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Abstract – Access to abundant and diverse floral plant sources is essential for generalist bees as they obtain all
energy and nutrients required from pollen and nectar. Despite their importance, we still know little about the precise
nutritional requirements of most bee species. Here, we investigated differences in floral and amino acid profiles of
pollen collected by five bumblebee species in southern Germany, which had access to the same spectrum of plant
species and thus sources of nutrition. We found that different bumblebee species visited different floral spectra for
pollen collection but nevertheless had highly similar pollen amino acid profiles. This finding suggests that common
bumblebee species only slightly differ in their nutritional target for amino acids in pollen. In fact, floral and chemical
composition of pollen loads appear to be largely determined by the plant community present at a site as bumblebees
attempt to maximize site-specific nutrient collection efficiency.

bee foraging / insect nutrition / plant-insect interactions / pollen chemistry / resource use

1. INTRODUCTION

Bees are the dominant pollinators of crop and
wild plant species in most ecosystems (Neff and
Simpson 1993; Waser and Ollerton 2006), with
the (primitively) eusocial species, i.e., honeybees
and bumblebees, playing a particularly important
role in Europe and North America (Klein et al.
2007). Here, many wild bee species have disap-
peared or reduced their distribution ranges over
recent decades, while the number of managed
honeybee hives has simultaneously declined
(Biesmeijer et al. 2006; Potts et al. 2010a, b;
Goulson et al. 2015).

Why pollinators decline remains subject to de-
bate, but human activities, particularly agricultural
intensification, the use of pesticides and herbi-
cides and habitat conversion, have frequently

been named as culprits (Winfree et al. 2009;
Goulson et al. 2015). Notably, all these anthropo-
genic activities directly or indirectly affect the
availability and diversity of flowering plants and
hence the bees’ food sources, rendering the abun-
dance, distribution/availability, quality, and diver-
sity of resources the potentially major driver in the
foraging and population dynamics of bees
(Roulston and Goodell 2011; Vaudo et al. 2015).
Accordingly, the decline of bee species strongly
correlates with the decline of their preferred plant
species (Biesmeijer et al. 2006; Scheper et al.
2015). The abundance of several bumblebee spe-
cies is further positively correlated with high
flowering plant diversity as well as with the pres-
ence of particular plant families (Williams 1986;
Mänd et al. 2002; Hines and Hendrix 2005;
Goulson et al. 2006; Hülsmann et al. 2015). The
significant role of flowering plant species abun-
dance, diversity, and composition may not be
surprising given that bees rely entirely on floral
resources to feed themselves and their colonies
(Michener 2007). They consequently obtain all
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required nutrients from pollen and nectar (Keller
et al. 2005). While nectar primarily contains car-
bohydrates which meet basic energetic needs,
most other macronutrients (i.e., lipids and protein)
as well as essential vitamins and minerals are
obtained from pollen (Roulston and Cane 2000).
This comprehensive nutritional role of pollen like-
ly explains why pollen foragers are generally
more selective in their choice of food plants than
nectar foragers (Wcislo and Cane 1996; Goulson
and Darvill 2004). It is however still largely un-
known whether and how pollen nutritional com-
position (hitherto referred to as nutritional quality)
drives pollen foraging patterns in generalist bees,
or whether different species differ in their nutri-
tional requirements and thus pollen foraging pat-
terns (Vaudo et al. 2015). This knowledge is how-
ever essential for understanding the relationship
between alterations in the composition of avail-
able resources and bee health.

Hitherto, several studies have analyzed the
nutritional content of pollen of plant species for-
aged by individual bees (Rayner and Langridge
1985; Roulston and Cane 2000; Roulston et al.
2000; Manning 2001; Cook et al. 2003;
Sommerville and Nicol 2006; Szczêsna 2006;
Hanley et al. 2008; Tasei and Aupinel 2008;
Weiner et al. 2010; Nicolson 2011; Di Pasquale
et al. 2013; Avni et al. 2014; Vanderplanck et al.
2014a, b; Somme et al. 2015). Most of these
studies focused on crude protein content or amino
acid composition of pollen, while even fewer
have analyzed other nutrients, such as lipids,
sterols, vitamins, or minerals (recently reviewed
by Vaudo et al. 2015).

These studies suggest that social bees do not
simply mix pollen but select pollen of specific
nutritional properties, e.g., high protein (or overall
amino acid) content (Regali and Rasmont 1995;
Goulson et al. 2005; Hanley et al. 2008; Kitaoka
and Nieh 2009; Scheper et al. 2015), high lipid
content (Di Pasquale et al. 2013), high phytosterol
content (Somme et al. 2015), or the protein to lipid
ratio (as suggested by Vaudo et al. 2015).

To better understand how the floral composi-
tion of pollen collected by different bumblebee
species affects the nutritional quality of pollen in
terms of amino acid concentration and composi-
tion and whether different species differ in their

Bamino acid target^, we collected and analyzed
pollen from five common bumblebee species
which all foraged for pollen at the same
suburban/periphery site in Germany.

Because different insect species are known to
have different nutritional targets (i.e., require dif-
ferent ratios of particular nutrients) (Behmer
2009), we hypothesized that both the plant species
visited for pollen collection and the proportions of
different amino acids varied among species.

2. METHODS

2.1. Study site, species, and pollen sampling

The study was conducted in Würzburg, southern
Germany, between April and July 2014. All bumble-
bees were collected at the Hubland campus of the
University of Würzburg which comprises a ~1.3 km2

area with buildings, plantings, hedges, and fruit trees,
surrounded by gardens, rapeseed, and wheat fields,
small forest patches, and additional grasslands and
hedgerows. The study area consequently represented a
relatively heterogeneous landscape with ample forage
opportunities.

Observations and pollen sampling took place be-
tween 8 am and 5 pm at overall 120 mostly non-rainy
days. Walking along the trails on and around cam-
pus, we stopped at all patches with flowering plants
and observed each patch between 10 and 30 min. If
possible, all bumblebees visiting flowers at a patch
were caught using an insect net and plastic tube (on
average 18 ± 22 bumblebees per patch). Where too
many bees were foraging simultaneously, we caught
those foragers that were closest to the observer. Each
patch was only visited once per day. All foragers
caught at a patch were kept in plastic tubes for
identification and to prevent double-counting. Their
hind legs were inspected for pollen. Bees with pollen
loads were considered pollen foragers, and bees
without any visible pollen on their hind legs were
considered nectar foragers. Because we could not
collect nectar from nectar foragers without killing
bees, nectar foragers may also have comprised
scouts or pollen foragers which had just started for-
aging. All bees were subsequently immobilized in a
freezer (−20 °C) for approximately 2–10 min. Pollen
loads were removed with clean forceps, and all bees
were finally identified using the key of Amiet (1996)
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before releasing them close to their original foraging
patch. To assess whether loads of pollen foragers
actually and exclusively contained pollen from the
plant species they were captured from, we addition-
ally identified all plant species visited by bees
(Schmeil and Fitschen 2011).

Pollen loads were placed into clean Eppendorf tubes
with the two loads from both hind legs of a forager kept
in two separate Eppendorf tubes. One load was used for
palynological analyses, while the other one was ana-
lyzed chemically to obtain amino acid profiles. For
individuals with very small pollen loads, both loads
were pooled and only analyzed chemically (11 for-
agers). Three pollen foragers carried minute pollen
loads which were not sufficient for any analysis.

2.2. Palynological analysis

To identify plant sources of pollen loads obtained
from bumblebees and to analyze the degree of floral
specialization of different species, we prepared perma-
nent glycerine-gelatin microscope slides for overall 39
pollen loads following the protocol as described in
Leonhardt and Blüthgen (2012).

Pollen grains were characterized by morphospecies
under a microscope at a magnification of ×400. We
characterized overall 35 pollen morphospecies.
Sixteen morphospecies could be identified to the plant
family (3), genus (4), and species (9) level by following
the pollen identification key of Beug (2004) and by
comparing pollen grains to a reference collection con-
taining 639 flowering plant species growing in the study
area. The other morphospecies could not be reliably
identified to species, genus, or family level, but they
could be assigned to different plant species, thus
allowing for inferences on species-specific differences
in plant sources visited for pollen foraging.

To quantify the number of different pollen morpho-
species for each pollen load, all grains covering the area
visible under ×400 magnification were counted and
categorized according to one of the 35 characterized
morphospecies (hitherto referred to as pollen type).
The procedure was repeated for five randomly chosen
non-overlapping areas per slide/pollen load, and pollen
grain numbers were summed up (between 21 and 277
grains per bee) for each pollen type to obtain a proxi-
mate for relative proportions of each pollen type within
a slide/pollen load.

2.3. Amino acid analysis

We analyzed free and protein-bound amino acids of
overall 47 pollen loads by ion exchange chromatogra-
phy (IEC: Biochrom 20 plus amino acid analyzer) also
following Leonhardt and Blüthgen (2012). Briefly, each
pollen load was mixed with 6 N HCl, boiled 4 h at
100 °C, cooled down to room temperature, and centri-
fuged (10 min). The supernatant was transferred into a
fresh tube, and water was evaporated at 100 °C. The
sample was re-dissolved thrice in fresh water and cen-
trifuged again. Then 100 μL was mixed with 12.5 %
sulphosalicylic acid and extracted in the refrigerator
(30 min). After short mixing and centrifuging
(10 min), 100 μL of the supernatant was mixed with
100 μL sample rarefaction buffer in a fresh
microcentrifuge tube, filtered, and centrifuged, and the
sample was finally analyzed by IEC.

2.4. Statistical analyses

The effects of bumblebee species on the variation in
pollen type collection (i.e., floral visitation/partitioning)
as well as overall amino acid profiles were analyzed by
permutation tests (PerMANOVA, using 10,000 permu-
tations) based on Bray-Curtis distances between pollen
types/amino acids (Oksanen et al. 2015). For pollen
types, analyses were based on the proportion of each
pollen type (obtained by dividing the number of pollen
grains of each pollen type by the overall number of
pollen grains found in a particular pollen load). For
amino acids, separate permutation tests were performed
for concentrations [in mg/g dry weight] and relative
proportions of overall amino acids. Proportions of indi-
vidual amino acids were obtained by dividing the con-
centration of each individual amino acid by the total
concentration of all amino acids analyzed per pollen
load.

Species-specific differences in total amino acid con-
tent as well as concentrations of single amino acids were
analyzed using analyses of variances (ANOVA) follow-
ed by Tukey post hoc tests. If necessary, concentrations
were log- or squareroot-transformed to achieve normal-
ity and homogeneity of variances. Amino acid propor-
tions were arcsine-squareroot-transformed as suggested
by Sokal and Rohlf (1981).

Because data on pollen types was largely zero-inflat-
ed, we did not analyze species-specific differences for
each pollen type. Instead, we performed separate
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permutation tests for all two species comparisons and
corrected for multiple testing using sequential
Bonferroni.

To examine whether species-specific differences
in flower visitation patterns translated into differ-
ences in the overall amino acid profile of pollen
collected, we calculated the quantitative network-
level specialization index H 2’ (Blüthgen et al.
2006) using the bipartite package in R. H 2’ was used
to assess the degree of (1) floral partitioning based
on observations (visitation network), (2) floral
partitioning based on palynological analyses (pollen
type network), and (3) chemical partitioning (with
regard to amino acids, nutritional network) across
bumblebee species. For analyzing the pollen type
network, we considered the presence of each pollen
type/pollen morphospecies in the load of a forager as
one visit to this plant species, as we found this
approach most comparable to the actual visitation
network. Thus, links in the network were weighted
by the number of pollen loads sampled for a given
bumblebee species which contained a specific pollen
type/morphospecies. Chemical partitioning was cal-
culated for both the species’ mean concentrations
and mean proportions of each amino acid. The spe-
cialization index ranges from 0 (i.e., pollen samples
from all species have a similar floral/amino acid
composition) to 1 (each species collects pollen from
a different plant species spectrum/with a unique ami-
no acid profile).

3. RESULTS

Between April and July, overall 160 bumble-
bee foragers (110 nectar and 50 pollen foragers) of
seven species were caught from overall 19 differ-
ent plant species (eight families) (Table I). Most
bees were caught from Lamiaceae (27, 17 %) and
Fabaceae (18, 10 %) (Table I).

The only pollen foragers with pure pollen loads
were those collected from Lonicera spp. (2

foragers) and Plantago lanceolata (1), while all
other foragers had at least two and up to ten
different types of pollen grains in their loads (on
average 4 ± 3 pollen types, Table I).

The visitation network was more specialized
(H 2’ = 0.55, Figure 1a, Table I) than the bumblebee
species—pollen type network (H 2’ = 0.31,
Figure 1b). Bumblebee species differed significant-
ly in pollen type composition (PerMANOVA:
F = 2.60, R 2 = 0.20, P < 0.001, Table II).
Differences in pollen type composition were most
pronounced between Bombus lapidarius and
Bombus hypnorum and between B. lapidarius
and Bombus terrestris (PerMANOVA: both
P < 0.01). For instance, B. hypnorum collected rel-
atively large proportions of pollen from Lonicera
spp. (~30 %), whereas pollen collected by
B. lapidarius was largely derived from Castanea
spec, Eryngeum campestre and Trifolium pratense
(~69 %), and B. terrestris collected relatively even
proportions of overall 23 different pollen types
(Table II, Figure 1b). B. hypnorum , Bombus
pratorum , and B. terrestris did not differ from each
other (PerMANOVA: all P > 0.05, Table II).

In contrast, the nutritional networks were com-
paratively less specialized for both concentrations
(H 2’ = 0.003, Figure 1c) and proportions (H 2’ =
0.007) of amino acids. Different bumblebee species
differed in amino acid profiles with regard to pro-
portions (PerMANOVA: F = 2.53, R2 = 0.21, P =
0.03), but not to concentrations (PerMANOVA:
F = 1.55, R 2 = 0.14, P = 0.15) (Table III).
However, B. lapidarius was the only species devi-
ating from the others, as it had slightly, albeit sig-
nificantly, lower proportions of arginine, lysine, and
λ-aminobutyric acid than B. hypnorum (arginine
and λ-aminobutyric acid) or B. terrestris (lysine)

4. DISCUSSION

Whereas floral resource and niche partitioning
among different bumblebee species has extensive-
ly been studied (Goulson 2003), nutritional
partitioning (with regard to chemical composition
of composed diets) has hardly been investigated in
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All species with less than three foragers were ex-
cluded from statistical analyses (i.e., Bombus lucorum
and Bombus pascuorum from analyses on species-
specific amino acid profiles and Bombus humilis ,
B. lucorum , and B. pascuorum from analyses on
species-specific differences in pollen types collected).
All statistical analyses were conducted with R version
3.0.2 (R Development Core Team 2015). (Table III), whereas B. terrestris , B. hypnorum ,

B. pratorum , and B terrestris showed no signifi-
cant differences in the proportion of any single
amino acid (Table III).



Table I. Bumblebee pollen and nectar foragers, the plant species they were captured from as well as the number of
different pollen types (i.e., morphospecies, N Pollen) and the percentage of pollen from the sampling plant species
(Pollen [%]) of pollen foragers.

Bumblebee species N Plant species Plant family N Pollen Pollen [%]

Pollen foragers
Bombus humilis

50

1 Ajuga reptans Lamiaceae – –

2 Glechoma hederacea Lamiaceae 2 ?

2 Trifolium pratense Fabaceae 2 42

Bombus hypnorum 1 Lamium album Lamiaceae – –

1 Ajuga reptans Lamiaceae 14 ?

1 Trifolium pratense Fabaceae – –

2 Lonicera spp. Caprifoliaceae 1 100

2 Salvia pratensis Lamiaceae 6 ± 1 ?

Bombus lapidarius 1 Potentilla reptans Rosaceae 11 ?

2 Lamium album Lamiaceae 3 ± 1 75 ± 4

2 Trifolium spp. Fabaceae 6 ± 3 ?

11 Trifolium pratense Fabaceae 3 ± 1 32 ± 18

Bombus lucorum 1 Ajuga reptans Lamiaceae 2 ?

Bombus pascuorum 1 Lamium album Lamiaceae – –

1 Lonicera spp. Caprifoliaceae – –

Bombus pratorum 1 Lonicera spp. Caprifoliaceae 1 100

1 Vicia cracca Fabaceae 9 ?

1 Plantago lanceolata Plantaginaceae 4 88

Bombus terrestris 2 Plantago lanceolata Plantaginaceae 1 100

4 Trifolium pratense Fabaceae 3 ± 1 39 ± 6

9 Vicia cracca Fabaceae 6 ± 1 ?

1 unidentified ? 10 –

Nectar foragers 110

Bombus humilis 1 Lamium album Lamiaceae – –

1 Lamium spp. Lamiaceae – –

2 Lonicera spp. Caprifoliaceae – –

Bombus hypnorum 1 Glechoma hederacea Lamiaceae – –

1 Alliaria petiolata Brassicaceae – –

1 Geranium pratense Geraniaceae – –

1 Salvia pratensis Lamiaceae – –

2 Geranium robertianum Geraniaceae – –

4 Vicia cracca Fabaceae – –

6 Trifolium pratense Fabaceae – –

Bombus lapidarius 1 Glechoma hederacea Lamiaceae – –

1 Alliaria petiolata Brassicaceae – –

1 Trifolium repens Fabaceae – –

1 Lotus corniculatus Fabaceae – –

3 Lamium album Lamiaceae – –

3 Salvia pratensis Lamiaceae – –

106 L. Kriesell et al.



social insects, despite its potential importance in
structuring insect societies (Lihoreau et al. 2015).
Generalist bumblebee species typically visit a rel-
atively broad spectrum of flowers and show a
comparatively low, but significant, level of plant
partitioning (Hanley et al. 2008; Fründ et al. 2010;
Hülsmann et al. 2015). Likewise, different bum-
blebee species broadly overlap in the spectra of

plant species visited for pollen collection but do
differ in the proportion of pollen collected from
each plant species (Hanley et al. 2008; Leonhardt
and Blüthgen 2012).

Despite the different pollen foraging patterns
observed and in contrast to our expectations, we
found highly similar amino acid profiles in pollen
collected by different bumblebee species,

Table I. (continued)

Bumblebee species N Plant species Plant family N Pollen Pollen [%]

3 Geranium pratense Geraniaceae – –

3 Trifolium pratense Fabaceae – –

4 Ajuga reptans Lamiaceae – –

12 Geranium robertianum Geraniaceae – –

Bombus pascuorum 1 Galium aparine Rubiaceae – –

1 Geranium molle Geraniaceae – –

1 Salvia pratensis Lamiaceae – –

2 Alliaria petiolata Brassicaceae – –

2 Lonicera spp. Caprifoliaceae – –

2 Geranium pratense Geraniaceae – –

3 Lamium album Lamiaceae – –

3 Glechoma hederacea Lamiaceae – –

Bombus pratorum 1 Glechoma hederacea Lamiaceae – –

1 Lonicera spp. Caprifoliaceae – –

1 Prunella vulgaris Lamiaceae – –

1 Trifolium pratense Fabaceae – –

1 Vicia cracca Fabaceae – –

3 Salvia pratensis Lamiaceae – –

4 Ajuga reptans Lamiaceae – –

Bombus terrestris 1 Lonicera spp. Caprifoliaceae – –

1 Lamium album Lamiaceae – –

1 Glechoma hederacea Lamiaceae – –

1 Alliaria petiolata Brassicaceae – –

1 Prunella vulgaris Lamiaceae – –

1 Geranium pratense Geraniaceae – –

1 Plantago lanceolata Plantaginaceae – –

3 Geranium robertianum Geraniaceae – –

4 Ajuga reptans Lamiaceae – –

4 Salvia pratensis Lamiaceae – –

6 Trifolium pratense Fabaceae – –

7 Vicia cracca Fabaceae – –

Note that pollen loads were only analyzed palynologically for 39 pollen foragers. Question marks indicate those loads where the
pollen type of the sampling plant species was not among the identified types, but could still be among the non-identified types. N
gives the number of foragers captured overall and at each plant species
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Figure 1. Visitation network (a ), pollen type network (b ), and nutritional network (c ), representing four/five
bumblebee species (bottom ) and 11 plant species visited (a ), 35 pollen types collected (b ), or amino acid
concentrations in pollen (c ) (top ); block width represents proportion of interactions each plant species (a ), pollen
type (b ), amino acid (c ) (bottom ) or bumblebee species (top ) is involved in across all samples; grey line width
between blocks also corresponds to the number of interactions.
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indicating that all of the common bumblebee spe-
cies studied here collect pollen of relatively simi-
lar protein quality. Such similar pollen quality
may result from similar amino acid profiles in
pollen of plant species visited for pollen collec-
tion. While pollen of different plant species can
strongly vary in the concentration of overall pro-
tein and of single amino acids (Roulston and Cane
2000; Weiner et al. 2010), it typically contains
similar proportions of (essential) amino acids
(Weiner et al. 2010; Moerman et al. 2015;
Somme et al. 2015). Closely related plant species
further have similar pollen amino acid profiles,
while amino acid profiles differ between more
distantly related plant species (Weiner et al.
2010; Somme et al. 2016). Because all bumble-
bees in our study collected pollen from similar
plants (albeit in different proportions), they may
have composed pollen loads of similar amino acid
compositions despite different visitation patterns.

Interestingly, average proportions of amino
acids in pollen loads of bumblebees studied here
and considered essential for honeybees (according
to de Groot 1953) and most likely also bumble-
bees (Génissel et al. 2002) closely resembled the
minimum levels necessary for maintenance, reple-
tion, and growth in honeybees as defined by de
Groot (1953). However, bumblebees did collect
pollen of on average slightly higher proportions of
lysine (~7 % in bumblebees, 3 % in honeybees),
threonine (4–5 %, 3 %), and leucine (7 %, 4.5 %)
and lower proportions of isoleucine (2 %, 4 %).
Proportional amino acid requirements may thus
slightly differ between honeybees and bumble-
bees, as also indicated by previous findings
(Leonhardt and Blüthgen 2009). However, while
minimum required levels of essential amino acids
are known for honeybees, they still have to be
determined for bumblebees.

The only species that slightly deviated from the
common amino acid composition pattern found in
our study was B. lapidarius . This species collect-
ed pollen of highest methionine concentrations
but comparatively lower proportions of arginine,
lysine, and λ-aminobutyric acid. Moreover, pollen
collected and analyzed for B. lapidarius
contained overall highest protein concentrations
and was dominated by pollen from T. pratense
(albeit mixed with pollen from other plantT
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species), suggesting that this species may be more
selective with regard to pollen amino acid content
and/or composition than some of the other species
(e.g., B. terrestris ).

A clear limitation of our study is the small
sample size for some species (e.g., B. pratorum ).
Although we performed an extensive survey over
several months and only included species with
three or more pollen loads sampled in the statistical
analyses, reliable conclusions can most likely only
be drawn for B. terrestris and B. lapidarius both
with 15 or more pollen samples. Given the low
intraspecific variation in amino acid proportions for
the other species (Table III), it is however all the
more surprising that we did not detect more
species-specific differences in amino acid profiles,
which strengthens our findings.

Interestingly, in our study, pollen loads of
foragers captured at a specific plant species
often contained more than one pollen type
and not necessarily the one from the sampling
plant species. Such mixed pollen loads were
also found in previous studies, but the degree
of pollen mixing in specific bumblebee species
varied among studies (Goulson and Darvill
2004; Carvell et al. 2006; Leonhardt and
Blüthgen 2012; Somme et al. 2015) and seems
to be predominantly determined by the plant
community present at a given site. So, why do
individual foragers of nearly all species occa-
sionally mix pollen loads?

Mixing pollen may dilute toxic compounds
(Eckhardt et al. 2014) or compose a diet clos-
est to the bees’ required optimum (which en-
ables maximal possible individual or colony
fitness), as the optimal ratio of nutrients (this
is the stoichiometric relationship among all
essential micro- and macronutrients that best
supports an animal’s metabolic functions and
hence fitness) is hardly ever found in resources
p r o v i d e d b y p l a n t s ( S i m p s o n a n d
Raubenheimer 2012). If mixing was indeed
used to balance the chemical composition of
pollen loads, mixing at the individual forager
level should be more pronounced in bee spe-
cies which do not store pollen for longer pe-
riods but directly feed it to their young. This
surely is the case for bumblebees with their
primitively eusocial colonies which lack

complex intra-colonial feedback mechanisms
(Goulson 2003). Bumblebee larvae conse-
quently depend much more on the nutritional
quality of individual pollen loads than larvae
of mass-provisioning bee species, such as hon-
eybees or stingless bees, where nurses super-
vise cell provisioning and thus likely also the
nutritional quality of larval food. This depen-
dence on individual foragers may explain why
individual bumblebee foragers attempt to max-
imize protein pollen/total amino acid content
more than other social bees (Rasheed and
Harder 1997; Hanley et al. 2008; Leonhardt
and Blüthgen 2012; Somme et al. 2015).

Alternatively, pollen mixing may simply re-
sult from maximizing pollen load quantity for
a specific patch (while minimizing time spent
moving between patches) and may thus in-
crease when some plant sources have already
been (partly) depleted. Such purely opportu-
nistic foraging can however not explain why
bumblebees preferentially collect pollen of
high protein content. A combination of both
explanations (nutrient balancing and minimiz-
ing moving time) seems thus most likely
(Rasheed and Harder 1997).

In fact, pollen foraging patterns in bumble-
bees may be driven more by spatial and tem-
poral conditions than by intrinsic or species-
specific floral preferences (Roulston and
Goodell 2011). Bumblebees thus seem to ap-
ply a flexible foraging strategy to compose a
site-specific ideal pollen diet (Rasheed and
Harder 1997; Saifuddin and Jha 2014). Our
study further suggests that different bumblebee
species follow similar strategies or foraging
rules to meet their colonies’ nutritional needs
with regard to pollen and may thus show sim-
ilar nutritional requirements. Their exact nutri-
tional requirements as well as whether they
actively target specific amino acid proportions
or nutrient ratios needs, however, to be deter-
mined by laboratory assays.

Future studies should also expand observa-
tions and analyses to more species and more
(different) sites in order to pin down the precise
ecological and/or phylogenetic factors deter-
mining nutritional niches occupied by different
(bumble) bee species.
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