Skip to main content

Advertisement

Log in

Characterization of residual cancer by comparison of a pair of organoids established from a patient with esophageal squamous cell carcinoma before and after neoadjuvant chemotherapy

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Neoadjuvant chemotherapy (NAC) followed by surgery is a standard approach for management of locally advanced esophageal squamous cell carcinoma (ESCC). Patients who do not respond well to NAC have a poor prognosis. Despite extensive research, the mechanisms of chemoresistance in ESCC remain largely unknown. Here, we established paired tumor organoids—designated as PreNAC-O and PostNAC-O—from one ESCC patient before and after NAC, respectively. Although the two organoids did not exhibit significant differences in proliferation, morphology or drug sensitivity in vitro, the tumorigenicity of PostNAC-O in vivo was significantly higher than that of PreNAC-O. Xenografts from PreNAC-O tended to exhibit keratinization, while those from PostNAC-O displayed conspicuous necrotic areas. The tumorigenicity of PostNAC-O xenografts during the chemotherapy was comparable to that of PreNAC-O without treatment. Furthermore, the gene expression profiles of the xenografts suggested that expression of genes involved in the EMT and/or hypoxia response might be related to the tumorigenicity of PostNAC-O. Our data suggested that the tumorigenicity of residual cancer had been enhanced, outweighing the effects of chemotherapy, rather than being attributable to intrinsic chemoresistance. Further studies are required to clarify the extent to which residual cancers share a common mechanism similar to that revealed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Microarray data are available in the GEO database. The GEO accession numbers for xenografts and organoids in vitro are GSE243145 and GSE243146, respectively.

References

  1. Matsuda S, Kitagawa Y, Takemura R, Okui J, Okamura A, Kawakubo H, et al. Real-world evaluation of the efficacy of neoadjuvant DCF over CF in Esophageal squamous cell carcinoma: propensity score matched analysis from 85 authorized institutes for esophageal cancer in Japan. Ann Surg. 2022. https://doi.org/10.1097/sla.0000000000005533.

    Article  PubMed  Google Scholar 

  2. Matsuda S, Kawakubo H, Okamura A, Takahashi K, Toihata T, Takemura R, et al. Prognostic significance of stratification using pathological stage and response to neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Ann Surg Oncol. 2021;28(13):8438–47. https://doi.org/10.1245/s10434-021-10221-9.

    Article  PubMed  Google Scholar 

  3. Matsuda S, Kawakubo H, Okamura A, Takahashi K, Toihata T, Takemura R, et al. Distribution of residual disease and recurrence patterns in pathological responders after neoadjuvant chemotherapy for Esophageal squamous cell carcinoma. Ann Surg. 2022;276(2):298–304. https://doi.org/10.1097/sla.0000000000004436.

    Article  PubMed  Google Scholar 

  4. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72. https://doi.org/10.1053/j.gastro.2011.07.050.

    Article  CAS  PubMed  Google Scholar 

  5. Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev. 2014;24:68–73. https://doi.org/10.1016/j.gde.2013.11.012.

    Article  CAS  PubMed  Google Scholar 

  6. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6. https://doi.org/10.1126/science.aao2774.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol. 2019;7(1):73–91. https://doi.org/10.1016/j.jcmgh.2018.09.003.

    Article  PubMed  Google Scholar 

  8. Japan Esophageal Society. Japanese classification of esophageal cancer, 11th edition: part I. Esophagus. 2017;14(1):1–36. https://doi.org/10.1007/s10388-016-0551-7.

    Article  Google Scholar 

  9. Tsukamoto Y, Kurogi S, Shibata T, Suzuki K, Hirashita Y, Fumoto S, et al. Enhanced phosphorylation of c-Jun by cisplatin treatment as a potential predictive biomarker for cisplatin response in combination with patient-derived tumor organoids. Lab Invest. 2022;102(12):1355–66. https://doi.org/10.1038/s41374-022-00827-2.

    Article  CAS  PubMed  Google Scholar 

  10. Ju WT, Ma HL, Zhao TC, Liang SY, Zhu DW, Wang LZ, et al. Stathmin guides personalized therapy in oral squamous cell carcinoma. Cancer Sci. 2020;111(4):1303–13. https://doi.org/10.1111/cas.14323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramulu S, Kale AD, Hallikerimath S, Kotrashetti V. Comparing modified papanicolaou stain with ayoub-shklar and haematoxylin-eosin stain for demonstration of keratin in paraffin embedded tissue sections. J Oral Maxillofac Pathol. 2013;17(1):23–30. https://doi.org/10.4103/0973-029X.110698.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsukamoto Y, Kurogi S, Fujishima H, Shibata T, Fumoto S, Nishiki K, et al. Association of immune-related expression profile with sensitivity to chemotherapy in esophageal squamous cell carcinoma. Cancer Sci. 2023. https://doi.org/10.1111/cas.15942.

    Article  PubMed  PubMed Central  Google Scholar 

  13. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  PubMed  Google Scholar 

  14. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–21. https://doi.org/10.1093/nar/gkac194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73. https://doi.org/10.1038/ng1180.

    Article  CAS  PubMed  Google Scholar 

  16. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Jaeger K, Merlo FM, Kavanagh MC, Fyles AW, Hedley D, Hill RP. Heterogeneity of tumor oxygenation: relationship to tumor necrosis, tumor size, and metastasis. Int J Radiat Oncol Biol Phys. 1998;42(4):717–21. https://doi.org/10.1016/s0360-3016(98)00323-x.

    Article  PubMed  Google Scholar 

  18. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 2007;67(9):4408–17. https://doi.org/10.1158/0008-5472.CAN-06-4443.

    Article  CAS  PubMed  Google Scholar 

  19. Ubezio P. Beyond the T/C Ratio: old and new anticancer activity scores in vivo. Cancer Manag Res. 2019;11:8529–38. https://doi.org/10.2147/CMAR.S215729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Girotti MR, Fernández M, López JA, Camafeita E, Fernández EA, Albar JP, et al. SPARC promotes cathepsin B-mediated melanoma invasiveness through a collagen I/α2β1 integrin axis. J Invest Dermatol. 2011;131(12):2438–47. https://doi.org/10.1038/jid.2011.239.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang D, Wang S, Chen J, Liu H, Lu J, Jiang H, et al. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int J Oncol. 2017;50(5):1513–30. https://doi.org/10.3892/ijo.2017.3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Jin Y, Hu Y, Jiang L, Liu F, Zhang Y, et al. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. Cancer Sci. 2018;109(5):1532–44. https://doi.org/10.1111/cas.13585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Wang S, Su J, Chu G, You H, Chen Z, et al. Interleukin-32α inactivates JAK2/STAT3 signaling and reverses interleukin-6-induced epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer cells. Onco Targets Ther. 2016;9:4225–37. https://doi.org/10.2147/ott.S103581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang M, Ren L, Chen Y, Wang H, Wu H, Cheng S, et al. Identification of a hypoxia-related signature for predicting prognosis and the immune microenvironment in bladder cancer. Front Mol Biosci. 2021;8: 613359. https://doi.org/10.3389/fmolb.2021.613359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Z, Gu C, Yao X, Guo W, Wang H, Lin T, et al. CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis. 2020;11(3):202. https://doi.org/10.1038/s41419-020-2403-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan SH, Tsai JP, Shen CJ, Liao YH, Chen BK. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget. 2017;8(25):41364–78. https://doi.org/10.18632/oncotarget.17326.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, et al. Hypoxia selectively enhances integrin α(5)β(1) receptor expression in breast cancer to promote metastasis. Mol Cancer Res. 2017;15(6):723–34. https://doi.org/10.1158/1541-7786.Mcr-16-0338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019;38(1–2):65–77. https://doi.org/10.1007/s10555-019-09799-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pastorek J, Pastorekova S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol. 2015;31:52–64. https://doi.org/10.1016/j.semcancer.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  30. Driessen A, Landuyt W, Pastorekova S, Moons J, Goethals L, Haustermans K, et al. Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg. 2006;243(3):334–40. https://doi.org/10.1097/01.sla.0000201452.09591.f3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tanaka N, Kato H, Inose T, Kimura H, Faried A, Sohda M, et al. Expression of carbonic anhydrase 9, a potential intrinsic marker of hypoxia, is associated with poor prognosis in oesophageal squamous cell carcinoma. Br J Cancer. 2008;99(9):1468–75. https://doi.org/10.1038/sj.bjc.6604719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, et al. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat. 2016;27:14–29. https://doi.org/10.1016/j.drup.2016.05.001.

    Article  CAS  PubMed  Google Scholar 

  33. Shahar N, Larisch S. Inhibiting the inhibitors: targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat. 2020;52: 100712. https://doi.org/10.1016/j.drup.2020.100712.

    Article  PubMed  Google Scholar 

  34. Weber P, Künstner A, Hess J, Unger K, Marschner S, Idel C, et al. Therapy-related transcriptional subtypes in matched primary and recurrent head and neck cancer. Clin Cancer Res. 2022;28(5):1038–52. https://doi.org/10.1158/1078-0432.Ccr-21-2244.

    Article  CAS  PubMed  Google Scholar 

  35. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879-93.e13. https://doi.org/10.1016/j.cell.2018.03.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S, Zhou X, et al. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aav0936.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9. https://doi.org/10.1093/jnci/djn123.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515–28. https://doi.org/10.1016/j.cell.2018.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver mir-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76(7):1770–80. https://doi.org/10.1158/0008-5472.Can-15-1625.

    Article  CAS  PubMed  Google Scholar 

  40. Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 2018;80:23–32. https://doi.org/10.1016/j.oraloncology.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  41. Mortezaee K, Majidpoor J. The impact of hypoxia on extracellular vesicle secretome profile of cancer. Med Oncol. 2023;40(5):128. https://doi.org/10.1007/s12032-023-01995-x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Kanako Ito, Ms. Yoko Kudo, Ms. Mami Kimoto and Ms. Kei Shimizu for their excellent technical assistance.

Funding

This work was supported by Oita University President’s Strategic Discretionary Fund (2022 and 2023), and by JSPS KAKENHI Grant Number JP21H02703, JP20K07394.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization TF, YT, and NH; Experiments and investigation TF, SK, YT, KK, YH, CN and NH; Data analysis TU. TM, and YY; Writing-original draft preparation TF, YT, and NH; Writing-review and editing MF, KT, KF, RO, KMi, MK, and KMu.; Funding acquisition YT, MI, KMu, and NH; Resources; TS, SF, HF, YI, KS. HS, and MI; Supervision MI, KMu, MM, and NH; All authors have approved the final version of the paper.

Corresponding author

Correspondence to Yoshiyuki Tsukamoto.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The study protocol was performed in accordance with the revised Helsinki Declaration of 2008 and approved by the Institutional Review Board of the Faculty of Medicine, University of Oita (approval No. 1496). All animal experiments in this study were approved by the Oita University Animal Ethics Committee (Approval No.220802A and 230801) and were conducted in accordance with ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines (https://arriveguidelines.org/).

Informed consent

Informed consent was obtained from the patient to be included in the study. Patients signed informed consent regarding publishing their data and photographs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchino, T., Kurogi, S., Tsukamoto, Y. et al. Characterization of residual cancer by comparison of a pair of organoids established from a patient with esophageal squamous cell carcinoma before and after neoadjuvant chemotherapy. Human Cell 37, 491–501 (2024). https://doi.org/10.1007/s13577-023-01020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01020-3

Keywords

Navigation