Skip to main content

Advertisement

Log in

Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus, this study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Walani SR. Global burden of preterm birth. Int J Gynaecol Obstet. 2020;150(1):31–3. https://doi.org/10.1002/ijgo.13195.

    Article  PubMed  Google Scholar 

  2. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–68. https://doi.org/10.1056/nejm196702162760701.

    Article  PubMed  Google Scholar 

  3. Dankhara N, Holla I, Ramarao S, Kalikkot Thekkeveedu R. Bronchopulmonary dysplasia: pathogenesis and pathophysiology. J Clin Med. 2023;12(13):4207. https://doi.org/10.3390/jcm12134207.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  5. Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. Eur J Cell Biol. 2020;99(6):151097. https://doi.org/10.1016/j.ejcb.2020.151097.

    Article  CAS  PubMed  Google Scholar 

  6. Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2012;2(3):154–62.

    PubMed  Google Scholar 

  7. Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell. 2020;11(10):707–22. https://doi.org/10.1007/s13238-020-00738-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ. 2012;2(2):170–81. https://doi.org/10.4103/2045-8932.97603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim R, Muljadi R, Koulaeva E, Vosdoganes P, Chan ST, Acharya R, et al. Activin A contributes to the development of hyperoxia-induced lung injury in neonatal mice. Pediatr Res. 2015;77(6):749–56. https://doi.org/10.1038/pr.2015.46.

    Article  CAS  PubMed  Google Scholar 

  10. Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and future of bronchopulmonary dysplasia. J Clin Med. 2020;9(5):1539. https://doi.org/10.3390/jcm9051539.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ahn SY, Park WS, Sung SI, Chang YS. Mesenchymal stem cell therapy for intractable neonatal disorders. Pediatr Neonatol. 2021;62(Suppl 1):S16-s21. https://doi.org/10.1016/j.pedneo.2020.11.007.

    Article  PubMed  Google Scholar 

  12. Yeh TF, Lin YJ, Lin HC, Huang CC, Hsieh WS, Lin CH, et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Engl J Med. 2004;350(13):1304–13. https://doi.org/10.1056/NEJMoa032089.

    Article  CAS  PubMed  Google Scholar 

  13. Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, et al. Stem-cell therapy for bronchopulmonary dysplasia (BPD) in newborns. Cells. 2022;11(8):1275. https://doi.org/10.3390/cells11081275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan TT, Lai RC, Padmanabhan J, Sim WK, Choo ABH, Lim SK. Assessment of tumorigenic potential in mesenchymal-stem/stromal-cell-derived small extracellular vesicles (MSC-sEV). Pharmaceuticals (Basel). 2021;14(4):345. https://doi.org/10.3390/ph14040345.

    Article  PubMed  Google Scholar 

  15. Chen CM. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol. 2006;57(3):359–77. https://doi.org/10.1002/asi.20317.

    Article  Google Scholar 

  16. de Castilhos GN, Zuanazzi NR, Fabrin TMC, Oliveira EC. Glyphosate and its toxicology: a scientometric review. Sci Total Environ. 2020;733:139359. https://doi.org/10.1016/j.scitotenv.2020.139359.

    Article  ADS  CAS  Google Scholar 

  17. Chen S, Zhang Y, Dai W, Qi S, Tian W, Gu X, et al. Publication trends and hot spots in postoperative cognitive dysfunction research: a 20-year bibliometric analysis. J Clin Anesth. 2020;67:110012. https://doi.org/10.1016/j.jclinane.2020.110012.

    Article  PubMed  Google Scholar 

  18. Sabe M, Chen C, Perez N, Solmi M, Mucci A, Galderisi S, et al. Thirty years of research on negative symptoms of schizophrenia: a scientometric analysis of hotspots, bursts, and research trends. Neurosci Biobehav Rev. 2023;144:104979. https://doi.org/10.1016/j.neubiorev.2022.104979.

    Article  PubMed  Google Scholar 

  19. EL Andalousi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57. https://doi.org/10.1038/nrd3978.

    Article  CAS  Google Scholar 

  20. Liu S, Sun YP, Gao XL, Sui Y. Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis. Neural Regen Res. 2019;14(9):1643–50. https://doi.org/10.4103/1673-5374.255995.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, et al. Current perspectives and trend of nanomedicine in cancer: a review and bibliometric analysis. J Control Release. 2022;352:211–41. https://doi.org/10.1016/j.jconrel.2022.10.023.

    Article  CAS  PubMed  Google Scholar 

  22. Ye Z, Mai T, Cheng Y, Zhang X, Liu Z, Zhang Z, et al. Neurotoxicity of microplastics: a CiteSpace-based review and emerging trends study. Environ Monit Assess. 2023;195(8):960. https://doi.org/10.1007/s10661-023-11559-1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Bai J, Zhang L, Liu H, Wang W, Liu Z, et al. Advances in studies on the plant rhizosphere microorganisms in wetlands: a visualization analysis based on CiteSpace. Chemosphere. 2023;317:137860. https://doi.org/10.1016/j.chemosphere.2023.137860.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang J, Xu S, Ma H, Li C, Huang Z. Photoresponsive hydrogel-based soft robot: a review. Mater Today Bio. 2023;20:100657. https://doi.org/10.1016/j.mtbio.2023.100657.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, et al. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron. 2022;201:113932. https://doi.org/10.1016/j.bios.2021.113932.

    Article  CAS  PubMed  Google Scholar 

  26. Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004;101(Suppl 1):5303–10. https://doi.org/10.1073/pnas.0307513100.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci U S A. 2006;103(23):8577–82. https://doi.org/10.1073/pnas.0601602103.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan CL, Huang SY, Chen HH, Tung WH, Wang JS, editors. An application-level multicast framework for large scale VOD services. In: 11th international conference on parallel and distributed systems; 2005 July 20–22; Fukuoka, JAPAN2005.

  29. Chen CM, Ibekwe-SanJuan F, Hou JH. The Structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J Am Soc Inform Sci Technol. 2010;61(7):1386–409. https://doi.org/10.1002/asi.21309.

    Article  Google Scholar 

  30. Rousseeuw PJ. Silhouettes—a graphical aid to the interpretation and validation of cluster-analysis. J Comput Appl Math. 1987;20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

    Article  Google Scholar 

  31. Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin. 2014;35(9):1121–8. https://doi.org/10.1038/aps.2014.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197(1):104–16. https://doi.org/10.1164/rccm.201705-0925OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porzionato A, Zaramella P, Dedja A, Guidolin D, Van Wemmel K, Macchi V, et al. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L6-l19. https://doi.org/10.1152/ajplung.00109.2018.

    Article  CAS  PubMed  Google Scholar 

  34. Powell SB, Silvestri JM. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J Pediatr. 2019;210:209-13.e2. https://doi.org/10.1016/j.jpeds.2019.02.029.

    Article  PubMed  Google Scholar 

  35. Lim R, Malhotra A, Tan J, Chan ST, Lau S, Zhu D, et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cells Transl Med. 2018;7(9):628–35. https://doi.org/10.1002/sctm.18-0079.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Al-Rubaie A, Wise AF, Sozo F, De Matteo R, Samuel CS, Harding R, et al. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respir Res. 2018;19(1):114. https://doi.org/10.1186/s12931-018-0816-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 2015;192(3):324–36. https://doi.org/10.1164/rccm.201410-1765OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tropel P, Noël D, Platet N, Legrand P, Benabid AL, Berger F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res. 2004;295(2):395–406. https://doi.org/10.1016/j.yexcr.2003.12.030.

    Article  CAS  PubMed  Google Scholar 

  39. Malhotra A, Lim R, Mockler JC, Wallace EM. Two-year outcomes of infants enrolled in the first-in-human study of amnion cells for bronchopulmonary dysplasia. Stem Cells Transl Med. 2020;9(3):289–94. https://doi.org/10.1002/sctm.19-0251.

    Article  CAS  PubMed  Google Scholar 

  40. Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl Med. 2018;7(12):847–56. https://doi.org/10.1002/sctm.17-0219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P, et al. Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochem Biophys Res Commun. 2018;503(4):2653–8. https://doi.org/10.1016/j.bbrc.2018.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 2018;9(1):173. https://doi.org/10.1186/s13287-018-0903-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ai D, Shen J, Sun J, Zhu Z, Gao R, Du Y, et al. Mesenchymal stem cell-derived extracellular vesicles suppress hyperoxia-induced transdifferentiation of rat alveolar type 2 epithelial cells. Stem Cells Dev. 2022;31(3–4):53–66. https://doi.org/10.1089/scd.2021.0256.

    Article  CAS  PubMed  Google Scholar 

  44. Willis GR, Reis M, Gheinani AH, Fernandez-Gonzalez A, Taglauer ES, Yeung V, et al. Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic and transcriptomic reprogramming of myeloid cells. Am J Respir Crit Care Med. 2021;204(12):1418–32. https://doi.org/10.1164/rccm.202102-0329OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Porzionato A, Zaramella P, Dedja A, Guidolin D, Bonadies L, Macchi V, et al. Intratracheal administration of mesenchymal stem cell-derived extracellular vesicles reduces lung injuries in a chronic rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2021;320(5):L688-l704. https://doi.org/10.1152/ajplung.00148.2020.

    Article  CAS  PubMed  Google Scholar 

  46. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966-972.e6. https://doi.org/10.1016/j.jpeds.2013.12.011.

    Article  PubMed  Google Scholar 

  47. Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-year follow-up outcomes of premature infants enrolled in the phase i trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J Pediatr. 2017;185:49-54.e2. https://doi.org/10.1016/j.jpeds.2017.02.061.

    Article  PubMed  Google Scholar 

  48. Ahn SY, Park WS, Kim YE, Sung DK, Sung SI, Ahn JY, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med. 2018;50(4):1–12. https://doi.org/10.1038/s12276-018-0055-8.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Q, Kong HB, He BM, Zhou SY. Bibliometric analysis of bronchopulmonary dysplasia in extremely premature infants in the web of science database using CiteSpace software. Front Pediatr. 2021;9:705033. https://doi.org/10.3389/fped.2021.705033.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, et al. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med. 2021;19(1):302. https://doi.org/10.1186/s12967-021-02980-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36–45. https://doi.org/10.7150/ijms.21666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101–15. https://doi.org/10.1089/ten.TEB.2011.0488.

    Article  CAS  PubMed  Google Scholar 

  53. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59. https://doi.org/10.3727/096368913x667709.

    Article  PubMed  Google Scholar 

  54. Silva AM, Teixeira JH, Almeida MI, Gonçalves RM, Barbosa MA, Santos SG. Extracellular vesicles: immunomodulatory messengers in the context of tissue repair/regeneration. Eur J Pharm Sci. 2017;98:86–95. https://doi.org/10.1016/j.ejps.2016.09.017.

    Article  CAS  PubMed  Google Scholar 

  55. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8. https://doi.org/10.1016/j.bbagen.2012.03.017.

    Article  CAS  PubMed  Google Scholar 

  56. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. https://doi.org/10.3402/jev.v3.26913.

    Article  PubMed  Google Scholar 

  57. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy. 2016;18(1):13–24. https://doi.org/10.1016/j.jcyt.2015.10.008.

    Article  CAS  PubMed  Google Scholar 

  58. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942–8. https://doi.org/10.1083/jcb.101.3.942.

    Article  CAS  PubMed  Google Scholar 

  60. Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.

    Article  CAS  PubMed  Google Scholar 

  61. Sharma M, Bellio MA, Benny M, Kulandavelu S, Chen P, Janjindamai C, et al. Mesenchymal stem cell-derived extracellular vesicles prevent experimental bronchopulmonary dysplasia complicated by pulmonary hypertension. Stem Cells Transl Med. 2022;11(8):828–40. https://doi.org/10.1093/stcltm/szac041.

    Article  PubMed  PubMed Central  Google Scholar 

  62. You J, Zhou O, Liu J, Zou W, Zhang L, Tian D, et al. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles alleviate lung injury in rat model of bronchopulmonary dysplasia by affecting cell survival and angiogenesis. Stem Cells Dev. 2020;29(23):1520–32. https://doi.org/10.1089/scd.2020.0156.

    Article  CAS  PubMed  Google Scholar 

  63. Yang W, Huang C, Wang W, Zhang B, Chen Y, Xie X. Bone mesenchymal stem cell-derived exosomes prevent hyperoxia-induced apoptosis of primary type II alveolar epithelial cells in vitro. PeerJ. 2022;10:e13692. https://doi.org/10.7717/peerj.13692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bellio MA, Young KC, Milberg J, Santos I, Abdullah Z, Stewart D, et al. Amniotic fluid-derived extracellular vesicles: characterization and therapeutic efficacy in an experimental model of bronchopulmonary dysplasia. Cytotherapy. 2021;23(12):1097–107. https://doi.org/10.1016/j.jcyt.2021.07.011.

    Article  CAS  PubMed  Google Scholar 

  65. Li Z, Gong X, Li D, Yang X, Shi Q, Ju X. Intratracheal transplantation of amnion-derived mesenchymal stem cells ameliorates hyperoxia-induced neonatal hyperoxic lung injury via aminoacyl-peptide hydrolase. Int J Stem Cells. 2020;13(2):221–36. https://doi.org/10.15283/ijsc19110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou O, You J, Xu X, Liu J, Qiu H, Hao C, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells enhance alveolar type II cell proliferation and attenuate lung inflammation in a rat model of bronchopulmonary dysplasia. Stem Cells Int. 2022;2022:8465294. https://doi.org/10.1155/2022/8465294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lithopoulos MA, Strueby L, O’Reilly M, Zhong S, Möbius MA, Eaton F, et al. Pulmonary and neurologic effects of mesenchymal stromal cell extracellular vesicles in a multifactorial lung injury model. Am J Respir Crit Care Med. 2022;205(10):1186–201. https://doi.org/10.1164/rccm.202012-4520OC.

    Article  CAS  PubMed  Google Scholar 

  68. Zhu D, Krause M, Yawno T, Kusuma GD, Schwab R, Barabadi M, et al. Assessing the impact of gestational age of donors on the efficacy of amniotic epithelial cell-derived extracellular vesicles in experimental bronchopulmonary dysplasia. Stem Cell Res Ther. 2022;13(1):196. https://doi.org/10.1186/s13287-022-02874-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Zeyan Ye for technological assistance.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 82160620 to X.Z.); Natural Science Foundation of Guangxi Province (Grant Nos. 2022JJA141352 to X.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Investigation, Methodology, Software, Data curation, Formal analysis, Writing original draft: MA; Investigation, Methodology, Software: HM; Investigation, Methodology, Software: MG; Supervision, Validation: XD; Funding acquisition, Supervision, Writing review and editing, Project administration, Resources, Supervision: XZ.

Corresponding author

Correspondence to Xiaoying Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

This manuscript is a review and does not involve human participants or animals. Thus, Consent to Participate is not required.

Consent to publish

This manuscript is a review and does not involve human participants or animals. Thus, Consent to Publish is not required.

Ethical approval

This manuscript is a review and does not involve human participants or animals. Thus, ethical approval is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Publication output on MSCs research in BPD, 2006–2022 (TIF 23209 KB)

a

Co-cited reference network with visualization. be Clustering network details with visualization of co-cited references (TIF 11622 KB)

a

Co-citation network with visualization of keywords. b Keyword clustering network with visualization (TIF 14668 KB)

a

Top 25 bursts of co-authorship sorted by burst strength. b Top 25 bursts of co-cited authors sorted by burst strength. c Top 25 bursts of co-cited journals sorted by burst strength. d Top 25 bursts of co-cited journals sorted by the first year of bursts (TIF 22246 KB)

Supplementary file5 (TIF 23209 KB)

Supplementary file6 (XLSX 25 KB)

Supplementary file7 (XLSX 13 KB)

Supplementary file8 (XLSX 12 KB)

Supplementary file9 (XLSX 10 KB)

Supplementary file10 (XLSX 10 KB)

Supplementary file11 (XLSX 10 KB)

Supplementary file12 (XLSX 15 KB)

Supplementary file13 (XLSX 19 KB)

Supplementary file14 (XLSX 26 KB)

Supplementary file15 (XLSX 40 KB)

Supplementary file16 (XLSX 26 KB)

Supplementary file17 (XLSX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, M., Ma, H., Guo, M. et al. Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia. Human Cell 37, 381–393 (2024). https://doi.org/10.1007/s13577-023-01018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01018-x

Keywords

Navigation