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Abstract – Typical European propolis is an antibiotic substance derived from the resin of poplar, birch, and aspen
buds. Here, we tested the ability of propolis originating from the resins of these plants to inhibit the in vitro growth of
Paenibacillus larvae , the organism that causes American foulbrood, a fatal honeybee larval disease. The study
involved GC-MS analysis of extracts from nine samples of propolis gathered from the temperate climate zone of
Europe. The extracts showed noticeable differences in the content of flavonoids and other phenolic compounds.
Despite the differences in chemical composition, all tested extracts inhibited the growth of P. larvae , with a
minimum inhibitory concentration of 7.8 to 62.4 μg mL−1. It was found that not only did the content of flavonoids
affect the strength of antimicrobial activity, but other phenolics, such as the phenylpropenoids hydroxycinnamyl
sesquiterpenols, glycerides and benzoates also had an effect. This is the first report on the comparative activity of
different types of European propolis against P. larvae.
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1. INTRODUCTION

American foulbrood (AFB), a disease of hon-
eybee larvae, has been known for more than
200 years. Prior to the arrival into Europe and
North America of the parasitic mite Varroa
destructor , AFB was the most economically im-
portant disease of honeybees. To date, AFB is the
most infectious and destructive disease of honey-
bee brood and is often fatal for bee colonies
(Genersch 2010). In Poland, AFB is the only
notifiable disease of honeybees and is subject to
obligatory combating (Buczek 2011). The final

decision regarding the method of combating
(treating or destroying AFB colonies) is within
the purview of the district veterinary surgeon.

The causative agent of this disease is the Gram-
positive, spore-forming bacterium Paenibacillus
larvae , which is highly infectious. In some coun-
tries, antibiotics or sulfathiazole are used to com-
bat AFB; however, these drugs only suppress the
clinical symptoms and cannot cure the disease,
because they are not effective against the infec-
tious endospores (Genersch 2010). Furthermore,
this practice leads to serious consequences, such
as reduced honeybee vitality through the suppres-
sion of the endogenous microflora in these bees,
the almost inevitable pollution of beekeeping
products with medicinal residues, and the appear-
ance of bacterial resistance (Lodesani and Costa
2005; Miyagi et al. 2000; Gende et al. 2010;
Buczek 2011). Antibiotics and sulfathiazole are
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legally banned in the European Union for use in
beekeeping (Mutinelli 2003), because honeybees
are classed as farming animals, whose products
cannot contain the residues of any drugs; there-
fore, this greatly limits the treatment possibilities.

Practically the only nonmedicinal method that
is applied to sanitize infected colonies is the so-
called shook swarm method (proposed in 1769 by
Schirach), which consists of shaking adult bees onto
a new uninfected comb foundation and destroying
the old combs and other infected materials (Hansen
and Brødsgaard 2003). This method can lead to
positive results in the treatment of infected but not
clinically diseased colonies (Genersch 2010).
However, its application does not guarantee the com-
plete recovery of treated bee colonies. Therefore, in
recent decades, considerable attention has been paid
to the development of alternative treatment methods,
based on the application of natural antibacterial sub-
stances such as essential oils (Fuselli et al. 2008;
Gende et al. 2008, 2009, 2010; González and
Marioli 2010; Santos et al. 2012) or propolis
(Antúnez et al. 2008; Bastos et al. 2008; Mihai
et al. 2012; Bilikova et al. 2013; Wilson et al. 2015).

Propolis is a mixture of beeswax and resinous
material that is collected by honeybees from var-
ious plants. In the mid-latitudes of the northern
hemisphere, the plant precursor of propolis is the
bud resins (exudates) of some arboreous trees, in
particular, different species of poplar, aspen, and
birch (Bankova et al. 2000; Wilson et al. 2013,
2015; Isidorov et al. 2014a, 2016). The antimicro-
bial activity of this natural antibiotic has been
attributed to phenolic substances: flavonoid agly-
cones, and phenolic and hydroxycinnamic acids
(Kujumgiev et al. 1999). Their specific content
tends to vary to a great extent, depending on the
plant precursor (Bankova et al. 2006).

Recent publications have demonstrated that the
principal plant precursors of propolis from boreal
and temperate zones of the European continent are
the bud resins of black poplar (Populus nigra ),
downy birch (Betula pubescens ), and common
aspen (Populus tremula ) (Isidorov et al. 2014a).
In a more recent investigation, taxonomical
markers of the resins from the buds of these trees
were determined (Isidorov et al. 2016). Black pop-
lar bud resin is characterized by a high content of
phenols such as pentenyl (mostly, prenyl)

cinnamates, chalcones, and the unsubstituted B
ring flavonoids: pinocembrin, pinostrobin, chrysin,
galangin, pinobanksin, and their 3-substituted de-
rivatives (Isidorov and Vinogorova 2003). Downy
birch and common aspen bud resins are distin-
gu i sh ed by the p r e s enc e o f sp ec i f i c
phenylpropenoids, hydroxycinnamic acid esters
of sesquiterpene alcohols, and glycerol, respective-
ly (Isidorov et al. 2014a, 2016). Although bees
from the same colony often collect resins from
more than one of these tree species, three main
Btypes^ of European propolis can be distinguished
on the basis of the species-specific chemical com-
position: poplar-, birch-, and aspen-type (Popova
et al. 2012; Isidorov et al. 2014a, 2016). Probably,
the differences in the chemical composition are
reflected in the antimicrobial activity of different
Btypes^ of propolis; however, little is known about
the effects of different types of European propolis
on P. larvae .

The main aim of this communication was to
compare the in vitro anti-P. larvae action of three
types of propolis from the temperate zone of the
northern hemisphere in an attempt to relate the
observed minimal inhibition concentration (MIC)
values with the chemical composition of these bee
products.

2. MATERIALS AND METHODS

2.1. Chemicals and propolis

Pyridine, bis(trimethylsilyl)trifluoroacetamide
(BSTFA), and C8-C40 n -alkane calibration stan-
dards were purchased from Sigma-Aldrich,
(Poznań, Poland). Extractions were carried out
with diethyl ether (POCH SA, Gliwice, Poland).

Two propolis samples (Pr-1 and Pr-2) were
collected in the same apiary located in northeast-
ern Poland, on the outskirts of Białowieza
National Park (52°, 42′ N, 23°, 52′ E). Propolis
Pr-3 originated from the forest-steppe in the
Volgograd region, Russia (48° 48′ N, 44° 28′ E).
Sample Pr-4 was supplied from the Słovak
Republic (48° 44′ N, 19° 08′ E). Three Russian
samples originated from the taiga zone: propolis
Pr-5 was collected in the Perm’ region (57° 40′ N,
56° 12′ E), while Pr-6 and Pr-7 samples were
received from apiaries in the Vologda region

412 V.A. Isidorov et al.



(59° 58′ N, 38° 31′ E and 59° 47′ N, 38° 38′ E).
Sample Pr-8 originated from Finland (61° 43′ N,
25° 26′ E), and sample Pr-9 was supplied from
northeastern Latvia (57° 8.5′ N, 26° 27′ E).

Propolises Pr-1, Pr-2, and Pr-9 were collected
by the authors in the summer of 2015. To acquire
the material, a special net (mesh size of 1 mm)was
mounted just above the hive frames with the
brood. After a time interval of 3 weeks, the net
became fully glued with pure propolis by the bees.
The propolis was easily separated after cooling the
net to −18 °C. The remaining samples (10–15 g
each) were gathered in the summer of 2015 by
apiarists in different countries. Propolis was har-
vested by scraping it off the frames or by using a
plastic screens which were placed on the topmost
frames in the hive and leaved until the bees have
deposited propolis in the splits in the screen.

2.2. Extract preparation and analyses

Two grams of ground propolis powder was
transferred to a 100 mL retort and extracted with
three 50 mL portions of diethyl ether for 24 h. The
joint extracts were filtered through paper filter,
and the solvent was removed using a rotary evap-
orator. The dry residue was used for chemical
analysis and antibacterial tests.

About 5 mg of the residue was diluted with
220 μL of pyridine and 80 μL of BSTFA. The
mixture was sealed and heated for 30 min at 60 °C
to form trimethylsilyl (TMS) derivatives. TMS
derivatives were analyzed using GC-MS on an
HP 6890 gas chromatograph fitted with an MSD
5973 mass selective detector (electron impact
source and quadrupole analyzer) from Agilent
Technologies (USA). This device was equipped
wi th an HP-5MS fused s i l i ca co lumn
(30 m × 0.25 mm i.d., 0.25-μm film thickness)
with electronic pressure control and a split/splitless
injector. The latter was used at 250 °C in split
(1:50) mode. The helium flow rate through the
column was 1 mL min−1 in constant flow mode.
The column was charged with 1 μL of the liquid
sample containing about 0.3 μg of derivatized
components. The analysis was carried out with
temperature programming from 50 to 310 °C at a
rate of 5 °C min−1; the highest temperature was
maintained for 15 min. The MSD detector

acquisition parameters were as follows: the transfer
line temperature was 280 °C, the MS source tem-
perature was 230 °C, and theMS quad temperature
was 150 °C. The electron impact mass spectra were
obtained at an ionization energy of 70 eV. The
MSD was set to scan 41–600 amu.

After integration of the chromatogram, the frac-
tion of each component in the total ion current (TIC)
was calculated. The precision of the method was
studied by three replicate extractions and analyses.
The peak areas of the extract components obtained
by replicate analyses were used for the calculation of
their relative standard deviation (RSD) values. On
average, RSD amounted to 2% for the main peaks
(more than 10% of TIC), 6% for medium peaks
(more than 1% of TIC), and 18% for peaks that
amounted to ≤0.5% of TIC (Isidorov et al. 2016).

To identify the components, both mass spectral
data and the calculated retention indices were
used. Mass spectrometric identification was car-
ried out with an automatic system of GC-MS data
processing supplied by the NIST 14 library
(NIST/EPA/NIH Library of Electron Ionization
Mass Spectra containing 276,259 standard mass
spectra) and a home-made library of mass spectra.
The latter contains more than 1250 spectra of
TMS derivatives prepared from commercial prep-
arations of flavonoids, other phenolics, terpe-
noids, aliphatic and aromatic acids, and alcohols.

The linear temperature programmed retention
indices (I T ) were calculated from the results of the
separation of C8-C40 n -alkane solutions in hexane
and the TMS derivatives. The measured values of
the retention times were used to calculate the
retention indices using the following equation:

IT ¼ 100 tx−tnð Þ= tnþ1−tnð Þ þ 100n

where t x , t n , and t n + 1 are the retention times of
compound x and n- alkanes with the number of
carbon atoms in the molecule n and n + 1, re-
spectively (t n ≤ t x ≤ t n + 1) (Van den Dool and
Kratz 1963).

The obtained I T values were compared with the
NIST collection (NIST 2013) as well as with the
authors’ previously published data (Isidorov et al.
2009, 2014a, b; Isidorov 2015) and presented in a
home-made computer database containing more
than 18,000 I T values for more than 5500 organic
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compounds. The identification was considered reli-
able if the results of the computer search of the mass
spectra library were confirmed by the experimental
I T values, i.e., if their deviation from the home-
made database values did not exceed ±5 u.i. (the
highest quantity of intra-laboratorial deviation).

2.3. P. larvae isolates

P. larvae was isolated from honeybee larvae
and honey samples originating from apiaries in
southeastern Poland (Table I). To isolate the bacilli,
dead larvae were aseptically removed from brood
combs and were crushed and suspended in 5mL of
physiological saline (0.9% NaCl), followed by
shaking for 10 min at room temperature. To isolate
bacteria from honey samples, about 10 mL of
honey was preheated at 45 °C, diluted with sterile
water in a ratio of 1:1, and centrifuged at 3000×g
for 30 min. The resulting pellets were suspended in
200 μL of physiological saline. The solutions of
crushed larvae and honey were centrifuged at
10,000 rcf for 5 min, and the resulting pellet was
then suspended in 900 μL of physiological saline.
All samples were preheated in a water bath for
10 min at 85 °C to eliminate vegetative cells and
to select the endospores. After preparation of a
serial dilution (10−1–10−4), 100 μL of each solu-
tion was spread onto Columbia Blood Agar Base
supplemented with vitamin B1 (Oxoid,
Basingstoke, England) and incubated at 30 °C in
5% CO2 for 48–96 h. The bacteria that formed
round colonies with a diameter of about 2–3 mm
and that were transparent or slightly whitish, with
an elevated center and frayed edge, were initially
selected as P. larvae and were cultivated on the
same medium and under the same conditions men-
tioned above to obtain pure cultures. The bacilli

initially classified as P. larvae were further inves-
tigated by Gram staining, the catalase test
(Neuendorf et al. 2004), and a Plagemann probe.
Gram-positive and catalase-negative bacilli that
formed spiral forms in the Plagemann probe were
classified as P. larvae (Plagemann 1985). The
selected strains were kept at −80 °C in Mueller-
Hinton broth (Oxoid) supplemented with glycerol
at a ratio of 1:1.

2.4. 16S rRNA gene sequencing

Total DNA was prepared from overnight cul-
tures of the isolates grown in a brain-heart infu-
sion (BHI) broth using the protocol for Gram-
positive bacteria with the DNeasy Blood &
Tissue Kit (Qiagen GmbH, Hilden, Germany)
and the Qiacube apparatus (Qiagen), according
to the instruction manuals. The DNA concentra-
tion and purity were checked using a NanoDrop
2000 spectrometer (Thermo Fisher Scientific
Com., Waltham, USA). The partial 16S rRNA
gene of the isolates was amplified using a pair of
primers: Pl-16SE1 5′-GCA AGT CGA GCG
GAC CTT GTG-3′ and Pl-16SE2 5′-AAA CCG
GTC AGA GGG ATG TCA AG-3′ (Neuendorf
et al. 2004) in a PCR reaction using the Expand
Long Template PCR System (Roche Diagnostic
GmbH, Mannheim, Germany) as follows: 94 °C
for 3 min, 94 °C for 30 s, 50 °C for 45 s, and 68 °C
for 7 min. The 966-bp16S rRNA amplicons were
cloned into pGEM-T Easy (Promega Corporation,
Madison, USA). To determine the accuracy of the
sequence, both strands of two clones were se-
quenced using T7 and SP6 primers, in an
ABI3500 automated sequencer (Applied
Biosystems, Foster City, USA). For the compara-
tive analyses of nucleotide and amino acid se-
quences, database searches were performed using
the BLAST program at the NCBI website
(http://www.ncbi.nlm.nih.gov). This study
confirmed the identification of isolates KB25,
KB35, KB41, and KB55 as P. larvae.

2.5. Anti-P. larvae susceptibility test

The propolis extracts were tested against four
Bwild^ P. larvae isolates, as well as against the
reference P. larvae LMG 09820 strain (Belgian

Table I. Paenibacillus larvae isolates used in the study.

Name of isolate Origin Country Region

KB25 Larvae Poland Lubelskie

KB35 Larvae Poland Lubelskie

KB41 Honey Poland Podkarpackie

KB55 Larvae Poland Podkarpackie
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Coordinated Collections of Microorganisms). The
latter was isolated in 1906 from a foul brood of
honeybees by White as Bacillus larvae (White
1906); this was reclassified several times and was
finally named Paenibacillus larvae (Heyndrickx
et al. 1996). The bacterial strains kept at −80 °C
were inoculated onto blood agar (Oxoid) and were
incubated for 48 h at 30 °C. Then, bacteria were
reinoculated onto Mueller-Hinton broth and cul-
tured until they reached an optical density of 0.2–
0.4 at 600 nm, measured with a V-670 spectro-
photometer (Jasco, Japan).

The propolis extracts were dissolved inDMSOat
a concentration of 2 mg mL−1, sonicated in a
Branson 2510 ultrasonic bath (Sigma), and filtered
through a 0.22-μm pore size Rotilabo-Spritzenfilter
filter (Carl Roth GmbH and Co, Karlsruhe,
Germany). To maintain appropriate nutrient condi-
tions, the extracts were aseptically diluted in double-
concentratedMueller-Hinton broth using laboratory
tubes that contained an arithmetic dilution series
ranging from 0.5 to 1000μgmL−1 in a final volume
of 3 mL. The propolis solutions used in the study
were as follows: 0.5, 1.0, 2.0, 3.9, 7.8, 15.6, 31.2,
62.5, 125.0, 250, 500, and 1000 μg mL−1. In order
to observe whether the solvent alone caused turbid-
ity of the medium, we included a solvent control.

The minimal inhibitory concentration (MIC) of
the extracts was assessed in the tube dilution test
in accordance with Clinical and Laboratory
Standard Institute (2011) protocols. For the assay,
30 μL of the bacterial culture of an OD600 ∼0.4
was added to each tube with the extract and was
incubated for 48 h at 37 °C. The bacterial cultures
with different concentrations of propolises were
observed visually. The lowest dose of the extract
with no growth of P. larvae was regarded as the
MIC value. All the tests were repeated four times.
Cultures of P. larvae in tubes with Mueller-
Hinton broth without propolis extracts were used
as a positive control. Mueller-Hinton broth sup-
plemented with 10% DSMO arithmetically dilut-
ed ranging from 0.0025 to 5% was used as a
solvent control. Similar growth of bacteria under
study in Mueller-Hinton broth without DMSO
(positive control) and in Mueller-Hinton broth
supplemented with 10% DSMO (solvent control)
was observed, which allowed to conclude that
DMSO itself does not affected P. larvae growth.

3. RESULTS

The composition of diethyl ether extracts of
propolis was very complex: on the chromatograms
of nine samples of propolis from five European
countries (Figure 1), 278 organic components were
recorded, 141 of which belonged to different
groups of aromatic compounds. More comprehen-
sive groups were formed by flavonoids and
chalcones (53 unique chromatographic peaks)
and by phenylpropenoids (63 unique peaks for
cinnamic acid derivatives). Apart from
hydroxycinnamic acids and their benzyl and
pentenyl esters (36 peaks), phenylpropenoids were
also represented by the hydroxycinnamoyl esters
of sesquiterpene C15H24O alcohols (10 peaks), as
well as monoglycerides and diglycerides of p -
coumaric, ferulic, and caffeic acids (17 peaks).
Furthermore, all propolis samples contained sever-
al terpenoids in different amounts: the chromato-
grams showed the presence of C15H24O, C15H26O,
and C15H24O2 sesquiterpenoids (39 peaks), and
C30H48O, C30H50O, and C30H50O2 triterpenoids
(19 peaks). In general, the qualitative composition
of the samples under investigation corresponded
well with previously published data on European
propolis (Bankova et al. 2000, 2006; Isidorov et al.
2014a). Table II presents the group composition of
extracts in terms of their proportion of the total ion
current (TIC) of the chromatogram.

The specific features of the qualitative compo-
sition of the propolis samples under investigation
led to the conclusion that among the nine samples
listed in Table II, only three, i.e., Pr-1, Pr-5, and Pr-
9, were selectively collected by honeybees from a
single plant source. The propolis Pr-1 was almost a
pure poplar-type propolis, Pr-5 was a birch type,
and Pr-9 was an aspen-type propolis. Samples Pr-
2, Pr-3, and Pr-4 also belonged to the poplar-type;
however, they contained a relatively small admix-
ture (0.6–1.0% of TIC) of phenylpropenoid glyc-
erides, which are taxonomical markers of aspen
bud resin (Isidorov et al. 2009). Samples Pr-6 and
Pr-7 of Russian propolis were birch-type, but
contained marked amounts (2.4 and 7.8% of TIC)
of aspen resin-derived phenylpropenoid glycer-
ides. Aspen-type propolis Pr-8 contained an ad-
mixture (2.5% of TIC) of typical downy birch
phenylpropenoid sesquiterpenols.

In vitro study of the antibacterial activity of European propolis 415



Pr-1 

Pr-3 

Pr-4 

Pr-5 

Pr-6 

Pr-7 

Pr-8 

Pr-9 

Pr-2 

30.00 40.00 50.00 60.00 70.00 80.00 90.00

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Time-->

Abundance TIC: Pr_3KarSil.D\data.ms

30.00 40.00 50.00 60.00 70.00 80.00 90.00

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Time-->

Abundance TIC: Pr_5KrySil.D\data.ms

30.00 40.00 50.00 60.00 70.00 80.00 90.00

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Time-->

Abundance TIC: Pr_5KrySil.D\data.ms

40.00 50.00 60.00 70.00 80.00 90.00

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Time-->

Abundance TIC: Pr_11PalSil.D\data.ms

30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Time-->

Abundance TIC: Pr_4FerSil.D\data.ms

35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Time-->

Abundance TIC: 120704_09.D\data.ms

35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

Time-->

Abundance TIC: 120704_05.D\data.ms

30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00

100000

200000

300000

400000

500000

600000

700000

800000

900000

Time-->

Abundance
TIC: Pr_8TroSil.D\data.ms

40.00 50.00 60.00 70.00 80.00 90.00

50000

100000

150000

200000

250000

300000

350000

400000

Time-->

Abundance

TIC: 130419_07_P3.D\data.ms

Figure 1. GC-MS chromatograms of diethyl extracts of propolis samples Pr-1 to Pr-9.
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Hierarchical cluster analysis was performed
based on chemical data (Table II). As shown in
Figure 2, nine propolis samples can be separated
into three groups. Samples Pr-2, Pr-3, Pr-4 form
one group harvested from poplar buds. Pure
poplar-type sample Pr-1 belong to the same group,
showing a difference from other samples of this
group with small admixtures (0.6–1.0%) of aspen
bud resins. Samples Pr-5, Pr-6, and Pr-7 were
grouped as another group harvested presumably
from birch buds. A slight difference shows sample
Pr-5 which contains the least admixture of aspen
resins. The third group was formed of samples Pr-
8 and Pr-9 harvested from aspen buds, which are
considerably different from other samples in anti-
P. larvae activity (see below).

To test the antimicrobial activity of the propolis
extracts, we used the tube dilution assay. The sen-
sitivity of the Bwild^ isolates and reference LMG
09820 strain of P. larvae were tested. The minimal
inhibitory concentrations of the propolis extracts
are presented in Table III. The most active was
the Polish poplar-type propolis Pr-1, which showed
MIC values that ranged from 7.8 to 15.6 μg mL−1.
In contrast, the Latvian pure aspen-type propolis
Pr-9 showed lower antimicrobial activity (from
31.8 to 62.5 μg mL−1) against all tested strains.

4. DISCUSSION

It is relevant to ascertain how the chemical
composition of different propolis types influences
their activity against P. larvae. As can be observed
in Table III, despite qualitative and quantitative
differences in their composition, all tested extracts
significantly inhibited the growth of the Polish
isolates and the reference strain of P. larvae with
MIC values ranging from 7.8 to 62.4 μg mL−1.

The investigated poplar-type propolis (P-1 to
P-4) showed practically identical effects on the
pathogen, which is not surprising considering that
their qualitative composition was very similar.
Moreover, the quantitative compositions of the
biologically active phenols in P-1 to P-4 were
similar if the lipophilic wax components were
excluded. Therefore, the slightly higher activity
of Pr-1 with a MIC value of 7.8 μg mL−1 in the
assaywith KB25, KB35, andKB41 isolates might
be due to the lower (compared to propolis samplesT
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Pr-2 to Pr-4) relative content of Bneutral^ wax
components such as saturated fatty acids and their
esters with saturated aliphatic alcohols (6.3% of

TIC), alkanes, and alkenes (7.7% of TIC), which
do not influence the biological activity of propo-
lis. Notably, samples Pr-1 and Pr-2 were collected

Figure. 2 Hierarchical cluster analysis of propolis samples based on their chemical composition.

Table III. Minimal inhibitory concentration of different extracts for P. larvae.

Propolis MIC (μg mL−1) for P. larvae strains

KB25 KB35 KB41 KB55 LMG 09820

Poplar type

Pr-1 (Poland-1) 7.8 7.8 7.8 15.6 15.6

Pr-2 (Poland-2) 15.6 15.6 15.6 15.6 15.6

Pr-3 (Russia-1) 15.6 15.6 15.6 15.6 15.6

Pr-4 (Slovak) 15.6 15.6 15.6 15.6 15.6

Birch type

Pr-5 (Russia-2) 15.6 15.6 15.6 15.6 15.6

Pr-6 (Russia-3) 15.6 31.8 15.6 15.6 15.6

Pr-7 (Russia-4) 15.6 31.8 15.6 31.8 31.8

Aspen type

Pr-8 (Finland) 31.8 31.8 15.6 15.6 31.8

Pr-9 (Latvia) 31.8 62.4 31.8 62.4 62.4
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at the same time by honeybees inhabiting neigh-
boring hives. It appears that one of the two bee
colonies, for unknown reasons, addedmorewaxes
to the collected poplar bud resins.

The high anti-P. larvae activity of the poplar-type
and birch-type propolis can be attributed to the high
content of flavonoids, which is consistent with re-
cent findings (Popova et al. 2007; Mihai et al. 2012;
Bilikova et al. 2013). However, a substantial differ-
ence in the composition of the flavonoid fraction of
these two types of propolis was notable. The prod-
ucts derived from poplar bud resin contained large
amounts of dihydroflavonols (pinobanksin and its 3-
substituted derivatives) and the flavanones
pinocembrin and pinostrobin, whichwere complete-
ly absent in birch-type propolis (Table II). On the
contrary, only small amounts of the main birch-bud
flavanone sakuranetin was present in poplar-type
propolis. Sakuranetin and another flavanone,
homoeriodictyol, as well as the flavone
pectolinaringenin can be considered as taxonomic
markers of downy birch (B. pubescens ) on par with
phenylpropenoid sesquiterpenols (Isidorov et al.
2014b, 2016). These flavonoids possess antimicro-
bial activity (Atkinson and Blakeman 1982; Grecco
et al. 2014). Therefore, they may contribute to the
spectrum of biological activity of propolis from the
boreal zone of Europe, including anti-P. larvae
action.

Although they only contained trace amounts of
flavonoids, the aspen-type samples of propolis were
active against P. larvae (Table III). This activity can
be attributed to other phenols, i.e., hydroxycinnamyl
glycerides. This hypothesis needs experimental con-
firmation; phenylpropenoid glycerides have demon-
strated antitumor, antiproliferative, and estrogenic
activity (Banskota et al. 2002; Cheng et al. 2007;
Gunasekera et al. 1981), although their antimicrobial
properties have not been previously investigated.
Notably, aspen-type Pr-8 propolis, containing an
admixture of birch bud-derived phenylpropenoid
sesquiterpenols, was slightly more active than the
pure aspen-type sample Pr-9.

These findings firstly assume that not only fla-
vonoids but also different phenylpropenoids (such
as phenylpropenoid glycerides, the main phenolics
of aspen-type propolis) are also responsible for the
antibacterial activity of propolis from the boreal
zone. Secondly, the higher anti-P. larvae activity

of Pr-8 propolis, which was Bpolluted^ with com-
ponents derived from birch bud resin, might pro-
vide evidence of a synergistic interaction among
different compounds in propolis (Mihai et al.
2012). Resin diversity may be beneficial for bees
with respect to protection against different patho-
gens (Drescher et al. 2014; Wilson et al. 2013,
2015). It is relevant and worthwhile to further
study the interaction effects among phenols of
different classes of propolis extracts.

Finally, a comparison of the results of investiga-
tions dealing with the in vitro anti-P. larvae action
of essential oils and propolis confirmed the higher
activity of propolis. For example, essential oils
from fourCitrus species demonstratedMIC values
ranging from 385 to 840 μg mL−1 (Fuselli et al.
2008). According to Gende et al. (2008, 2009),
relatively high MIC values (from 50 to
300 μg mL−1) also characterize essential oils from
Lavandula officinalis , Cinnamomum zeylanicum ,
Mentha piperita , Pimpinella anisum , and
Foeniculum vulgaris . Therefore, the application
of propolis for nonmedicinal AFB treatment ap-
pears to be more promising.
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