A database formed through SBP ac-
tivities and side projects contains various data
regarding rearing, pedigree, and performance test-
ing. In this paper, we used machine learning (ML)
procedures to delve into the relationship of body
mass and several anatomical, (patho)physiologi-
cal, and rearing parameters, which are considered
“queen quality parameters.” ML is an approach
for mining big datasets and using this “experi-
ence” for the prediction of new results. ML has
been extensively used in bioinformatics, medi-
cine, security and, recently, in animal behavior
(Valletta et al. 2017), including modeling of the
honeybee dance (Saghafi and Tsokos 2017), and
its use is still gaining momentum.

Using data collected over 3 years and ML
procedures, we investigated the joint effect of
the abovementioned parameters on the body mass

of the queen bee and elucidated the most impor-
tant among them. We discuss the results from the
point of usefulness to the beekeeper.

2. MATERIALS AND METHODS

2.1. Queens

Queens (Apis mellifera carnica ) used in mor-
phological and physiological investigations were
obtained from 18 Slovenian commercial rearing
operation stations in mid-June in 2006, 2008, and
2010. A total of 162 queens were collected every
year, including nine queens per breeder; each of
the queens was attended by 6 to 12 attendants.
Additionally, 20 sister queens were measured in
2016 and added to newly formed nucs. Nucs were
kept at the same location and expanded into full-
size colonies in the next season. Brood surface
was evaluated with a 5 cm × 5 cm mesh
(Delaplane et al. 2013) in mid-May and mid-
August 2017.

2 . 2 . Ana tomi ca l and h i s t o l o g i c a l
investigations and Nosema spp. spore
quantification

Queens were anesthetized with CO2 and
weighed. The head, legs, and wings were re-
moved. The body of the queen was then pinned
down with entomological needles, submerged in
Hayes solution, and dissected. The midgut, ova-
ries, and spermatheca were carefully extracted.

Ovaries were weighed individually and then
fixed in 4% formaldehyde. Dehydration was
achieved with an ethanol queue (50, 70, 90, 96,
96%; 24 h for each step) and xylene (Sigma-
Aldrich). Samples were then embedded in wax,
and cross-sections were made at the ovary’s mid-
point with a microtome. Slices were dried on an
object glass, deparaffinized in xylene, rehydrated
in ethanol, and stained in hematoxylin/eosin (Sig-
ma-Aldrich). Stained slices were investigated un-
der a microscope, and ovarioles were counted for
each ovarium (10 sections/ovary; Figure 1a).

To determine spermathecal volume, we first
removed the spermathecal tracheal sheet and
measured several spermathecal diameters under
the microscope using the AxioVision program
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(Zeiss, Germany). Next, we calculated the
spermathecal volume as the volume of a sphere
using the average diameter as the entry param-
eter (Figure 1b). Moist spermatheca was punc-
tured, and the sperm were transferred into a
microcentrifuge tube containing 50 μl of Hayes
solution. After 5 min, 950 μl of deionized water
was added and kept for 10 min, followed by
addition of 4 ml of fixative mixture (2 ml of a
4% solution of formaldehyde, 0.6 g 1 M
NaHCO3, and distilled water), according to
Harizanis (1983). Spermatozoa counts were
performed on a hemocytometer plate (Bürker-
Türk); 80 fields were counted at ×400 magnifi-
cation. The number of spermatozoa in the sper-
matheca was calculated with the assumption
that the sample volume inside a square of the
hemocytometer is 0.004 mm3 (1/250 mm3):

N sperm ¼ mean sperm count

square
� dilution 5000ð Þ � N fields

ð1Þ

Nosema spore presence was evaluated in
the midgut of each queen. One milliliter of
PBS (phosphate-buffered saline) was added to
the sample and homogenized. A drop of ho-
mogenate was placed on a Bürker hemocytom-
eter, and spores were counted. Attendant bee
samples were pooled, and spore counts were
obtained as described above. The spore count
was then averaged over all attendants.

2.3. Queen-rearing practices

Rearing parameters were collected with a ques-
tionnaire from each participating breeder. “Age at
time of grafting”was either “egg,” larvae less than
12 h old, larvae between 12 and 24 h old, and
larvae older than 24 h. The parameter “mating
hive time” describes the time point at which the
breeder removed the queens from the mating hive
for shipment. The comb surface of the mating
hive, contained in the parameter “mating hive
size,” was divided into three categories according
to the summed surface of the comb(s). Types of
grafting were described by the parameter “grafting
method” (Table I).

2.4. Phytogeographical regions

Slovenia is divided into six phytogeographical
regions: alpine, prealpine, submediterranean,
dinaric, predinaric, and subpannonic regions
(roughly from west to east; Wraber 1969). These
regions offer different forages to bees as a conse-
quence of different abiotic parameters (e.g., alti-
tude, soil, climate) that determine vegetation types
and periods of nectar or dew flow. Every queen
breeder was ascribed a region he/she belongs to,
represented by the parameter “phytogeog region.”

2.5. Data analysis

All the analyses were performed with custom-
written Python 3 scripts using Scikit-Learn,

a b

Figure 1. Cross-section of an ovary (a ). Measuring volume of the spermatheca. Red lines show the lines of the
diameter measurement (b ).
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Seaborn, Numpy, and Scipy packages for analysis
and graphical presentation. Models were built
with the open-source machine learning software
H2O (H2O.ai Inc., USA) via its Python API. Code
is available at Zenodo (https://doi.org/10.5281
/zenodo.3229393).

2.6. Relationships between parameters

Relationships between various parameters and
between them and queen body mass were inves-
tigated. We used a simple linear regression and
expressed the goodness of fit with R 2.

2.7. Data preparation, machine learning
procedures, and model evaluation

Data from 18 breeders participating for all 3 years
were used to build the datasets. We built three
models with different combinations of parameters:
(1) only data collected in all 3 years (model “2006&
2008 & 2010”; N of queens = 486; N of training = 413;
N of validation = 73), e.g., without data on the number
of ovarioles, data on the volume of spermatheca, or
Nosema presence in attendant bees; (2) only mea-
surements collected in the years 2006 and 2008
(model “2006 & 2008”; N of queens = 324; N of

training = 275; N of validation = 49), including the num-
ber of ovarioles but without spermatheca volume
andNosema in attendant bees; and (3) data collected
in the years 2008 and 2010, including spermatheca
volume andNosema in attendant bees but excluding
the number of ovarioles (model “2008 & 2010,” see

Table II; N of queens = 324; N of training = 275; N of

validation = 49). All three models included both phy-
togeographical data and data about rearing practices
(Table I). Rearing practices (Table I) and anatomical,
physiological, and health data (Table II) were com-
bined with phytogeographical region for each par-
ticipating breeder. Body mass measurements were
classified into quartiles: the 1st quartile represented
high-end body mass values, and the 4th quartile
represented low-end body mass values. Quartiles
were in turn used as target values in the model runs.

2.8. Modeling and machine learning
procedures

We created several models based on the
ML procedures to disentangle the complex
relationships between several queen quality
parameters. The “gradient boosting machine”
(GBM) algorithm from the open-source ma-
chine learning software H2O was used in
model creation, validation, and determination
of the importance of measured parameters,
and we interfaced our analysis scripts via the
Python API of the software. GBM was set to
multiclass classification, predicting one of the
four quartiles. The measured queen bee input
parameters were treated as features in the
model.

Briefly, the GBM algorithm in H2O creates deci-
sion trees, which are constructed via an algorithmic
approach that identifies ways to split the dataset at a
node. Which feature to split on and the split criteria

Table I. Rearing practices used in the analysis with possible options. Italics labels selected options and bold labels
options never selected among the selected breeders

Grafting method Age at grafting Mating hive time Mating hive size (comb surface)

Single Eggs Eggs Small (< 0.1 m 2)

Double Larvae up to 12 h old Open brood Middle (0.1 m 2 ≤ 0.15 m 2)

Jenter/Nicot Larvae between 12 and 24 h of age Covered brood Large (> 0.15 m 2)

Other Larvae more than 24 h old Hatching bees
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are selected for each node, finding the greatest re-
duction in the residual sum of squares in the subtree
at that point.We limited the number of trees to 50 for
each run and the tree depth to 5 per tree; the number
of bins per featurewas set to 20, and the loss function
was set to multinomial. No hyperparameters were
set. Categorical features were encoded using the
enum strategy. The model outputs a confusion ma-
trix of correct vs. incorrect classifications and the
relative predictive strength of each feature in the
prediction task. This parameter importance score is
normally expressed as the percent of contribution
(Hastie et al. 2009). For the correct setup of the
GBM algorithm, we followed the guidelines for
use of ML in ecology (Elith et al. 2008).

In each iteration, the data were randomly split
into a training set, consisting of 85% of the data
and a validation set consisting of the remaining
15% of the data. The GBM learner was trained on
the training set. The quality of the prediction was
obtained by computing the precision ratio be-
tween correct classif icat ions and total

classifications and the error rate, which is the ratio
between incorrect classifications and total classi-
fications in the validation set. For each dataset, ten
iterations were performed, and the results were
pooled together and presented as mean ± SD.
Parameter importance was collected for each
run, pooled with those from the other runs, and
presented for each dataset as mean ± SD.

3. RESULTS

3.1. Individual parameters and their impact
on queen body mass

Prior to designing the model, we investigated
the relationships between queen body mass and
individual parameters. Most of the parameters did
not have direct bearing on queen body mass, with
the exception of ovary mass (Fig. S1A), volume
of spermatheca in 2010 (Fig. S1D), and Nosema
count in the gut of the queen (Fig. S1E). It should
be noted, however, that queen body mass in the

Table II. Top: overview of anatomical, physiological, and health parameters measured in 2006, 2008, and 2010.
Below: inclusion of the same parameters in three different models

Body
mass

Breeder Ovary
mass

Ovarioles Sperm
count

Volume of
spermatheca

Nosema
sp. queen

Nosema
sp.

attendants

N of
data

Years

2006 Yes Yes Yes Yes Yes No Yes No

2008 Yes Yes Yes Yes Yes Yes Yes Yes

2010 Yes Yes Yes No Yes Yes Yes Yes

Model name

2006 &
2008 &
2010

Yes Yes Yes No Yes No Yes No 486

2006 &
2008

Yes Yes Yes Yes Yes No Yes No 324

2008 &
2010

Yes Yes Yes No Yes Yes Yes Yes 324
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infected subsample did not stand out of the sam-
pled population. We performed a simple statistical
test and confirmed no significant differences be-
tween infected and noninfected subsamples (N.S.,
unpaired t test: p = 0.92; t = − 0.1). Furthermore,
we found no or a very weak relationship between
the number of ovarioles and ovary mass (Fig.
S2A), between sperm count and spermatheca vol-
ume (Fig. S2B), between ovary mass and sperm
count (Fig. S2C), and between ovary mass and
volume of spermatheca (Fig. S2D).

3.2. Impact of measured parameters on
queen body mass

As mentioned above, the majority of measured
parameters were collected every year, yet the
datasets differ by the inclusion of one or another
parameter depending on the year in the analysis
(see Table II). Building three different models
allowed us to utilize all available data for each
year and to compare the importance of the missing
data.

a

b

Figure 2. a Importance of individual parameters for classification of queens’ bodymass expressed in percent (mean
± SD). Empty fields indicate parameters not used during the model run. Body mass values were assigned to quartiles
for all 3 years. b Precision of classification for each model. Values on the diagonal of confusion show average
precision of classification. Off-diagonal values show the fraction of misclassification. Red indicates values below or
equal to chance (≤ 0.25), and green indicates values above chance (> 0.25).
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Classifications were very goodwhen no available
parameter was withheld: the lowest mean precision
of prediction was 0.84 (model “2006 & 2008 &
2010”; 2nd and 3rd quartiles) and the highest was
0.97 (model “2006& 2008”; 4th quartile). The mean
misclassified fractions shown in the off-diagonal
were between 0 and 0.07 (Figure 2b). The parame-
ters “ovary mass,” “breeder,” and “sperm count”
were constantly ranked as the most important pa-
rameters, with mean importance from 32 to 36%, 30
to 36%, and 11 to 19%, respectively. Model “2006
& 2008” used the parameter “ovarioles” (mean

importance 10%), which improved the lowest aver-
age precision to 0.86 from 0.84 and the highest
average precision to 0.97 from 0.95 (Figure 2a, b).
Very good precision was achieved also by the model
“2008 & 2010” with a range of mean precisions
between 0.88 and 0.95, which can be attributed to
the extensive use of the parameters “volume of
spermatheca” (15.0 ± 2.0) and “Nosema sp. atten-
dants” (6.0 ± 1.0%). The importance of both “ovary
mass” and “breeder” was decreased to mean values
of 32 and 30%, respectively, as a consequence. The
importance of parameters related to rearing practices

a

b

Figure 3. a Importance of individual parameters, without the parameter “breeder,” for classification of queens’ body
mass, expressed as percentage. Empty fields indicate parameters not used during the model run. Body mass values
were assigned to quartiles for all 3 years. b Precision of classification for each model without “breeder.” Values on
the diagonal of confusion show precision of classification. Off-diagonal values show the fraction of misclassifica-
tion. Red indicates values below or equal to chance (≤ 0.25), and green indicates values above chance (> 0.25).
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and phytogeographical region was valued below
0.5% regardless of the model (Figure 2a).

3.3. Importance of “breeder” for model
predictions

Rearing practices did not stand out in the model
runs, and their importance was usually rated below
0.5%. We investigated the possibility that most of
their informational value is already included in
some other parameter, namely, “breeder.” For that
reason, we excluded the parameter “breeder” and
reran the model in the same manner as above. We
noted an increase in the importance of these param-
eters to between 1.0 ± 0 and 6.0 ± 1.0%
(Figure 3a). Despite mobilization of “neglected”
parameters, there was also a marked drop in the
precision of classification: for example, the mean
precision of models “2006 & 2008 & 2010” and
“2006 & 2008” dropped by 9% and 7%, respec-
tively, in the prediction of the 2nd quartile (cf.
Figures 2b and 3b). The presence of two additional
parameters in the model “2008 & 2010” seems to
compensate for the absence of the “breeder.”

3.4. Importance of rearing practices and
location for model predictions

To evaluate the importance of rearing practices
and the location of the breeding operation, we
excluded them from the model as well (besides
“breeder”). The present parameters increased in
their importance as expected; for example, the
importance of “ovary mass” increased up to 11%
(Figure 4a, top half), yet the precision of predic-
tion decreased for first two models (by 19%max).
Exclusion of the rearing and location parameters
had the least impact on the “2008 & 2010”model,
which had two more parameters to start with
(Figure 4b, cf. Figure 3b).

We also performed classifications with rearing
and phytogeographical parameters only. For all
three models, the highest precisions of classifica-
tion were for the 1stand 4th quartiles, which were
between 0.48 and 0.71, which are above random-
ness (0.25) but below the desired precision. Pre-
cision in the prediction of the other two quartiles
was mostly below random for all three models. In
fact, the 2nd and 3rd quartiles were incorrectly

assigned into the 1st or 4th quartile at a rate greater
than that by chance (Figure 4c), showing that the
dataset used is not balanced. Phytogeographical
region carried the highest importance in all three
models (39 ± 4.0–41.0 ± 5.0%), followed by the
time that a newly mated queen spends in her
mating nuc (“mating time hive”) and age at
grafting (Figure 4a, bottom half). Despite their
noted importance, the rearing parameters together
with the phytogeographical data are not enough to
explain the variation in body mass of the queen.

4. DISCUSSION

The term “queen quality” can encompass sev-
eral queen characteristics, which include genetic
merit, developmental conditions, success in mat-
ing and, later, the environment in a (new) colony
(Oldroyd et al. 1990; Dodologlu and Gene 2003).
Queen body mass is one of these characteristics
and is often regarded as a tool for the prediction of
queen quality and, as such, is held in great esteem
among beekeepers. In this paper, we turned the
analysis around: instead of focusing on the body
mass relationship with several descriptors of
queen bee quality, which were empirically linked
to brood production and overall colony health in
the past, we investigated the contributions of these

Figure 4.a Importance of individual rearing parameters
and vegetational parameters for precision of classifica-
tion of queens’ body mass, expressed as percentage.
White fields show parameters not used in the model’s
dataset. Bodymass values were assigned to quartiles for
all 3 years. The top half of the figure shows the impor-
tance of individual parameters with rearing practices
included and vegetational parameters excluded. The
bottom half of the figure shows the importance of
individual parameters with only rearing practices and
phytogeographical parameters included. b Precision of
classification for individual models with rearing prac-
tices and vegetational parameters excluded. c Precision
of classification for individual models with only rearing
practices and vegetational parameters included. The
precision was not high enough to allow reliable predic-
tions in any of the cases. In all confusion matrices,
values on the diagonal show precision of classification.
Off-diagonal values show the fraction of misclassifica-
tion. The sum of the off-diagonal values shows the error
rate. Red indicates values below or equal to chance (≤
0.25), and green indicates values above chance (> 0.25).

b
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parameters to queen body mass. We show for the
first time how these biological parameters and
rearing practices influence the queen’s body mass,
which often serves as the beekeeper’s tool for
prediction of the queen’s performance before pur-
chase or when selecting among queens.

4.1. Value of the parameters

In the past, parameters influencing body mass
were often studied individually (for review, see
Hatjina et al. 2014) or jointly via methods such as
PCA to determine the anatomical and physiolog-
ical parameters that best explained queen body
mass (e.g., Tarpy et al. 2012). The combination
of numeric features such as measured values of
biological parameters and categorical features
such as types of grafting required a new approach
to evaluate the features’ joint importance.

Our data showed that a single parameter does
not possess enough explanatory power to predict
the body mass of the queen (Figs. S1 and S2).
Dominating among “biological” parameters that
steered classification was “ovary mass.”Ovaria of
the mated queen are approximately eight times
la rger than those of the vi rg in queen
(Shehata et al. 1981) and represent a large fraction
of a queen’s body mass and abdominal volume
(Winston 1987). In our case, both the median
mass of ovaria and the median body mass differed
between the studied years. The index between
ovary mass and body mass also differed between
years (Fig. S1A), showing that ovarian growth
does not entirely depend on the same parameters
as body mass.

The parameters “N of ovarioles,” “volume of
spermatheca,” and “Nosema sp. attendants” indi-
vidually have a weak relationship with bodymass.
However, adding any of these three to the model
significantly improved the models’ performance,
giving these parameters biological value. Mating
triggers the growth of ovarioles (Tanaka and
Hartfelder 2004) as a consequence of the expres-
sion of certain genes in both the ovaries and the
brain, thereby inducing physiological changes
(Kocher et al. 2008). We confirmed the absence
of a correlation between the number of ovarioles
and queen body mass (Fig. S1B), as established
by Hatch et al. (1999); the literature links the

count of ovarioles to grafting age instead (Dedej
et al. 1998; Tarpy et al. 2000). Both queens and
workers are susceptible to infection with Nosema
spp. The possible methods of infection are both
horizontal (Higes et al. 2009) and vertical (Peng
et al. 2016) with sperm. It was shown that in
colonies with an infected queen, there is a greater
proportion of infected workers (Czekońska 2000).
The desire of beekeepers to obtain uninfected
queens is therefore understandable. The regres-
sion plot shows that the severity of infection in-
fluences the queen’s body mass, yet our sample is
not great enough to confirm whether an infection
would make infected queens stand out from the
rest of the population (Fig. S1E). Current statisti-
cal tests do not support such conclusions. It also
seems that infected attendant bees are not the
cause of infection in the queens; infected atten-
dants were far more numerous than infected
queens. However, in cases when attendants were
infected, the spore count in the queen was higher
(Fig. S2E). According to Alaux et al. (2011),
infection of queens with Nosema ceranae in-
creased the level of vitellogenin, queen mandibu-
lar pheromone, and antioxidant capacity. Atrophy
of hypopharyngeal glands is one of the effects of
Nosema infection in worker bees and supposedly
the main reason the queen escapes infection
(Wang and Moeller 1970).

Seasonal differences (“year”) observed both in
body and ovary mass were ranked as important
but were overshadowed by “breeder” in all three
models. During model construction, we attempted
to strip the rearing practices from the parameter
“breeder” and use them as separate model param-
eters. As mentioned above, none of them contrib-
uted significantly to the bodymass in initial model
runs. We found this curious since Tarpy et al.
(2011) experimentally created high- and low-
quality queens by grafting at different ages. Ad-
ditionally, ontogenetically, body mass decreases
following emergence and is at its lowest a day
after the last mating flight, after which it increases
back to its approximate value at the beginning of
oviposition and gains an additional 10% over the
next 3 days. After the onset of oviposition, the
bodymass decreases to somewhere between 5 and
10% more than the mass at emergence (Kahya
et al. 2008). For both reasons, we expected a
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significant impact by “mating hive time” and “age
at grafting” or at least a significant contribution by
them.

The initial misleading results were the conse-
quence of a caveat of the ML method used: only
the parameters that contribute to the explanation
of target values were considered, and all the infor-
mation provided by the technical data was already
included in the “breeder” parameter. After “breed-
er” was removed as a separate parameter, param-
eters covering rearing practices and phytogeogra-
phy were mobilized to explain queen body mass.
It seems that there is more to “breeder” than just
the rearing practices of the breeder and the vege-
tation at the breeding location; however, the clas-
sifications were still good but not as good as
before. Two qualities that could remain entwined
in the parameter “breeder” are microlocation of
the mating hives and nucs and the genetic lines
with which the breeders work.

Regional information, which defines the time
frame of various forages, contained under the
“phytogeographical region” was important in all
cases after the exclusion of “breeder” and the most
important parameter when parameters covering
breeding practices and phytogeographical
information were tested separately. This
highlights the importance of forage sources. Mao
et al. (2015) showed that certain plant compounds
such as p -coumaric acid, often found in beebread
and honey, seem to inhibit the development of
ovaria in worker bees. Similarly, plant miRNAs
seem to play a role as well (Zhu et al. 2017). Due
to the possibility of different dietary preferences
of colonies at the same location (cf. Waddington
et al. 1994), it is probably impossible to tackle this
issue with field observation and without the ma-
nipulation of colony feed stocks.

4.2. Conclusions

As a measure of queen quality, queen body
mass is directly useful for the prediction of brood
production, taking into account the large safety
margin, shown as the range of the confidence
interval, at the desired brood surface (Fig. S2F).
Our machine learning approach showed that body
mass highly reflects both rearing parameters and
production potential. We acknowledge that

models do not reflect real biology, yet when their
predictions have high precision and R 2 values,
they support ideas about the synergistic effects
of multiple factors. The parameters marked as
important by the model could be masking other
important parameters, which is probably the
greatest weakness of the approach used. Our
models show that higher body mass means favor-
able connection with at least one of the
production-related parameters. However, the in-
dependence of parameters (other than “ovary
mass”) from the queen’s mass means they con-
tribute to “body mass” on an individual basis, and
there is no guarantee that a queenwith a high body
mass has a large number of ovarioles or that the
sperm count in its spermatheca is high.

Selecting queens by body mass, however,
should also be performed cautiously. It seems that
considering absolute mass value as a threshold
for queen quality is not a correct approach be-
cause measured masses varied between seasons,
as shown in Fig. S3A. Tarpy et al. (2012) found
that variability within a rearing operation is
higher than interoperation variability. Conse-
quently, it was suggested that general queen qual-
ity could be improved by culling low-end queens
before being marketed. Beekeepers who wish to
purchase queens are normally in no position to
determine the average annual queen body mass
and which breeder currently produces the heavi-
est queens; at best, he or she can make compar-
isons within the rearing operation. However,
knowledge about the phytogeographical region
of the operation and time spent in mating nucs
might help. In some cases, it is possible to make
use of breeders’ past production. In Slovenia, for
example, queen quality is assessed yearly by
taking samples from the breeders involved with
the Slovenian Breeding Program to assist poten-
tial customers.

Queen bees’ body mass and other “queenly”
qualities have often been discussed in the litera-
ture, sometimes with opposing results. Our inves-
tigation is one of the few that also indirectly
covers the rarely discussed impact of diet on the
queens’ body mass and production potential,
which should be the focus of future research in
this area.
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