In vitro study of the antimicrobial activity of European propolis against *Paenibacillus larvae*

Valery A. ISIDOROV¹, Krzysztof BUCZEK², Grzegorz ZAMBROWSKI³, Krzysztof MIASTKOWSKI¹, Izabela SWIECICKA^{3,4}

¹Forest Faculty, Białystok University of Technology, 17-200, Hajnówka, Poland
²Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
³Department of Microbiology, University of Bialystok, Bialystok, Poland
⁴Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland

Received 14 August 2016 - Revised 1 November 2016 - Accepted 22 November 2016

Abstract – Typical European propolis is an antibiotic substance derived from the resin of poplar, birch, and aspen buds. Here, we tested the ability of propolis originating from the resins of these plants to inhibit the in vitro growth of *Paenibacillus larvae*, the organism that causes American foulbrood, a fatal honeybee larval disease. The study involved GC-MS analysis of extracts from nine samples of propolis gathered from the temperate climate zone of Europe. The extracts showed noticeable differences in the content of flavonoids and other phenolic compounds. Despite the differences in chemical composition, all tested extracts inhibited the growth of *P. larvae*, with a minimum inhibitory concentration of 7.8 to 62.4 μ g mL⁻¹. It was found that not only did the content of flavonoids affect the strength of antimicrobial activity, but other phenolics, such as the phenylpropenoids hydroxycinnamyl sesquiterpenols, glycerides and benzoates also had an effect. This is the first report on the comparative activity of different types of European propolis against *P. larvae*.

Paenibacillus larvae / American foulbrood / Apis mellifera / propolis / antibacterial action

1. INTRODUCTION

American foulbrood (AFB), a disease of honeybee larvae, has been known for more than 200 years. Prior to the arrival into Europe and North America of the parasitic mite *Varroa destructor*, AFB was the most economically important disease of honeybees. To date, AFB is the most infectious and destructive disease of honeybee brood and is often fatal for bee colonies (Genersch 2010). In Poland, AFB is the only notifiable disease of honeybees and is subject to obligatory combating (Buczek 2011). The final decision regarding the method of combating (treating or destroying AFB colonies) is within the purview of the district veterinary surgeon.

The causative agent of this disease is the Grampositive, spore-forming bacterium Paenibacillus larvae, which is highly infectious. In some countries, antibiotics or sulfathiazole are used to combat AFB; however, these drugs only suppress the clinical symptoms and cannot cure the disease, because they are not effective against the infectious endospores (Genersch 2010). Furthermore, this practice leads to serious consequences, such as reduced honeybee vitality through the suppression of the endogenous microflora in these bees, the almost inevitable pollution of beekeeping products with medicinal residues, and the appearance of bacterial resistance (Lodesani and Costa 2005; Miyagi et al. 2000; Gende et al. 2010; Buczek 2011). Antibiotics and sulfathiazole are

Corresponding author: V. Isidorov, v.isidorov@pb.edu.pl Manuscript editor: Stan Schneider

legally banned in the European Union for use in beekeeping (Mutinelli 2003), because honeybees are classed as farming animals, whose products cannot contain the residues of any drugs; therefore, this greatly limits the treatment possibilities.

Practically the only nonmedicinal method that is applied to sanitize infected colonies is the socalled shook swarm method (proposed in 1769 by Schirach), which consists of shaking adult bees onto a new uninfected comb foundation and destroying the old combs and other infected materials (Hansen and Brødsgaard 2003). This method can lead to positive results in the treatment of infected but not clinically diseased colonies (Genersch 2010). However, its application does not guarantee the complete recovery of treated bee colonies. Therefore, in recent decades, considerable attention has been paid to the development of alternative treatment methods, based on the application of natural antibacterial substances such as essential oils (Fuselli et al. 2008; Gende et al. 2008, 2009, 2010; González and Marioli 2010; Santos et al. 2012) or propolis (Antúnez et al. 2008; Bastos et al. 2008; Mihai et al. 2012; Bilikova et al. 2013; Wilson et al. 2015).

Propolis is a mixture of beeswax and resinous material that is collected by honeybees from various plants. In the mid-latitudes of the northern hemisphere, the plant precursor of propolis is the bud resins (exudates) of some arboreous trees, in particular, different species of poplar, aspen, and birch (Bankova et al. 2000; Wilson et al. 2013, 2015; Isidorov et al. 2014a, 2016). The antimicrobial activity of this natural antibiotic has been attributed to phenolic substances: flavonoid aglycones, and phenolic and hydroxycinnamic acids (Kujumgiev et al. 1999). Their specific content tends to vary to a great extent, depending on the plant precursor (Bankova et al. 2006).

Recent publications have demonstrated that the principal plant precursors of propolis from boreal and temperate zones of the European continent are the bud resins of black poplar (*Populus nigra*), downy birch (*Betula pubescens*), and common aspen (*Populus tremula*) (Isidorov et al. 2014a). In a more recent investigation, taxonomical markers of the resins from the buds of these trees were determined (Isidorov et al. 2016). Black poplar bud resin is characterized by a high content of phenols such as pentenyl (mostly, prenyl)

cinnamates, chalcones, and the unsubstituted B ring flavonoids: pinocembrin, pinostrobin, chrysin, galangin, pinobanksin, and their 3-substituted derivatives (Isidorov and Vinogorova 2003). Downy birch and common aspen bud resins are distinguished by the presence of specific phenylpropenoids, hydroxycinnamic acid esters of sesquiterpene alcohols, and glycerol, respectively (Isidorov et al. 2014a, 2016). Although bees from the same colony often collect resins from more than one of these tree species, three main "types" of European propolis can be distinguished on the basis of the species-specific chemical composition: poplar-, birch-, and aspen-type (Popova et al. 2012; Isidorov et al. 2014a, 2016). Probably, the differences in the chemical composition are reflected in the antimicrobial activity of different "types" of propolis; however, little is known about the effects of different types of European propolis on P. larvae.

The main aim of this communication was to compare the in vitro anti-*P. larvae* action of three types of propolis from the temperate zone of the northern hemisphere in an attempt to relate the observed minimal inhibition concentration (MIC) values with the chemical composition of these bee products.

2. MATERIALS AND METHODS

2.1. Chemicals and propolis

Pyridine, bis(trimethylsilyl)trifluoroacetamide (BSTFA), and C_8 - C_{40} *n*-alkane calibration standards were purchased from Sigma-Aldrich, (Poznań, Poland). Extractions were carried out with diethyl ether (POCH SA, Gliwice, Poland).

Two propolis samples (Pr-1 and Pr-2) were collected in the same apiary located in northeastern Poland, on the outskirts of Białowieza National Park (52° , 42' N, 23° , 52' E). Propolis Pr-3 originated from the forest-steppe in the Volgograd region, Russia ($48^{\circ} 48'$ N, $44^{\circ} 28'$ E). Sample Pr-4 was supplied from the Słovak Republic ($48^{\circ} 44'$ N, $19^{\circ} 08'$ E). Three Russian samples originated from the taiga zone: propolis Pr-5 was collected in the Perm' region ($57^{\circ} 40'$ N, $56^{\circ} 12'$ E), while Pr-6 and Pr-7 samples were received from apiaries in the Volgoda region $(59^{\circ} 58' \text{ N}, 38^{\circ} 31' \text{ E} \text{ and } 59^{\circ} 47' \text{ N}, 38^{\circ} 38' \text{ E}).$ Sample Pr-8 originated from Finland (61° 43' N, 25° 26' E), and sample Pr-9 was supplied from northeastern Latvia (57° 8.5' N, 26° 27' E).

Propolises Pr-1, Pr-2, and Pr-9 were collected by the authors in the summer of 2015. To acquire the material, a special net (mesh size of 1 mm) was mounted just above the hive frames with the brood. After a time interval of 3 weeks, the net became fully glued with pure propolis by the bees. The propolis was easily separated after cooling the net to -18 °C. The remaining samples (10–15 g each) were gathered in the summer of 2015 by apiarists in different countries. Propolis was harvested by scraping it off the frames or by using a plastic screens which were placed on the topmost frames in the hive and leaved until the bees have deposited propolis in the splits in the screen.

2.2. Extract preparation and analyses

Two grams of ground propolis powder was transferred to a 100 mL retort and extracted with three 50 mL portions of diethyl ether for 24 h. The joint extracts were filtered through paper filter, and the solvent was removed using a rotary evaporator. The dry residue was used for chemical analysis and antibacterial tests.

About 5 mg of the residue was diluted with 220 µL of pyridine and 80 µL of BSTFA. The mixture was sealed and heated for 30 min at 60 °C to form trimethylsilyl (TMS) derivatives. TMS derivatives were analyzed using GC-MS on an HP 6890 gas chromatograph fitted with an MSD 5973 mass selective detector (electron impact source and quadrupole analyzer) from Agilent Technologies (USA). This device was equipped with an HP-5MS fused silica column (30 m \times 0.25 mm i.d., 0.25-µm film thickness) with electronic pressure control and a split/splitless injector. The latter was used at 250 °C in split (1:50) mode. The helium flow rate through the column was 1 mL min⁻¹ in constant flow mode. The column was charged with 1 μ L of the liquid sample containing about 0.3 µg of derivatized components. The analysis was carried out with temperature programming from 50 to 310 °C at a rate of 5 °C min⁻¹; the highest temperature was maintained for 15 min. The MSD detector acquisition parameters were as follows: the transfer line temperature was 280 °C, the MS source temperature was 230 °C, and the MS quad temperature was 150 °C. The electron impact mass spectra were obtained at an ionization energy of 70 eV. The MSD was set to scan 41–600 amu.

After integration of the chromatogram, the fraction of each component in the total ion current (TIC) was calculated. The precision of the method was studied by three replicate extractions and analyses. The peak areas of the extract components obtained by replicate analyses were used for the calculation of their relative standard deviation (RSD) values. On average, RSD amounted to 2% for the main peaks (more than 10% of TIC), 6% for medium peaks (more than 1% of TIC), and 18% for peaks that amounted to $\leq 0.5\%$ of TIC (Isidorov et al. 2016).

To identify the components, both mass spectral data and the calculated retention indices were used. Mass spectrometric identification was carried out with an automatic system of GC-MS data processing supplied by the NIST 14 library (NIST/EPA/NIH Library of Electron Ionization Mass Spectra containing 276,259 standard mass spectra) and a home-made library of mass spectra. The latter contains more than 1250 spectra of TMS derivatives prepared from commercial preparations of flavonoids, other phenolics, terpenoids, aliphatic and aromatic acids, and alcohols.

The linear temperature programmed retention indices (I^T) were calculated from the results of the separation of C_8 - C_{40} *n*-alkane solutions in hexane and the TMS derivatives. The measured values of the retention times were used to calculate the retention indices using the following equation:

$$I^{T} = 100 (t_{x}-t_{n})/(t_{n+1}-t_{n}) + 100n$$

where t_x , t_n , and t_{n+1} are the retention times of compound x and n-alkanes with the number of carbon atoms in the molecule n and n + 1, respectively ($t_n \le t_x \le t_{n+1}$) (Van den Dool and Kratz 1963).

The obtained I^T values were compared with the NIST collection (NIST 2013) as well as with the authors' previously published data (Isidorov et al. 2009, 2014a, b; Isidorov 2015) and presented in a home-made computer database containing more than 18,000 I^T values for more than 5500 organic

compounds. The identification was considered reliable if the results of the computer search of the mass spectra library were confirmed by the experimental I^T values, i.e., if their deviation from the homemade database values did not exceed ±5 u.i. (the highest quantity of intra-laboratorial deviation).

2.3. P. larvae isolates

P. larvae was isolated from honeybee larvae and honey samples originating from apiaries in southeastern Poland (Table I). To isolate the bacilli, dead larvae were aseptically removed from brood combs and were crushed and suspended in 5 mL of physiological saline (0.9% NaCl), followed by shaking for 10 min at room temperature. To isolate bacteria from honey samples, about 10 mL of honey was preheated at 45 °C, diluted with sterile water in a ratio of 1:1, and centrifuged at $3000 \times g$ for 30 min. The resulting pellets were suspended in 200 µL of physiological saline. The solutions of crushed larvae and honey were centrifuged at 10,000 rcf for 5 min, and the resulting pellet was then suspended in 900 µL of physiological saline. All samples were preheated in a water bath for 10 min at 85 °C to eliminate vegetative cells and to select the endospores. After preparation of a serial dilution $(10^{-1}-10^{-4})$, 100 µL of each solution was spread onto Columbia Blood Agar Base supplemented with vitamin B₁ (Oxoid, Basingstoke, England) and incubated at 30 °C in 5% CO₂ for 48-96 h. The bacteria that formed round colonies with a diameter of about 2-3 mm and that were transparent or slightly whitish, with an elevated center and frayed edge, were initially selected as P. larvae and were cultivated on the same medium and under the same conditions mentioned above to obtain pure cultures. The bacilli

Table I. Paenibacillus larvae isolates used in the study.

Name of isolate	Origin	Country	Region
KB25	Larvae	Poland	Lubelskie
KB35	Larvae	Poland	Lubelskie
KB41	Honey	Poland	Podkarpackie
KB55	Larvae	Poland	Podkarpackie

🖄 Springer

initially classified as *P. larvae* were further investigated by Gram staining, the catalase test (Neuendorf et al. 2004), and a Plagemann probe. Gram-positive and catalase-negative bacilli that formed spiral forms in the Plagemann probe were classified as *P. larvae* (Plagemann 1985). The selected strains were kept at -80 °C in Mueller-Hinton broth (Oxoid) supplemented with glycerol at a ratio of 1:1.

2.4. 16S rRNA gene sequencing

Total DNA was prepared from overnight cultures of the isolates grown in a brain-heart infusion (BHI) broth using the protocol for Grampositive bacteria with the DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden, Germany) and the Oiacube apparatus (Oiagen), according to the instruction manuals. The DNA concentration and purity were checked using a NanoDrop 2000 spectrometer (Thermo Fisher Scientific Com., Waltham, USA). The partial 16S rRNA gene of the isolates was amplified using a pair of primers: Pl-16SE1 5'-GCA AGT CGA GCG GAC CTT GTG-3' and Pl-16SE2 5'-AAA CCG GTC AGA GGG ATG TCA AG-3' (Neuendorf et al. 2004) in a PCR reaction using the Expand Long Template PCR System (Roche Diagnostic GmbH, Mannheim, Germany) as follows: 94 °C for 3 min, 94 °C for 30 s, 50 °C for 45 s, and 68 °C for 7 min. The 966-bp16S rRNA amplicons were cloned into pGEM-T Easy (Promega Corporation, Madison, USA). To determine the accuracy of the sequence, both strands of two clones were sequenced using T7 and SP6 primers, in an ABI3500 automated sequencer (Applied Biosystems, Foster City, USA). For the comparative analyses of nucleotide and amino acid sequences, database searches were performed using the BLAST program at the NCBI website (http://www.ncbi.nlm.nih.gov). This study confirmed the identification of isolates KB25, KB35, KB41, and KB55 as P. larvae.

2.5. Anti-P. larvae susceptibility test

The propolis extracts were tested against four "wild" *P. larvae* isolates, as well as against the reference *P. larvae* LMG 09820 strain (Belgian Coordinated Collections of Microorganisms). The latter was isolated in 1906 from a foul brood of honeybees by White as *Bacillus larvae* (White 1906); this was reclassified several times and was finally named *Paenibacillus larvae* (Heyndrickx et al. 1996). The bacterial strains kept at -80 °C were inoculated onto blood agar (Oxoid) and were incubated for 48 h at 30 °C. Then, bacteria were reinoculated onto Mueller-Hinton broth and cultured until they reached an optical density of 0.2–0.4 at 600 nm, measured with a V-670 spectrophotometer (Jasco, Japan).

The propolis extracts were dissolved in DMSO at a concentration of 2 mg mL⁻¹, sonicated in a Branson 2510 ultrasonic bath (Sigma), and filtered through a 0.22- μ m pore size Rotilabo-Spritzenfilter filter (Carl Roth GmbH and Co, Karlsruhe, Germany). To maintain appropriate nutrient conditions, the extracts were aseptically diluted in doubleconcentrated Mueller-Hinton broth using laboratory tubes that contained an arithmetic dilution series ranging from 0.5 to 1000 μ g mL⁻¹ in a final volume of 3 mL. The propolis solutions used in the study were as follows: 0.5, 1.0, 2.0, 3.9, 7.8, 15.6, 31.2, 62.5, 125.0, 250, 500, and 1000 μ g mL⁻¹. In order to observe whether the solvent alone caused turbidity of the medium, we included a solvent control.

The minimal inhibitory concentration (MIC) of the extracts was assessed in the tube dilution test in accordance with Clinical and Laboratory Standard Institute (2011) protocols. For the assay, 30 μ L of the bacterial culture of an OD₆₀₀ ~0.4 was added to each tube with the extract and was incubated for 48 h at 37 °C. The bacterial cultures with different concentrations of propolises were observed visually. The lowest dose of the extract with no growth of P. larvae was regarded as the MIC value. All the tests were repeated four times. Cultures of P. larvae in tubes with Mueller-Hinton broth without propolis extracts were used as a positive control. Mueller-Hinton broth supplemented with 10% DSMO arithmetically diluted ranging from 0.0025 to 5% was used as a solvent control. Similar growth of bacteria under study in Mueller-Hinton broth without DMSO (positive control) and in Mueller-Hinton broth supplemented with 10% DSMO (solvent control) was observed, which allowed to conclude that DMSO itself does not affected P. larvae growth.

3. RESULTS

The composition of diethyl ether extracts of propolis was very complex: on the chromatograms of nine samples of propolis from five European countries (Figure 1), 278 organic components were recorded, 141 of which belonged to different groups of aromatic compounds. More comprehensive groups were formed by flavonoids and chalcones (53 unique chromatographic peaks) and by phenylpropenoids (63 unique peaks for cinnamic acid derivatives). Apart from hydroxycinnamic acids and their benzyl and pentenyl esters (36 peaks), phenylpropenoids were also represented by the hydroxycinnamoyl esters of sesquiterpene C₁₅H₂₄O alcohols (10 peaks), as well as monoglycerides and diglycerides of pcoumaric, ferulic, and caffeic acids (17 peaks). Furthermore, all propolis samples contained several terpenoids in different amounts: the chromatograms showed the presence of $C_{15}H_{24}O$, $C_{15}H_{26}O$, and C₁₅H₂₄O₂ sesquiterpenoids (39 peaks), and C₃₀H₄₈O, C₃₀H₅₀O, and C₃₀H₅₀O₂ triterpenoids (19 peaks). In general, the qualitative composition of the samples under investigation corresponded well with previously published data on European propolis (Bankova et al. 2000, 2006; Isidorov et al. 2014a). Table II presents the group composition of extracts in terms of their proportion of the total ion current (TIC) of the chromatogram.

The specific features of the qualitative composition of the propolis samples under investigation led to the conclusion that among the nine samples listed in Table II, only three, i.e., Pr-1, Pr-5, and Pr-9, were selectively collected by honeybees from a single plant source. The propolis Pr-1 was almost a pure poplar-type propolis, Pr-5 was a birch type, and Pr-9 was an aspen-type propolis. Samples Pr-2, Pr-3, and Pr-4 also belonged to the poplar-type; however, they contained a relatively small admixture (0.6-1.0% of TIC) of phenylpropenoid glycerides, which are taxonomical markers of aspen bud resin (Isidorov et al. 2009). Samples Pr-6 and Pr-7 of Russian propolis were birch-type, but contained marked amounts (2.4 and 7.8% of TIC) of aspen resin-derived phenylpropenoid glycerides. Aspen-type propolis Pr-8 contained an admixture (2.5% of TIC) of typical downy birch phenylpropenoid sesquiterpenols.

Figure 1. GC-MS chromatograms of diethyl extracts of propolis samples Pr-1 to Pr-9.

ı propolis.
f European
types o
different
of
$\widehat{\mathbf{\omega}}$
II
ц
of TIC.
%
composition (
group
Relative
H.
Table]

sh,	Polish, Pr-2	Russian, Pr-3	Slovak, Pr-4	Russian, Pr-5	Russian, Pr-6	Russian, Pr-7	Finnish, Pr-8	Latvian, Pr-9
s ± 0.8	4.9 ± 0.1	8.4 ± 0.5	8.0 ± 0.5	15.3 ± 0.9	12.1 ± 0.7	4.0 ± 0.1	1.0 ± 0.2	0.2 ± 0.2
± 0.2	3.1 ± 0.2	4.7 ± 0.3	5.3 ± 0.3	I	I	I	I	Ι
± 0.3	1.4 ± 0.2	0.8 ± 0.1	0.3 ± 0.1	I	I	I	Ι	I
± 0.2	0.2 ± 0.2	0.2 ± 0.2	0.2 ± 0.2	9.2 ± 0.5	6.5 ± 0.4	2.6 ± 0.2	0.8 ± 0.1	0.1 ± 0.1
	I	Ι	0.5 ± 0.2	4.1 ± 0.2	2.4 ± 0.4	0.8 ± 0.2	Ι	I
± 0.2	5.8 ± 0.1	6.2 ± 0.4	9.0 ± 0.5	13.8 ± 0.3	6.0 ± 0.4	2.9 ± 0.5	I	Ι
± 0.2	4.9 ± 0.1	4.0 ± 0.2	6.8 ± 0.1	I	I	I	Ι	I
	Ι	0.7 ± 0.1	0.9 ± 0.2	2.4 ± 0.1	1.2 ± 0.01	0.5 ± 0.1	I	Ι
	Ι	0.6 ± 0.1	0.5 ± 0.1	4.1 ± 0.2	2.1 ± 0.1	0.8 ± 0.1		
	Ι	0.6 ± 0.1	0.5 ± 0.1	5.0 ± 0.1	1.0 ± 0.2	0.9 ± 0.2		
4 ± 0.7	10.1 ± 0.6	9.6 ± 0.7	15.1 ± 0.3	7.6 ± 0.5	$\textbf{8.8}\pm\textbf{0.02}$	3.5 ± 0.1	I	Ι
± 0.2	7.2 ± 0.4	4.9 ± 0.3	9.1 ± 0.2		I	I	I	I
	Ι	0.2 ± 0.1	0.2 ± 0.2	2.2 ± 0.4	4.8 ± 0.3	2.4 ± 0.2	0.2 ± 0.2	I
$t \pm 1.2$	15.3 ± 0.3	$\textbf{8.0} \pm \textbf{0.5}$	16.2 ± 0.6	I	I	I	I	I
± 0.3	2.9 ± 0.2	2.0 ± 0.2	3.7 ± 0.2	I	I	I	I	I
$\downarrow \pm 0.3$	8.5 ± 0.2	5.5 ± 0.3	11.6 ± 0.2	I	I	I	I	I
± 0.1	0.5 ± 0.1	1.0 ± 0.2	1.3 ± 0.3	I	I	I	I	I
± 0.9	13.5 ± 0.9	14.4 ± 0.8	13.0 ± 0.9	10.8 ± 0.6	16.2 ± 0.4	22.3 ± 0.7	39.4 ± 0.8	36.5 ± 1.5
± 0.7	6.9 ± 0.2	7.4 ± 0.4	5.2 ± 0.5	6.1 ± 0.3	8.3 ± 0.5	10.8 ± 0.6	8.9 ± 0.5	11.9 ± 0.7
± 0.3	4.4 ± 0.8	4.6 ± 0.4	3.9 ± 0.5	4.7 ± 0.4	3.7 ± 0.4	11.7 ± 0.5	11.7 ± 0.5	3.8 ± 0.5
± 0.2	2.2 ± 0.6	2.4 ± 0.5	3.1 ± 0.6	I	I	Ι	I	I
	I	I	Ι	I	I	I	18.7 ± 0.9	20.9 ± 0.4
	Ι	Ι	I	5.5 ± 1.0	$\textbf{4.1} \pm \textbf{0.7}$	1.3 ± 0.3	2.5 ± 0.7	I
	0.6 ± 0.2	1.0 ± 0.2	0.8 ± 0.3	0.02 ± 0.02	2.4 ± 0.4	7.8 ± 0.9	30.2 ± 0.6	32.1 ± 0.6
± 0.6	5.8 ± 1.1	$\textbf{4.4} \pm \textbf{0.7}$	5.3 ± 1.0	2.6 ± 0.5	5.5 ± 1.1	6.6 ± 1.3	$\textbf{4.8} \pm \textbf{1.0}$	6.2 ± 1.1
± 0.2	I	1.6 ± 0.3	0.6 ± 0.2	13.3 ± 2.3	$\textbf{9.5} \pm \textbf{1.7}$	3.5 ± 0.6	I	0.3 ± 0.1
	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	In. Follall, Pr-2 ± 0.8 4.9 ± 0.1 ± 0.2 3.1 ± 0.2 0.3 1.4 ± 0.2 0.2 5.8 ± 0.1 0.2 7.2 ± 0.4 0.2 7.2 ± 0.4 0.3 2.9 ± 0.2 0.3 2.9 ± 0.2 0.1 0.5 ± 0.1 0.7 6.9 ± 0.2 0.7 6.9 ± 0.2 0.7 6.9 ± 0.2 0.7 6.9 ± 0.2 0.2 2.2 ± 0.6 0.2 2.2 ± 0.6 0.2 2.2 ± 0.6 0.6 ± 0.2	In. Follath, Pr-2 Pr-3 ± 0.8 4.9 ± 0.1 8.4 ± 0.5 ± 0.2 3.1 ± 0.2 4.7 ± 0.3 0.3 1.4 ± 0.2 0.8 ± 0.1 0.2 5.8 ± 0.1 6.2 ± 0.4 0.2 7.2 ± 0.4 9.6 ± 0.1 $ 0.7 \pm 0.1$ 0.7 ± 0.1 $ 0.2 \pm 0.1$ 10.2 ± 0.1 ± 0.3 0.2 ± 0.2 5.2 ± 0.2 0.1 0.5 ± 0.1 10.4 ± 0.8 0.7 6.9 ± 0.2 7.4 ± 0.4 0.7 6.9 ± 0.2 7.4 ± 0.6 0.2 2.4 ± 0.6	n.ProbabilityMatsatial, Pr-2ProtectProtect ± 0.8 4.9 ± 0.1 8.4 ± 0.5 8.0 ± 0.5 ± 0.2 3.1 ± 0.2 4.7 ± 0.3 5.3 ± 0.3 0.3 1.4 ± 0.2 0.8 ± 0.1 0.3 ± 0.1 0.2 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.2 0.2 ± 0.2 0.2 ± 0.2 0.5 ± 0.2 0.2 5.8 ± 0.1 6.2 ± 0.4 9.0 ± 0.5 0.2 5.8 ± 0.1 0.7 ± 0.1 0.9 ± 0.2 0.2 4.9 ± 0.1 4.0 ± 0.2 0.5 ± 0.1 $ 0.7 \pm 0.1$ 0.7 ± 0.1 0.5 ± 0.1 $ 0.7 \pm 0.1$ 0.7 ± 0.1 0.5 ± 0.1 $ 0.7 \pm 0.1$ 0.7 ± 0.2 0.1 ± 0.2 0.2 7.2 ± 0.4 4.9 ± 0.3 9.1 ± 0.2 0.3 8.5 ± 0.2 5.2 ± 0.3 11.6 ± 0.2 0.1 0.5 ± 0.1 0.2 ± 0.1 0.2 ± 0.6 0.3 8.5 ± 0.2 5.2 ± 0.3 11.6 ± 0.2 0.1 0.5 ± 0.1 1.0 ± 0.2 $1.3.4 \pm 0.3$ 0.7 6.9 ± 0.2 7.4 ± 0.4 3.9 ± 0.5 0.7 6.9 ± 0.2 7.4 ± 0.4 3.9 ± 0.5 0.7 0.6 ± 0.2 1.0 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 1.0 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2	n_{1} FOLDIA, FOLDI	r_{CMRM} r_{C	$\mu_{r,2}$ Rustant, rustant, protect, prist Prest Prest	$\mu_{\rm error}$ restant, protect, prestant, pre

In vitro study of the antibacterial activity of European propolis

417

Group of compounds	Polish, Pr-1	Polish, Pr-2	Russian, Pr-3	Slovak, Pr-4	Russian, Pr-5	Russian, Pr-6	Russian, Pr-7	Finnish, Pr-8	Latvian, Pr-9
Triterpenoids	1.9 ± 0.4	2.2 ± 0.5	1.8 ± 0.5	3.5 ± 0.7	0.3 ± 0.1	Trace	$\textbf{8.8} \pm \textbf{1.6}$	3.4 ± 1.1	2.7 ± 0.5
Aliphatic acids and esters, including	6.3 ± 1.4	19.6 ± 2.9	20.4 ± 1.2	13.8 ± 0.8	7.9 ± 1.4	13.0 ± 0.9	18.2 ± 3.4	7.8 ± 1.5	5.8 ± 1.2
Tetracosyl and hexacosyl palmitates	1.0 ± 0.3	8.2 ± 1.6	8.8 ± 1.7	5.6 ± 1.4	1.1 ± 0.3	2.4 ± 0.5	7.6 ± 1.7	2.1 ± 0.6	1.9 ± 0.5
Aliphatic alcohols	0.5 ± 0.3	0.5 ± 0.4	1.3 ± 0.3	0.6 ± 0.2	0.2 ± 0.01	0.1 ± 0.1	1.9 ± 0.3	I	I
Alkanes and alkenes	7.7 ± 0.5	18.4 ± 0.4	18.8 ± 0.4	10.7 ± 0.3	7.1 ± 0.2	15.2 ± 0.3	11.0 ± 0.7	6.4 ± 0.4	6.5 ± 0.4
Nonidentified	2.7 ± 0.3	2.8 ± 0.3	2.4 ± 0.4	2.4 ± 0.5	13.1 ± 2.4	7.1 ± 0.9	7.3 ± 1.0	$\textbf{4.6} \pm \textbf{1.1}$	9.8 ± 2.0

Hierarchical cluster analysis was performed based on chemical data (Table II). As shown in Figure 2, nine propolis samples can be separated into three groups. Samples Pr-2, Pr-3, Pr-4 form one group harvested from poplar buds. Pure poplar-type sample Pr-1 belong to the same group, showing a difference from other samples of this group with small admixtures (0.6-1.0%) of aspen bud resins. Samples Pr-5, Pr-6, and Pr-7 were grouped as another group harvested presumably from birch buds. A slight difference shows sample Pr-5 which contains the least admixture of aspen resins. The third group was formed of samples Pr-8 and Pr-9 harvested from aspen buds, which are considerably different from other samples in anti-P. larvae activity (see below).

To test the antimicrobial activity of the propolis extracts, we used the tube dilution assay. The sensitivity of the "wild" isolates and reference LMG 09820 strain of *P. larvae* were tested. The minimal inhibitory concentrations of the propolis extracts are presented in Table III. The most active was the Polish poplar-type propolis Pr-1, which showed MIC values that ranged from 7.8 to 15.6 μ g mL⁻¹. In contrast, the Latvian pure aspen-type propolis Pr-9 showed lower antimicrobial activity (from 31.8 to 62.5 μ g mL⁻¹) against all tested strains.

4. DISCUSSION

It is relevant to ascertain how the chemical composition of different propolis types influences their activity against *P. larvae*. As can be observed in Table III, despite qualitative and quantitative differences in their composition, all tested extracts significantly inhibited the growth of the Polish isolates and the reference strain of *P. larvae* with MIC values ranging from 7.8 to 62.4 μ g mL⁻¹.

The investigated poplar-type propolis (P-1 to P-4) showed practically identical effects on the pathogen, which is not surprising considering that their qualitative composition was very similar. Moreover, the quantitative compositions of the biologically active phenols in P-1 to P-4 were similar if the lipophilic wax components were excluded. Therefore, the slightly higher activity of Pr-1 with a MIC value of 7.8 μ g mL⁻¹ in the assay with KB25, KB35, and KB41 isolates might be due to the lower (compared to propolis samples

418

Table II (continued)

Figure. 2 Hierarchical cluster analysis of propolis samples based on their chemical composition.

Pr-2 to Pr-4) relative content of "neutral" wax components such as saturated fatty acids and their esters with saturated aliphatic alcohols (6.3% of

TIC), alkanes, and alkenes (7.7% of TIC), which do not influence the biological activity of propolis. Notably, samples Pr-1 and Pr-2 were collected

Propolis	MIC (µg ml	L^{-1}) for <i>P. larvae</i> st	rains		
	KB25	KB35	KB41	KB55	LMG 09820
Poplar type					
Pr-1 (Poland-1)	7.8	7.8	7.8	15.6	15.6
Pr-2 (Poland-2)	15.6	15.6	15.6	15.6	15.6
Pr-3 (Russia-1)	15.6	15.6	15.6	15.6	15.6
Pr-4 (Slovak)	15.6	15.6	15.6	15.6	15.6
Birch type					
Pr-5 (Russia-2)	15.6	15.6	15.6	15.6	15.6
Pr-6 (Russia-3)	15.6	31.8	15.6	15.6	15.6
Pr-7 (Russia-4)	15.6	31.8	15.6	31.8	31.8
Aspen type					
Pr-8 (Finland)	31.8	31.8	15.6	15.6	31.8
Pr-9 (Latvia)	31.8	62.4	31.8	62.4	62.4

Table III. Minimal inhibitory concentration of different extracts for P. larvae.

at the same time by honeybees inhabiting neighboring hives. It appears that one of the two bee colonies, for unknown reasons, added more waxes to the collected poplar bud resins.

The high anti-P. larvae activity of the poplar-type and birch-type propolis can be attributed to the high content of flavonoids, which is consistent with recent findings (Popova et al. 2007; Mihai et al. 2012; Bilikova et al. 2013). However, a substantial difference in the composition of the flavonoid fraction of these two types of propolis was notable. The products derived from poplar bud resin contained large amounts of dihydroflavonols (pinobanksin and its 3substituted derivatives) and the flavanones pinocembrin and pinostrobin, which were completely absent in birch-type propolis (Table II). On the contrary, only small amounts of the main birch-bud flavanone sakuranetin was present in poplar-type propolis. Sakuranetin and another flavanone, homoeriodictyol, as well as the flavone pectolinaringenin can be considered as taxonomic markers of downy birch (B. pubescens) on par with phenylpropenoid sesquiterpenols (Isidorov et al. 2014b, 2016). These flavonoids possess antimicrobial activity (Atkinson and Blakeman 1982; Grecco et al. 2014). Therefore, they may contribute to the spectrum of biological activity of propolis from the boreal zone of Europe, including anti-P. larvae action.

Although they only contained trace amounts of flavonoids, the aspen-type samples of propolis were active against *P. larvae* (Table III). This activity can be attributed to other phenols, i.e., hydroxycinnamyl glycerides. This hypothesis needs experimental confirmation; phenylpropenoid glycerides have demonstrated antitumor, antiproliferative, and estrogenic activity (Banskota et al. 2002; Cheng et al. 2007; Gunasekera et al. 1981), although their antimicrobial properties have not been previously investigated. Notably, aspen-type Pr-8 propolis, containing an admixture of birch bud-derived phenylpropenoid sesquiterpenols, was slightly more active than the pure aspen-type sample Pr-9.

These findings firstly assume that not only flavonoids but also different phenylpropenoids (such as phenylpropenoid glycerides, the main phenolics of aspen-type propolis) are also responsible for the antibacterial activity of propolis from the boreal zone. Secondly, the higher anti-*P. larvae* activity of Pr-8 propolis, which was "polluted" with components derived from birch bud resin, might provide evidence of a synergistic interaction among different compounds in propolis (Mihai et al. 2012). Resin diversity may be beneficial for bees with respect to protection against different pathogens (Drescher et al. 2014; Wilson et al. 2013, 2015). It is relevant and worthwhile to further study the interaction effects among phenols of different classes of propolis extracts.

Finally, a comparison of the results of investigations dealing with the in vitro anti-*P. larvae* action of essential oils and propolis confirmed the higher activity of propolis. For example, essential oils from four *Citrus* species demonstrated MIC values ranging from 385 to 840 μ g mL⁻¹ (Fuselli et al. 2008). According to Gende et al. (2008, 2009), relatively high MIC values (from 50 to 300 μ g mL⁻¹) also characterize essential oils from *Lavandula officinalis*, *Cinnamonum zeylanicum*, *Mentha piperita*, *Pimpinella anisum*, and *Foeniculum vulgaris*. Therefore, the application of propolis for nonmedicinal AFB treatment appears to be more promising.

ACKNOWLEDGEMENTS

The project was supported by the Grant of National Science Center (Poland) 2014/13/B/NZ7/02280.

Contributions VI—propolis collection and GC-MS analysis; KB—*P. larvae* isolation and identification; GZ and IS—microbiological investigations; KM—participation in the design of the data

OPEN ACCESS

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Etude in vitro de l'activité anti-microbienne de propolis d'origine européenne vis-à-vis de *Paenibacillus larvae*

Paenibacillus larvae / loque américaine / Apis mellifera / propolis / action antibactérienne

In vitro Studie zur antimikrobiellen Aktivität von europäischem Propolis gegenüber Paenibacillus larvae

Paenibacillus larvae / Amerikanische Faulbrut / Apis mellifera / Propolis / antibakterialle Aktivität

REFERENCES

- Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., Zunino, P. (2008) Efficacy of natural propolis extract in the control of American foulbrood. Vet. Microbiol. 131, 324–331
- Atkinson, P., Blakeman, J.P. (1982) Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with gland of leaves of *Ribes nigrum*. New Phytol. 92, 63–74
- Bankova, V., Castro, S.L., Marcucci, M.C. (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31, 3–15
- Bankova, V., Popova, M., Trusheva, B. (2006) Plant sources of propolis: an update from a chemist's point of view. Nat. Prod. Commun. 1, 1023–1028
- Banskota, A.H., Nagaoka, T., Sumioka, L.Y., Tezuka, Y. (2002) Antiproliferative activity of the Netherland propolis and its active principles in cancer cell lines. J. Ethnopharmacol. 80, 67–73
- Bastos, E.M.A.F., Simone, M., Jorge, D.M., Soares, A.E.E., Spivak, M. (2008) In vitro study of antimicrobial activity of Brazilian propolis against *Paenibacillus larvae*. J. Invertebr. Pathol. **97**, 273–281
- Bilikova K., Popova, M., Trusheva, B., Bankova, V. (2013) New anti-*Paenibacillus larvae* substances purified from propolis. Apidologie 44, 278–285
- Buczek, K. (2011) Range of susceptibility of *Paenibacillus larvae* to antibacterial compounds. Med. Vet. 67, 87–90
- Cheng, W.Y., Kuo, Y.H., Huang, C.J. (2007) Isolation and identification of novel estrogenic compounds in yam tuber (*Dioscorea alata* cv. Tainung no. 2). J. Agric. Food Chem. 55, 7350–7358
- Drescher, N., Wallace, H.M., Katouli, M., Massaro, C.F., Leonhardt, S.D. (2014) Diversity matter: how bees benefit from different resin sources. Oecologia 176, 943–953
- Fuselli, S.R., de la Rosa, S.B.G., Eguaras, M.J., Fritz, R. (2008) Chemical composition and antimicrobial activity of citrus essences on honeybee bacterial pathogen *Paenibacillus larvae*, the causal agent of American foulbrood. World J. Microbiol. Biotechnol. 24, 2067–2072
- Gende, L.B., Principal, J., Maggi, M.D., Palacios, S.M., Fritz, R., Eguaras, M.J. (2008) Extracto de Melia azedarach y esenciales de Cinnamomum zeylanicum, Mentha piperita y Lavandula officinalis como control de Paenibacillus larvae. Zootec. Tropic. 26, 151–156

- Gende, L.B., Maggi, M.D., Fritz, R., Eguaras, M.J., Bailac, P.N., Ponzi, M.I. (2009) Antimicrobial activity of *Pimpinella anisum* and *Foeniculum vulgare* essential oils against *Paenibacillus larvae* subsp. larvae. J. Essent. Oil Res. 21, 91–93
- Gende, L.B., Fernández, N., Buffa, F., Ruiu, L., Satta, A., Fritz, R., Eguaras, M.J., Floris, I., (2010) Susceptibility of *Paenibacillus larvae* isolates to tetracycline hydrochloride and cinnamon (*Cinnamomum zeylanicum*) essential oil mixture. Bull. Insectol. 63, 247–250
- Genersch, E. (2010) American foulbrood in honey bees and its causative agent, *Paenibacillus larvae*. J. Invertebr. Pathol. 103, S10–S19
- González, M.J., Marioli, J.M. (2010) Antibacterial activity of water extracts and essential oils of various aromatic plants against *Paenibacillus larvae*, the causative agent of American foulbrood. J. Invertebr. Pathol. 104, 209–213
- Grecco, S dos S., Dorigueto, A.C., Landre, I.M., Soares, M.G., Martho, K., Lima, R., Pascon, R.C., Vallim, M.A., Capello, T.M., Romoff, P., Sartorelli, P., Lago, J.H.G. (2014) Structural crystalline characterization of sakuranetin—an antimicrobial flavanone from twigs of *Baccharis retusa* (Asteraceae). Molecules 19, 7528– 7542; doi:10.3390/molecules19067528
- Gunasekera, S.P., Kinghorn, A.D., Cordell, G.A., Farnsworth, N.R. (1981) Plant anticancer agents. XIX. Constituents of *Aquilaria malaccensis*. J. Nat. Prod. 44, 569–572.
- Hansen, H., Brødsgaard, C.J. (2003) Control of American foulbrood by shaking method. APIACTA 38, 140–145
- Heyndrickx, M., Vandemuelebroecke, K., Hoste, B, Janssen, P., Kersters, K., De Vos, P., Logan, N.A., Berkeley, R.C. (1996) Reclassification of *Paenibacillus* (formerly *Bacillus*) *pulvifaciens* (Nakamura 1984) Ash et al. 1994, a later subjective synonym of *Paenibacillus* (formerly *Bacillus*) *larvae* (White 1906) Ash et al. 1994, as a subspecies of *P. larvae*, with emended descriptions of *P. larvae* as *P. larvae* subsp. *larvae* and *P. larvae* subsp. *pulvifaciens*. Int. J. Syst. Bacteriol. 46, 270–279
- Isidorov, V.A., Vinogorova, V.T. (2003) GC-MS analysis of compounds extracted from buds of *Populus* balsamifera and *Populus nigra*. Z. Naturforsch. 58c, 355–360
- Isidorov, V.A., Brzozowska, M., Czyżewska, U., Glinka, Ł. (2009) Gas chromatographic investigation of phenylpropenoid glycerides from aspen (*Populus tremula* L.) buds. J Chromatogr A 1198–1199, 196–201
- Isidorov, V., Szczepaniak, L., Bakier, S. (2014a) Rapid GC/ MS determination of botanical precursors of Eurasian propolis. Food Chem. 142, 101–110
- Isidorov, V., Szczepaniak, L., Wróblewska, A., Pirożnikow, E., Vetchinnikova, L. (2014b) Gas chromatographicmass spectrometric examination of chemical composition of two Eurasian birch (*Betula L.*) bud exudate and its taxonomical implication. Biochem. System. Ecol. 52, 41–48
- Isidorov, V.A. (2015) Identification of biologically and environmentally significant organic compounds. Mass

spectra and retention indices of trimethylsilyl derivatives. PWN, Warsaw, 430 pp.

- Isidorov, V.A., Bakier, S., Pirożnikow, E., Zambrzycka, M., Swiecicka, I. (2016) Selective behaviour of honeybees in acquiring European propolis plant precursors. J. Chem. Ecol. DOI: 10.1007/s10886-016-0708-9
- Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., Popov, S. (1999) Antibaterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64, 235–240.
- Lodesani, M., Costa, M. (2005) Limits of chemotherapy in beekeeping: development of resistance and problem of residues. Bee World 86, 102–109
- Mihai, C.M., Mărghitaş, L.A., Dezmirean, D.S., Chirilă, F., Moritz R.F.A., Schlüns H. (2012) Interaction among flavonoids of propolis affect antibacterial activity against the honeybee pathogen *Paenibacillus larvae*. J. Invertebr. Pathol. **110**, 68–72
- Miyagi, T., Peng, C.Y.S., Chuang, R.,Y., Mussen, E.C., Spivak, M.S. (2000) Verification of tetracyclineresistant American foulbrood pathogen *Paenibacillus larvae* in the United States. J. Invertebr. Pathol. 75, 95–96
- Mutinelli, F. (2003) Practical application of antibacterial drugs for the control of honeybee diseases. Apiacta 38, 149–155.
- Neuendorf, S., Hedtke, K., Tangen, G., Genersch, E. (2004) Biochemical characterization of different genotypes of *Paenibacillus larvae* subsp. *larvae*, a honey bee bacterial pathogen. Microbiology 150, 2381–2390
- NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg (2013), MD 20899: http://webbook.nist.gov. chemistry
- Plagemann, O. (1985) A simple culture method for the bacteriological identification of *Bacillus larvae* on

Columbia blood slant agar. Berliner und Münchener Tierärztliche Wochenschrift **98**, 61–62

- Popova, M.P., Bankova, V.S., Bogdanov, S., Tsvetkova, I., Naydenski, C., Marcazzan, G.L., Sabatini, A.-G. (2007) Chemical characteristics of poplar type propolis of different geographic origin. Apidologie 38, 306– 311
- Popova, M., Trusheva, B., Khismatullin, R., Gavrilova, N., Legotkina, G., Lyapunov, J., Bankova, V. (2012) The triple botanical origin of Russian propolis from the Perm Region, its phenolic content and antimicrobial activity. Nat. Prod. Commun 7, 617–621
- Santos, R.C.V., dos Santos Alves, C.F., Schneider, T., Lopes, L.Q.S., Aurich, C., Giongo, J.L., Brandelli, A., de Almeida Vaucher, R. (2012) Antimicrobial activity of Amazonian oils against *Paenibacillus* species. J. Invertebr. Pathol. **109**, 265–268
- Van den Dool, H., Kratz, P.G. (1963) A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J. Chromatogr. 11, 463–471
- White, G.F. (1906) The bacteria of the apiary, with special reference to bee diseases. Bureau of Entomology Technical Series no. 14. U.S. Department of Agriculture, Washington, D.C.
- Wilson, M.B., Spivak, M., Hegeman, A.D., Rendahl, A., Cohen, J.D. (2013) Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees. PLoS One 8(10): e77512, doi:10.1371/journal. pone.0077512
- Wilson, M.B., Brinkman, D., Spivak, M., Gardner, G., Cohen, J.D. (2015) Regional variation in composition and antimicrobial activity of US propolis against *Paenibacillus larvae* and *Ascosphaera apis*. J. Invertebr. Pathol. **124**, 44–50