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Abstract
Blackleg disease, caused by Leptosphaeria maculans, greatly affects the production of cabbage (Brassica oleracea). How-
ever, definitive R-gene(s) are yet to be identified in this crop. In contrast, a number of R-loci have been identified in A- or 
B-genome crops. Identification of few resistant cabbage genotypes indicates the presence of R-genes in this C-genome crop. 
High ancestral synteny between Brassica genomes suggests that the collinear regions of known A- or B-genome R-loci may 
also contain functional R-genes in the C-genome. Strong resistance was observed in the cotyledons of cabbage inbred line 
SCNU-98 against two L. maculans isolates, 03–02 s and 00–100 s. We investigated the collinear region of the Brassica napus 
blackleg resistance locus LepR2’ in B. oleracea since both isolates of L. maculans contain corresponding avirulence genes. 
The locus was collinear to a 5.8 Mbp genomic segment of B. oleracea chromosome C09 containing 13 genes that have puta-
tive disease resistance-related domains. High expression of genes Bo9g117290 and Bo9g111510 against isolate 00–100 s, 
and high expression of genes Bo9g126150 and Bo9g111490 against both isolates in the resistant-line SCNU-98 indicate 
their putative roles in blackleg resistance, which remained to be functionally verified. This work enhances our understanding 
of R-gene-mediated resistance to blackleg in cabbage.
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1  Introduction

Blackleg, a disease particularly devastating to canola, is 
also known to cause substantial economic damage to cab-
bage (Dilmaghani et al. 2010; Humpherson-Jones 1985; 

Piliponytė-Dzikienė et al. 2015). The disease is caused by 
Leptosphaeria maculans (anamorph: Phoma lingam) around 
the world and by Leptosphaeria biglobosa, a comparatively 
less damaging species, in Asian countries (Zhang et al. 
2014; Liu et al. 2014; Hong et al. 2009; Hao et al. 2015; 
Mendes-Pereira et al. 2003). Cabbage is an essential ingre-
dient of the daily diet, either in fresh or processed form, 
in East Asian countries such as Korea, Japan, and China, 
where 37.8% of the world’s total cabbage is produced (FAO 
Statistics Database 2017).

The possibility of invasion by the more aggressive L. 
maculans is a growing concern for the East Asian cabbage 
industry, since L. maculans was previously reported to 
spread in Canada and Poland, where only L. biglobosa was 
predominant (Liu 2008; Fitt et al. 2008). Further, both path-
ogenic species inhabit similar ecological niches and prefer-
ence for the agro-climatic conditions of this region may be 
conducive to the establishment of L. maculans (Fitt et al. 
2008; West et al. 2001). The complicated life cycle of the 
pathogen, its ability to reproduce both sexually and asexually 
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(Rouxel and Balesdent 2005), multiple disease cycles in a 
single growing season (Li et al. 2007), longer resting period 
(several years) in crop residues (West et al. 2001; Li et al. 
2007), and substantial global diversity in the pathogenicity 
of L. maculans strains (Kutcher et al. 2011) make it difficult 
to control the disease via chemical and agronomic practices 
alone. Preventing the spread of L. maculans and the devel-
opment of resistant cultivars are thus prioritized in these 
countries to safeguard both canola and cabbage industries 
(Zhang et al. 2014; van den Burg et al. 2008; Zhang and 
Fernando 2018).

Unlike rapeseed and canola, resistance to blackleg has 
not been extensively investigated in cabbage. Hence, sources 
of resistance to the disease are scarce in cabbage. Most of 
the R-loci against the disease have been identified in the 
A- or B- genomes of Brassica family crops (Balesdent et al. 
2002; Bohman et al. 2002; Rimmer and van den Berg 1992; 
Chèvre et al. 1997; Christianson et al. 2006; Delourme et al. 
2006; Delourme et al. 2004; Leflon et al. 2007; Marcroft 
et al. 2002; Pang and Halloran 1996; Plieske et al. 1998), 
while definitive R-loci/genes in C- genome crops such as 
cabbage are yet to be identified (Larkan et al. 2013; Robin 
et al. 2017). However, a few cabbage genotypes have been 
reported to show moderate resistance against the disease 
(Ananga et al. 2006; Badawy et al. 1991; Ferreira et al. 
1992). Very recently, two Korean cabbage lines were found 
to be resistant at the cotyledon stage against two L. macu-
lans isolates, 03–02 s and 00–100 s, which contain multiple 
avirulent genes (Robin et al. 2017). These findings suggest 
the presence of R-gene(s) in cabbage.

Functional analysis indicated that most plant R-genes 
usually contain several domains such as leucine-rich repeat 
(LRR), nucleotide-binding site (NBS), coiled-coil (CC), 
Toll/Interleukin-1 Receptor (TIR), receptor like protein 
kinase (RLK), F-box domain (FBD), and mitogen-activated 
protein kinase (MAPK), which have distinct roles in plant 
defence against phytopathogens (Larkan et al. 2013; Ellis 
et al. 2000; Liu et al. 2007; Meng and Zhang 2013; Meyers 
et al. 1999; Sekhwal et al. 2015; van den Burg et al. 2008). 
Since A-, B-, and C-genomes of Brassica family crops share 
common evolutionary history and high ancestral synteny, 
we hypothesized that functional disease resistance-related 
domain-containing genes may also be present within the 
collinear regions of known A- or B-genome R-loci in the 
C-genome (Cheng et al. 2014; Franzke et al. 2011; Chal-
houb et al. 2014; Liu et al. 2014). Such approach has been 
used to identify candidate orthologous genes for Sclerotinia 
stem rot resistance, seed colour, seed oil content, yield, and 
efficiency traits in oilseed rape (B. napus) using the cor-
responding known loci of Arabidopsis thaliana (Ding et al. 
2012; Stein et al. 2013; Wu et al. 2013; Zhao et al. 2012). In 
the case of blackleg resistance, Yu et al. (2013) tracked the 
collinear region of B. napus blackleg resistance locus LepR4 

in B. rapa and identified four putative disease resistance-
related NBS-encoding genes. We have investigated the B. 
rapa R-loci Rlm1, Rlm2/LepR3, LepR1, and LepR4 from 
the A-genome against the C-genome (Nou IS, unpublished 
data). Here, we report disease resistance-related functional 
domain-containing genes within the collinear region of B. 
napus blackleg resistance locus LepR2’ in the C-genome 
of B. oleracea along with their putative roles in blackleg 
resistance in cabbage, determined via differential expression 
analysis in contrastingly resistant cabbage lines against two 
L. maculans isolates.

2 � Materials and methods

2.1 � In‑silico analysis of the collinear region of B. 
napus blackleg resistance locus LepR2’ in B. 
oleracea

The collinear region of B. napus blackleg resistance locus 
LepR2’ was identified in the B. oleracea genome (ensembl 
database) using the homologous segments of B. napus 
clones that contain the LepR2’ flanking markers sN3888Fa 
and sR6903a (Yu et al. 2012). Sequences of all the genes 
within this collinear region in B. oleracea were retrieved. 
The genes which contained putative functional disease 
resistance-related domains such as NBS, LRR, CC, TIR, 
MAPK, FBD, RLK, and RLP were identified using the 
Simple Modular Architecture Research Tool (http://smart​
.embl-heide​lberg​.de/) and the Conserved Domain Database 
Tool (https​://www.ncbi.nlm.nih.gov/cdd/). MEME suite 
version 5.0.5 (http://meme-suite​.org/tools​/meme) was used 
to analyse the conserved motifs in the proteins encoded 
by these genes. Distribution of exons and introns of these 
genes were analyzed using the Gene Structure Display 
Server (GSDS2.0) web tool (http://gsds.cbi.pku.edu.cn/). 
The microsynteny relationship of these identified putative 
disease resistance-related genes with B. rapa, B. nigra, and 
A. thaliana were visualized via Circos v0.69.

2.2 � L. maculans isolates and preparation 
of inoculum

L. maculans isolates 00–100 s and 03–02 s, possessing 
multiple avirulence genes, were cultured on V8 agar media 
(20%) at 22 °C and 16 h day length under fluorescent light 
for several weeks. Fungal spores were suspended in 10 mL 
sterile distilled water by scrapping the spores off culture 
plates with a sterile glass slide prior to collecting the spores 
by filtering the suspension with sterile Miracloth (EMD 
Millipore Corporation, USA). The spore concentration was 
adjusted to 2.25 × 107 spores mL−1 using sterile distilled 
water prior to inoculation.

http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
https://www.ncbi.nlm.nih.gov/cdd/
http://meme-suite.org/tools/meme
http://gsds.cbi.pku.edu.cn/
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2.3 � Plant materials: inoculation and assessment 
of disease resistance

Seeds of two Korean cabbage inbred lines, SCNU-72 and 
SCNU-98, were germinated in multi-pot trays using coco-
peat soil in a growth chamber at 24 ± 2 °C, 65% relative 
humidity, and a 16/8  h (light/dark) photoperiod under 
420 µmol photons m−2 s−1 light intensity at bench level. 
After 12 days of germination, the center of each cotyledon 
lobe was punctured with a sterile needle prior to inoculation 
with 10 μL of the spore suspension. The disease responses 
were evaluated at 10 days post-inoculation (dpi) using a dis-
ease rating scale of 0–9 following the procedures described 
in Robin et al. (2017).

2.4 � RNA Extraction and cDNA synthesis

Total RNA was extracted from control (0 h), mock-, and 
pathogen-inoculated cotyledons of resistant and susceptible 
cabbage lines at 6 h, 24 h, and 48 h using an ‘RNeasy mini 
kit’ (Qiagen, CA, USA). RNA purity and concentration were 
determined using a Nanodrop-2000 (Nanodrop Technolo-
gies, Wilmington, DE, USA). First-strand cDNA was syn-
thesized from the extracted total RNA using ‘SuperScript-III 
First-Strand Synthesis SuperMix’ (Invitrogen, CA, USA) as 
per the manufacturer’s guideline.

2.5 � Expression analysis by qRT‑PCR

Expression of the identified putative disease resistance-
related domain (e.g., LRR, CC, FBD, CC, MAPK and 
RLK) containing genes within the LepR2’ collinear region 
in B. oleracea were analyzed by qRT-PCR in a Roche 
LightCycler® 96 System (Roche Applied Science, Penz-
berg, Germany). Gene-specific primers were designed using 
‘Primer3Plus’. For each gene, the qRT-PCR reaction was 
performed with 5 μL of 2x qPCRBIO SyGreen Mix Lo-
ROX (PCR Biosystems, London, UK), 1 μL of forward and 
reverse primers each (10 pmol), 2 μL of ultra-pure water, 
and 1 μL of template cDNA (60 ng μL−1) in a final reaction 
volume of 10 μL. The reaction condition was as follows: 
initial denaturation at 95 °C for 5 min, 45 cycles of denatura-
tion at 95 °C for 10 s, annealing at specific temperatures for 
10 s, and amplification and signal acquisition at 72 °C for 
30 s. Each biological replicate was tested with three techni-
cal replicates. Relative expression levels were quantified by 
the 2−ΔΔCt method using the mean of three actin genes as 
the internal control.

2.6 � Statistical analysis

Statistical significance was tested using analysis of vari-
ance (ANOVA) and mean separation was performed using 

Tukey’s pairwise comparison in Minitab (v18) (Minitab Inc., 
State College, PA, USA).

3 � Results

3.1 � Disease responses of cabbage lines to L. 
maculans isolates

Significantly different responses to the two L. maculans iso-
lates, 03–02 s and 00–100 s, were observed in the inoculated 
cotyledons of cabbage inbred lines SCNU-72 and SCNU-
98 (Fig. 1a, b). At 10 dpi, the disease scores against both 
00–100 s and 03–02 s isolates ranged from 7 to 8 in the 
line SCNU-72, having 70% and 80% diseased cotyledon 
areas, respectively. In contrast, the disease scores in the 
line SCNU-98 ranged between 2–3 and 2–4 against these 
isolates, respectively, while having less than 30% diseased 
cotyledon area. This indicates that line SCNU-98 is resistant 
against both L. maculans isolates, 00–100 s and 03–02 s. At 
30 dpi, overall blackening of the stems of the susceptible line 
SCNU-72 was observed, whereas the stems of the resistant 
line SCNU-98 appeared healthy (Fig. 1c).

3.2 � Collinear region of B. napus blackleg resistance 
locus LepR2’ in B. oleracea

BLAST search of the sequences of the clones containing 
the flanking markers sN3888Fa and sR6903a of B. napus 
blackleg resistance locus LepR2’ identified a 5.8 Mbp 
genomic segment of chromosome C09 (C9:36168200-
41971165) as the corresponding collinear region in the B. 
oleracea genome (Fig. 2a, b). This region was flanked by 
genes Bo9g111470 and Bo9g135890. Mining this collinear 
region identified a total of 661 genes. The complete list of 
these 661 genes and their functional annotations are shown 
in Supplemental Table S1.

3.3 � Identification of genes containing disease 
resistance‑related functional domains

Functional domain analysis of the 661 genes identified 13 
genes as having putative disease resistance-related domains 
(Table 1; Table S2). Five different putative disease resist-
ance-related domains, namely leucine rich repeat (LRR), 
coiled-coil (CC), F-box domain (FBD), mitogen-activated 
protein kinase (MAPK), and receptor-like kinase (RLK) 
were identified within these 13 genes. Among these, 11 
genes contained two domains, an LRR domain and either 
a FBD, MAPK, or a RLK domain; two genes contained 
only one domain, including Bo9g120720 (LRR domain) 
and Bo9g135700 (CC domain). A domain-wise list of 
the selected 13 genes is shown in Table 2 and the domain 
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Fig. 1   Disease symptoms (a) 
and scores (b) at 10 days post 
inoculation (dpi) against L. 
maculans isolates 03–02 s and 
00–100 s at the cotyledon stage 
and disease (blackened stems) 
symptoms (c) at 30 dpi against 
isolate 03–02 s in the stems of 
the seedlings of cabbage inbred 
lines SCNU-72 and SCNU-
98. Cotyledons of 12-day-old 
seedlings were inoculated and 
disease scores were recorded at 
10 dpi. Data of five replicates 
are presented as a range, with 
green diamond shape indicating 
median values. ***p < 0.001 
(one-way ANOVA with Tukey’s 
multiple comparison test). 
Blackened stem is indicated by 
red arrow

Fig. 2   Collinear region of B. napus blackleg resistance gene LepR2’ 
(a) on B. oleracea chromosome C09 (b) and microsynteny rela-
tionship of the LRR, CC, FBD, MAPK, and RLK genes within the 
LepR2’ collinear region of B. oleracea with A. thaliana, B. rapa, and 
B. nigra (c). Broken lines between the B. napus markers (a) and B. 
oleracea genes (b) indicate homologous genomic sequences. cM, 
centimorgan; Mbp, mega base pair; sf. B. nigra scaffold. The gene 

Bo9g169800 (indicated by red text in figure B and by an underline in 
figure C) is not within the LepR2’ collinear region (located 8.15 Mbp 
apart). This gene is included for expression analysis, since it is orthol-
ogous to the cloned gene JX880110 (of B. napus blackleg resistance 
locus LepR3). The chromosomal location and microsynteny relations 
of this gene are shown, but not discussed in the results section
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distribution along the length of these genes is shown in 
Fig. 3.

Conserved motif analysis of the selected 13 genes identi-
fied 15 statistically significant conserved motifs consisting 
of 18–50 amino acids (Fig. 4a; Table S3). Among these 15 
motifs, 10 of the motifs were associated with LRR domains, 
while three (namely, motifs 2, 8, and 12) and two (namely, 
motifs 1 and 4) were associated with MAPK and FBD 
domains, respectively (Table S3).

Gene structure analysis identified the distribution of 
exons and introns in the selected 13 genes. Among these 
genes, a maximum of four exons were found in genes 
Bo9g111510, Bo9g126150, and Bo9g135700, while 
four genes (Bo9g113780, Bo9g120720, Bo9g119130, 
and Bo9g117290) contained only one exon (Fig.  4b). 

Table 1   List of LRR, CC, FBD, MAPK, and RLK domain-containing genes identified within the collinear region of B. napus blackleg resistance 
gene LepR2’ in B. oleracea 

FBD, F-box domain; LRR, Leucine Rich Repeat; CC, coiled-coil domain; MAPK,  Mitogen-activated protein kinase domain

SL. Gene ID Chromosomal loca-
tion (strand)

CDS (bp) Protein (AA) Bolbase ID Arabidopsis hit/e-value Trembl ID Description

1 Bo9g111490 C9:36205987-
36206796 (+)

612 203 Bol012300 AT1G51370/3.2e−48 A5BU14 F-box/FBD/LRR-
repeat protein

2 Bo9g111500 C9:36207783-
36209300 (+)

1350 449 Bol038356 AT5G25850/1.3e−133 A0MEF3 Putative F-box/FBD/
LRR-repeat protein

3 Bo9g111510 C9:36225550-
36226914 (+)

1095 364 Bol045667 AT5G53840/1.9e−94 Q9M371 F-box/FBD/LRR-
repeat protein

4 Bo9g113780 C9:36563098-
36566127 (+)

3030 1009 Bol038795 AT5G53890/0 C0LGV8 Leucine-rich repeat 
receptor-like protein 
kinase

5 Bo9g120720 C9:38409782-
38411047 (−)

1266 421 Bol018194 AT5G66330/0 Q9FH56 Leucine-rich repeat 
(LRR) family 
protein

6 Bo9g122300 C9:38921557-
38924901 (+)

3264 1087 Bol006253 AT5G56040/0 Q2V2Y1 Leucine-rich receptor-
like protein kinase 
family protein

7 Bo9g125930 C9:39471679-
39472702 (−)

843 280 Bol007650 AT3G56780/1.1e−51 Q9XEG1 FBD, F-box & LRR 
domains containing 
protein

8 Bo9g126120 C9:39616439-
39618336 (+)

1641 546 Bol009927 AT5G56560/4.4e−99 A0MFP8 FBD, F-box & LRR 
domains containing 
protein

9 Bo9g126140 C9:39646902-
39648088 (+)

768 255 Bol009927 AT5G56560/3.5e−71 A0MFP8 FBD, F-box and LRR 
domains containing 
protein

10 Bo9g119130 C9:37855517-
37856887 (−)

1371 456 Bol039693 AT5G55090/0 – Mitogen-activated 
protein kinase 
kinase kinase 15

11 Bo9g126150 C9:39648887-
39649535 (−)

339 112 Bol009929 AT5G56580/1.7e−70 B9RKG0 Mitogen-activated 
protein kinase 
kinase 6 (MAPK6)

12 Bo9g135700 C9:41809830-
41811526 (−)

1353 450 Bol036595 AT2G42480/1.8e−79 Q9SLB4 MATH & coiled-coil 
(CC) domain-con-
taining protein

13 Bo9g117290 C9:37066960-
37069527 (−)

2568 855 Bol038854 AT5G54380/0 Q9LK35 Receptor-like protein 
kinase THESEUS 1

Table 2   Functional domain-wise classification of the LRR, CC, FBD, 
MAPK, and RLK genes within the collinear region of B. napus black-
leg resistance locus LepR2’ in B. oleracea 

LRR, Leucine Rich Repeat; FBD, F-box domain; CC , coiled-coil 
domain; RLK ,  Receptor like kinase; MAPK,  Mitogen-activated pro-
tein kinase domain

SL Domain Gene ID

1 LRR Bo9g120720
2 LRR-FBD Bo9g111490, Bo9g111500, Bo9g111510, 

Bo9g125930, Bo9g126120, 
Bo9g126140

3 LRR-RLK Bo9g117290, Bo9g113780, Bo9g122300
4 LRR-MAPK Bo9g119130, Bo9g126150
5 CC Bo9g135700
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The mono-exonic gene Bo9g113780 had the long-
est exon (3030 bp) followed by exon-1 (2800 bp) of the 
gene Bo9g122300, and the single exon (2568 bp) of gene 
Bo9g117290 (Fig. 4b).

Along with these 13 genes, another gene, Bo9g169800, 
encoding a receptor-like protein was also included for dif-
ferential expression analysis against L. maculans isolates. 
This gene is orthologous to JX880110 (sequence similarity 
92.5%, e-value = 0.0), the first ever cloned B. napus blackleg 
resistance gene LepR3 on chromosome A10 (Larkan et al. 
2013). This gene is included for expression analysis, since 
it is known to confer resistance in B. napus and is located 
8.15 Mbp downstream of the LepR2’ collinear region in B. 
oleracea.

3.4 � Chromosomal location and microsynteny 
relationship of the identified LRR, CC, FBD, 
MAPK, and RLK domain‑containing genes

The 13 selected LRR, CC, FBD, MAPK, and RLK 
domain-containing genes were evenly distributed through-
out the LepR2’ collinear region in B. oleracea (Fig. 2b). 
No distinct clustering of the genes was observed, except 
groups of three genes were found to be closely located: 
genes Bo9g111490, Bo9g111500 and Bo9g111510 located 
at 36.2 Mbp (at the flanking end of the collinear region) 
and genes Bo9g126120, Bo9g126140, and Bo9g126150 
located at 39.6 Mbp (at approximately the center of the 
collinear region).

Fig. 3   Domain organization of 
the LRR, CC, FBD, MAPK, 
and RLK genes within the 
collinear region of B. napus 
blackleg resistance gene LepR2’ 
in B. oleracea. FBD = F-box 
domain; LRR = Leucine Rich 
Repeat; CC , coiled-coil domain; 
STKc-IRAK, Serine/Threonine 
kinases, Interleukin-1 Receptor 
Associated Kinases; MAPK , 
Mitogen-activated protein 
kinase domain

Fig. 4   Occurrence and distribution of protein motifs (a) and exon–
intron structures (b) of the LRR, CC, FBD, MAPK, and RLK genes 
within the collinear region of B. napus blackleg resistance gene 
LepR2’ in B. oleracea. The length and position of motifs in the pro-

tein sequences are indicated using coloured blocks. Exons and introns 
are represented by green boxes and green lines, respectively, and 
the genomic length is indicated at the bottom. Details of the motif 
sequences are shown in Table S3
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Microsynteny relationship analysis of the identified 13 
genes of B. oleracea (a C-genome crop) with B. rapa (an 
A-genome crop), B. nigra (a B-genome crop), and A. thali-
ana identified seven orthologous gene pairs with A. thali-
ana, distributed across all five chromosomes of A. thaliana 
(Fig. 2c). For the A-genome (B. rapa), fifteen orthologous 
gene pairs were identified: a maximum of six pairs with 
chromosome A10, followed by three and two pairs with A03 
and A02, respectively, and one pair with each of chromo-
somes A01, A05, A06, and A07. With B. nigra (a B-genome 
crop), a total of seven orthologous gene pairs were observed. 
These results suggest a high microsyntenic relationship for 
the 13 identified LRR, CC, FBD, MAPK, and RLK genes 
among A-, B-, and C-genome crops.

3.5 � Expression profiling of the identified LRR, CC, 
TIR, FBD, MAPK, and RLK domain‑containing 
genes

Expression of the identified LRR, CC, FBD, MAPK, and 
RLK domain-containing genes was determined in the resist-
ant and susceptible cabbage genotypes at different time 
points after inoculation with L. maculans isolates 00–100 s 
and 03–02 s using gene-specific primers (Table S4). Hier-
archical clustering of the expressions of these genes in a 

heatmap representation identified a cluster of seven genes 
(Bo9g126150, Bo9g117290, Bo9g111490, Bo9g126120, 
Bo9g111510, Bo9g111500, and Bo9g126140) that showed 
significant differential expression in the resistant line 
SCNU-98 comparted to that in the susceptible line SCNU-
72 (Fig. 5). Among these seven genes, only two genes, 
Bo9g126150 and Bo9g111490, were induced in the resistant 
line against both isolates, whereas the remaining five genes 
were only induced against the isolate 00–100 s (Fig. 5, 6).

A common feature of these seven genes is that they were 
significantly induced in the resistant line at 6 h following 
inoculation with L. maculans isolate 00–100 s. Against this 
isolate, only the gene Bo9g126150 was consistently highly 
expressed in the resistant line at later time points as well 
(i.e., at 24 h and 48 h following inoculation) (Fig. 6). The 
gene Bo9g117290 also showed higher expression at 24 h, 
but it did not show significantly higher expression at 48 h 
following inoculation. The remaining five genes did not 
show distinctively increased expressions after 6 h of inoc-
ulation. Against the isolate 03–02 s, genes Bo9g126150 
and Bo9g111490 were only induced at 24  h following 
inoculation.

Among the significantly expressed genes, the high-
est expression levels in the resistant line SCNU-98 were 
observed for the gene Bo9g117290 at 6 h (~ 11-fold) and 

Fig. 5   Expression patterns of 
the LRR, CC, FBD, MAPK, and 
RLK domain-containing genes 
within the collinear region of B. 
napus blackleg resistance gene 
LepR2’ in B. oleracea at differ-
ent time points following inocu-
lation with L. maculans isolates 
03–02 s and 00–100 s in the 
cotyledons of resistant (SCNU-
98) and susceptible (SCNU-72) 
cabbage lines, as determined 
by qRT-PCR. Gene expression 
values were log2-transformed 
and hierarchically clustered. 
Colour figure available online. 
The gene Bo9g169800 is 
located 8.15 Mbp downstream 
of the LepR2’ collinear region. 
This is included for expression 
analysis since it is orthologous 
to JX880110, the cloned gene 
of B. napus blackleg resist-
ance locus LepR3 (Larkan et al. 
2013)
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24 h (~ 24-fold) followed by the gene Bo9g111510 (~ seven-
fold) at 6 h after inoculation by the isolate 00–100 s (Fig. 6).

Among the genes induced by both isolates, gene 
Bo9g126150 showed ~ three–fourfold higher expression at 
6, 24, and 48 h against isolate 00–100 s and ~ twofold higher 
expression against isolate 03–02 s at 24 h. On the other hand, 
the gene Bo9g111490 was highly expressed against isolate 
00–100 s only at 6 h (~ fivefold) and against isolate 03–02 s 
at 24 h (~ fivefold) (Fig. 6).

4 � Discussion

This study reports the identification of putative disease 
resistance-related LRR, CC, FBD, MAPK, and RLK-domain 
containing genes within the collinear region of B. napus 
blackleg resistance locus LepR2’ in B. oleracea, while also 
determining the potential association of those genes with 
blackleg resistance in cabbage.

R-gene-mediated resistance to L. maculans in Brassica 
family crops is largely governed by compatible ‘gene-for-
gene’ interactions, where a specific avirulence gene (Avr) 
of the pathogen is recognized by corresponding R-gene of 
the host (Ansan-Melayah et al. 1998; Flor 1971; Williams 
and Delwiche 1980). The cabbage inbred line SCNU-98 
displayed a high resistance response against both L. macu-
lans isolates, 03–02 s and 00–100 s, at the cotyledon stage. 
However, the specific R-locus that may confer resistance in 
this Korean cabbage inbred line could not be determined due 
to the lack of differential set of L. maculans isolates having 
different Avr gene profiles (owing to strict import restrictions 
on L. maculans strains). Mapping the R-genes in segregat-
ing populations could be an effective approach, but this is 
also time consuming, resource demanding, and expensive 
(Delourme et al. 2018; Miles and Wayne 2008).

A comprehensive meta-analysis of 314 cloned plant 
R-genes indicated nine different molecular mechanisms of 
resistance, which were mainly manifested by NBS, LRR, 

Fig. 6   Differential expression of the LRR, CC, FBD, MAPK, and 
RLK domain-containing genes within the collinear region of B. 
napus blackleg resistance gene LepR2’ in B. oleracea at different 
time points following inoculation with L. maculans isolates 03–02 s 
and 00–100 s in the cotyledons of resistant (SCNU-98) and suscep-
tible (SCNU-72) cabbage lines. Error bars represent standard devia-

tion of the means of three independent replicates. Different letters 
above the bars indicate statistically significant differences based on 
Tukey’s pairwise comparisons. The gene Bo9g169800 is located 8.15 
Mbp downstream of the LepR2’ collinear region. This is included for 
expression analysis since it is orthologous to JX880110, the cloned 
gene of B. napus blackleg resistance locus LepR3 (Larkan et al. 2013)
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TIR, CC, and RLP/RLKs domains (Kourelis and van der 
Hoorn 2018). Genome-wide, genes containing such disease 
resistance-related domains are known for major plant species 
including rice, potato, soybean, cucumber, melon, peach, 
grape, apple, and Arabidopsis [reviewed in 57–59]. Several 
studies have identified genome-wide NBS-LRR genes in 
major Brassicaceae crops (Alamery et al. 2018; Fu et al. 
2019; Golicz et al. 2016; Yu et al. 2014), of which Alamery 
et al. 2018(Alamery et al. 2018) reported the maximum 
number of NBS-LRR genes in B. rapa (249), B. oleracea 
(443), and B. napus (641). The recent pan-genome of B. 
oleracea used an improved pipeline for genome assembly 
and resistance gene analog (RGA) candidate prediction, 
identifying a total of 213 RLP, 556 NBS-LRR, and 901 RLK 
genes (Bayer et al. 2019). A total of 97 NBS-encoding genes 
were reported to be orthologous between B. oleracea and B. 
napus (Fu et al. 2019). We reasoned that mining such disease 
resistance-related, domain-containing genes within the col-
linear regions of known B. napus R-loci in a C-genome and 
profiling their differential expressions in the resistant versus 
susceptible cabbage genotypes might lead to the identifi-
cation of putative candidate genes for blackleg resistance, 
which upon validation by functional analysis, could be use-
ful for improving blackleg resistance in elite cabbage culti-
vars. In this study, we focused on B. napus blackleg resist-
ance locus LepR2’, since both isolates (against which the 
cabbage inbred line SCNU-98 were resistant) contain corre-
sponding avirulence gene (Robin et al. 2017). This suggests 
the existence of the corresponding R-gene in this line. The 
locus LepR2’, flanked by markers sR8548a and sN2551b 
on B. napus linkage group A10, was originally introgressed 
from B. rapa subsp. sylvestris via interspecific hybridization, 
and its complete expression in B. napus has been speculated 
to require some chromosomes and genes from the C-genome 
(Yu et al. 2012). This locus is allelic to the previously identi-
fied locus LepR2 and is an incompletely dominant gene that 
provides strong resistance against a range of L. maculans 
isolates in B. napus (Yu et al. 2005, 2012).

A total of 13 genes were identified within the collinear 
region of LepR2’ in B. oleracea which contain at least 
one of the LRR, CC, FBD, MAPK, and RLK domains. 
Among these genes, the receptor like protein kinase gene 
Bo9g117290 showed the highest expression level in the 
resistant line SCNU-98 against the isolate 00–100 s (~ 11- 
and ~ 24-fold induction at 6 h and 24 h following inoculation, 
respectively). RLKs are major component of membrane-
localized pattern-recognition receptors (PRRs) that medi-
ate the first line of plant defence by recognizing the patho-
gen-associated molecular patterns (PAMPs) and activating 
PAMP-triggered immunity (PTI) (Jones and Dangl 2006). 
Sixty out of 314 cloned plant’s R-genes have been reported 
to be RLKs/RLPs (Kourelis and van der Hoorn 2018). 
RLKs were found to be involved in both broad-spectrum, 

elicitor-initiated defence responses such as FLS2 (FLAGEL-
LIN SENSITIVE 2) in Arabidopsis and pathogen-specific, 
dominant R-gene-mediated defence responses, such as Xa21 
in rice (Sekhwal et al. 2015; Goff and Ramonell 2007; Liu 
et al. 2017). The gene FLS2 was the first RLK gene found to 
be involved in perception of the bacterial elicitor Flagellin in 
Arabidopsis (Gómez-Gómez and Boller 2000), and the gene 
Xa21 conferred resistance to race 6 of Xanthomonas oryzae 
pv. oryzae, which causes bacterial blight in rice (Song et al. 
1995). Comparison of functional domains revealed that our 
putative candidate gene Bo9g117290 also contain a cyto-
plasmic serine/threonine kinase domain along with an LRR 
domain.

Among known blackleg resistance loci in Brassica 
genomes, only two R-loci, namely LepR3 and Rlm2, have 
been cloned so far. These two loci are confirmed to be allelic 
and to encode LRR-RLP genes (Larkan et al. 2013; Larkan 
et al. 2015). The corresponding orthologue of this LRR-RLP 
gene in C-genome is the gene Bo9g169800, which is located 
approximately 8.15 Mbp downstream of the LepR2’ col-
linear region in B. oleracea (Fig. 2b). We have investigated 
its expression and found that it is only induced by ~ twofold 
in the resistant line SCNU-98 against the isolate 00–100 s at 
6 h, which is much less than the 11–24-fold higher expres-
sion of the RLK domain-containing gene Bo9g117290 
against the isolate at 6–24 h after inoculation (Fig. 6).

The two most well-known RLK genes, FLS2 and BAK1 
(BRI1-associated receptor kinase 1) are known to initiate 
the MAP kinase cascade upon recognition of the bacte-
rial PAMP flagellin, flg22 (Deslandes and Rivas 2012; 
Chinchilla et al. 2007; Kim et al. 2013). Two MAP kinase 
genes, Bo9g119130 and Bo9g126150, were found within 
the LepR2’ collinear region in B. oleracea. In particular, 
the gene Bo9g126150 was highly expressed against both 
isolates: ~ three–fourfold against isolate 00–100 s at all 
time points following inoculation and ~ twofold against iso-
late 03–02 s at 6 h, indicating a putative role in blackleg 
resistance.

Among the 13 selected genes within the collinear region 
of LepR2’ in B. oleracea, six genes had an F-box domain 
(FBD) along with an LRR domain (Fig. 3). Of these, two 
genes were highly expressed in the resistant line SCNU-98, 
Bo9g111510 only against isolate 00–100 s at 6 h follow-
ing inoculation (~ sevenfold; the second highest expression 
among the 13 genes) and Bo9g111490 against both isolates 
(~ fivefold, against isolate 00–100 s at 6 h and against iso-
late 03–02 s at 24 h following inoculation). Several F-box 
proteins are known to play roles in plant defence against 
phytopathogens. For example, MAX2 contributed to resist-
ance against Pectobacterium carotovorum and Pseudomonas 
syringae in Arabidopsis (Piisilä et al. 2015), CPR1 was 
involved in controlling the stability of plant NBS-LRR pro-
teins in Arabidopsis (Cheng et al. 2011), and ACRE189/
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ACIF1 was involved in activating defence responses and 
regulating cell death during recognition of Pseudomonas 
syringae pv. tabaci and Cladosporium fulvum in tobacco 
and tomato (van den Burg et al. 2008).

5 � Conclusion

In this study, genes containing putative disease resistance-
related domains were identified in the collinear region of B. 
napus blackleg resistance locus LepR2’ in B. oleracea. Very 
high expression of the LRR-RLK gene Bo9g117290 and the 
LRR-FBD gene Bo9g111510 against the L. maculans isolate 
00–100 s, and high expression of the LRR-MAP kinase gene 
Bo9g126150 and the LRR-FBD gene Bo9g111510 against 
both isolates in the resistant cabbage line suggest putative 
roles of these genes in conferring resistance to blackleg in 
B. oleracea. A mapping-based approach will be necessary to 
identify if more than one locus is involved. In addition, func-
tional analyses of these genes will be helpful in identifying 
the key gene(s) conferring resistance to blackleg in cabbage.
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