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Abstract

Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system
(CNS), characterized by demyelination and axonal loss. It is induced by attack of autoreactive lymphocytes on the myelin
sheath and endogenous remyelination failure, eventually leading to accumulation of neurological disability. Disease-modi-
fying agents can successfully address inflammatory relapses, but have low efficacy in progressive forms of MS, and cannot
stop the progressive neurodegenerative process. Thus, the stem cell replacement therapy approach, which aims to overcome
CNS cell loss and remyelination failure, is considered a promising alternative treatment. Although the mechanisms behind
the beneficial effects of stem cell transplantation are not yet fully understood, neurotrophic support, immunomodulation,
and cell replacement appear to play an important role, leading to a multifaceted fight against the pathology of the disease.
The present systematic review is focusing on the efficacy of stem cells to migrate at the lesion sites of the CNS and develop
functional oligodendrocytes remyelinating axons. While most studies confirm the improvement of neurological deficits
after the administration of different stem cell types, many critical issues need to be clarified before they can be efficiently
introduced into clinical practice.
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Introduction transmitted and patients develop neurological symptoms. It

is one of the main causes of disability in young adults and

Multiple sclerosis (MS) is a chronic autoimmune inflamma-
tory disease of the central nervous system (CNS) primar-
ily associated with demyelination of the neural axons but
also leading to axonal degradation and neurodegeneration.
As a consequence, neuronal impulses are not adequately
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its incidence is increasing [1]. The pathogenesis of the dis-
ease is complex and has not yet been fully unraveled [2]. It
is considered that the onset of the disease long precedes the
first clinical symptoms. Existing immunomodulatory agents,
despite being very efficient in reducing the rate of relapses,
do not prevent progressive neurodegenerative processes, nor
do they have any regenerative effect, while they may cause
significant adverse effects [3].

A stem cell is an undifferentiated cell that can self-renew
and differentiate into tissue-specific cell types. During the
lifetime of an organism stem cells are able to act as repair
cells, regenerating cells of organs. The behavior and proper-
ties of stem cells are regulated by their immediate environ-
ment, the niche [4]. Depending on their properties, stem
cells can be divided into three main categories: pluripotent
stem cells, totipotent stem cells, and multipotent stem cells.
Pluripotent stem cells can differentiate into all tissue types
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except extra-embryonic tissues [5]. This category includes
embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs). ESCs are derived from the cells of the inner
mass of the blastocyst during early embryogenesis and their
differentiation in vitro is an important chapter in regen-
erative medicine [6]. iPSCs are generated in vitro from a
patient’s own fully differentiated somatic cells by the pro-
cess of cellular reprogramming [5], [7]. Totipotent stem
cells include zygotes and blastomeres up to the eight-cell
stage and have the ability to differentiate into all cell types
needed to create a complete organism [8]. Finally, multipo-
tent stem cells include stem cells of embryonic (fetal stem
cells, FSCs) and adult tissues (adult stem cells, ASCs), and
can differentiate into limited cell types of the tissue or the
organ where they are found [5]. FSCs are mesenchymal-type
cells that originate in the tissues of the fetus, can be found
in the circulation during the first trimester of pregnancy and
differentiate into bone, cartilage, haematopoietic cells, and
oligodendrocytes [9]. ASCs are located in the niche of all
body tissues, and their main function is to produce special-
ized cells for repair in case of damage, injury or disease.
They include mesenchymal stromal cells (MSCs), hemat-
opoietic stem cells (HSCs), stem cells from muscle tissue,
and neural stem cells (NSCs) [10].

Due to their ability to self-renew and differentiate, stem
cells have recently been proposed as a promising treat-
ment for various degenerative and autoimmune disorders,
including MS [11], [12]. The underlying mechanisms for
the beneficial effects of administered stem cells include
immunomodulation, transforming the central nervous sys-
tem microenvironment from hostile to supportive and neu-
rotrophic action, promoting the differentiation and regen-
eration of endogenous oligodendrocytes [13]. Despite all,
their most interesting function is cell replacement, meaning
their use as an exogenous source for the production of new
oligodendrocytes that could possibly restore the damaged
myelin sheaths. This review aims to present and clarify the
role of stem cell replacement therapy in MS, to reveal the
types of stem cells that perform cell replacement and their
optimal route of administration.

Materials and methods

A systematic literature search was conducted to identify eli-
gible primary studies on stem cell replacement therapy in
multiple sclerosis. Three medical and scientific databases
(Medline, Embase, and Scopus) were searched, using the
following search terms: “stem cell”, “cell replacement”
and “multiple sclerosis”. No language or other restrictions
were applied. The search spanned from inception of each
electronic database to January 25th, 2022. Furthermore, the
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reference lists of published articles were searched manually,
to ensure the comprehensiveness of the bibliography.

This effort resulted in 263 citations, from which rel-
evant studies were selected for the review. Their potential
relevance was examined and 129 studies were excluded as
irrelevant. The full texts of the remaining 134 citations were
assessed to select those primary studies that directly related
to stem cell replacement therapy in multiple sclerosis. These
criteria excluded 54 studies and left 80 in the review.

Hematopoietic stem cells (HSCs)

HSCs constitute approximately 0.01% of the proliferating
cells in the bone marrow and they can generate all hemat-
opoietic cell lines, including erythrocytes, megakaryocytes
and cells of the immune system [14]. Transplantation of
HSCs was the first cell therapy to emerge for the treatment of
MS and is currently the only clinically validated approach,
having been introduced in the field of hematology, where
it is mainly used for the treatment of malignancies [15].
In experiments performed in vivo in rodents, it was found
that early treatment has substantial results in improving the
clinical picture and prevention of relapses, while in con-
trast, in chronic stages of experimental allergic encephalo-
myelitis (EAE) the effect is negligible [16], [17]. The only
comprehensive randomized clinical trial is the international
autologous trial stem cell transplantation in MS, which com-
pared mitoxantrone versus autologous HSC transplantation
and included patients with aggressive relapsing—remitting
MS (RRMS) and with secondary progressive MS (SPMS).
Although a difference in EDSS scores was not observed, the
results showed that autologous HSC was superior in terms
of reducing MRI activity and recurrence rate [18]. The neu-
rological disability observed in SPMS is mainly caused by
neurodegenerative processes, due to axonal atrophy rather
than inflammatory processes. As a result, the progressive
phase may be curable by neither immunomodulatory agents
nor autologous HSC [19], so there is a need to emphasize
cell replacement with HSCs.

Cell replacement with HSCs

Only two study was found to have encouraging results about
the cell replacement that HSCs can accomplish in oligo-
dendrocytes (Table 1). In the study of Goolsby et al., 2013,
after autologous HSC and injection into the striatum and
hippocampus, structural cell replacement was observed.
CD34+ stem cells (HSCs) migrated long distances after
injection into the shiverer brain, in many cases up to the con-
tralateral hemisphere to the injection site. In some cases, the
transplanted CD34+cells selectively manifested oligoden-
drocyte MBP, in some cases, neuronal neurofilament H and
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NeuN, and in others astroglial GFAP. Finally, CD34+ cells
from adult mouse bone marrow express classic MBP, extend
oligodendroglial-like cell processes and ensheath axons in
the brain and optic nerve [20]. Furthermore, in the clinical
trial of Harris et al., 2020, HSCs were administered intrave-
nously (IV) resulting in replacement of T cells. More than
90% of the pre-existing cerebrospinal fluid (CSF) repertoire

droglial-like cell processes and ensheath

axons in brain and optic nerve

brain, even to the contralateral hemi-
In some cases, the transplanted

CD34+ stem cells migrated long dis-
tances after injection into the shiverer
CD34+ cells from adult mouse bone mar-
row expressed MBP, extend oligoden-
CD34+ cells expressed neuronal neu-
rofilament H and NeuN, and in others
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R with a role in supporting HSCs within the bone marrow
2| E g vault and maintaining vascular and immune homeostasis,
8 8 T through their ability to selectively migrate to sites of tis-

sue damage or inflammation (‘homing’). They have been
extensively studied in multiple disease models as they are an
easily accessible source of autologous or allogeneic somatic
stem cells with the ability to differentiate in multiple direc-
tions [22, 23]. Moreover, they escape immunological sur-
veillance and can be transplanted from an autologous, allo-
geneic source, even as a xenograft. It is noteworthy that their
immunomodulatory, immunosuppressive, neurotrophic and
repair functions may contribute to the treatment of MS [24].

The properties of MSCs that have been shown to be of
potential therapeutic value for MS are as follows:

Injection into the striatum and hip-
pocampus

e Myelin repair: differentiation into cells of neuroendothe-
lial origin and replacement in the injured CNS, stimula-
tion of proliferation of endogenous CNS neural stem cells
[25, 26], and guidance of their differentiation towards
oligodendrocyte lineages [27].

e Suppression of inflammation and immunomodulation

e Neuroprotection through neuroprotective, antioxidant
agents, promotion of CNS neurite outgrowth and remod-
eling.

e Reduced formation of gliotic scar: through their parac-
rine action, they can modify brain’s cellular microenvi-
ronment leading to a significant reduction of the lesion
area [26]

e Promotion of angiogenesis, enhances tissue repair [28]

e Cell fusion: a mechanism of neuroprotection, whereby
healthy nuclei or functional genes are introduced into
damaged cells and help rescue them and restore function
(29]

Experimental model Administration route

Type of cells

Table 1 Study investigating cell replacement in MS with HSCs
Goolsby et al. 2013 Mouse HSCs CD34+ Adult shiverer mice

Study
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e Direct transfer of mitochondria to vulnerable cells via
membrane fusion with subsequent phagocytosis [30]

Cell replacement with MSCs

Several preclinical studies have been performed with admin-
istration of MSCs from various sources in animal models
of MS, in which an improvement of the clinical picture and
repair of the injured tissue has been observed [31], with-
out clarifying whether the phenomenon is due to cellular
replacement or paracrine and other actions of MSCs. There
are on the other hand a number of studies that have proven
cellular replacement with MSCs (Table 2).

EAE model

Nine of the experimental MSCs transplantation studies in
the Table 2 were performed in rodent models with EAE
and resulted in improved neurological function. Five of the
studies used rodent MSCs [32-36], derived from bone mar-
row and placenta, while the other four used human MSCs
isolated from bone marrow [36—39]. In two of the studies
using rodent MSCs, cell replacement of various degrees
was observed [35, 36], whereas no cell replacement was
observed after administration of human MSCs. The thera-
peutic effect of intracerebroventricularly (ICV) and intrathe-
cally (ITH) administered rat MSCs was partially attributed
to cell replacement, as they trans-differentiated into cells
expressing markers of neuronal and neuroglial phenotype,
such as NF-200, Oligl, MBP, and GFAP [35]. The anti-
inflammatory activity of MSCs also played an important
role, as they attenuated perivascular and parenchymal infil-
tration, suppressed proinflammatory factors and increased
the expression of anti-inflammatory cytokines. Similarly, in
the study by Kassis et al. [36], both IV and ICV administered
murine MSCs derived from bone marrow, have exhibited
cell replacement, with MSCs being attracted to sites of CNS
inflammation and displaying morphological and immunohis-
tological characteristics of neuronal-directed cells, express-
ing beta-tubulin type III, GFAP, and galactosebroside. In
addition, a reduction in CNS inflammation and significant
protection of axons was observed, particularly after ICV
injection, suggesting a possible local in situ immunomodu-
latory effect of MSCs. During IV administration, systemic
immunomodulatory effects also played an important role
through a reduction in lymphocyte proliferation.

In contrast, in the study by Grigoriadis et al. [33], where
autologous MSCs from bone marrow were administered
ICV to mice with EAE, cells displayed GFAP and NG2
phenotypes, but without sufficient morphological inte-
gration within the tissue. In the mild EAE model, MSCs
exerted anti-inflammatory activity in the spinal cord and
reduced axonopathy. However, in the severe form of EAE,
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significant adverse effects were observed, with the forma-
tion of cell masses in the brain parenchyma, focal inflam-
mation, demyelination, axonal loss and increased collagen
and fibronectin deposition. In the experiment of Gerdoni
et al. [32], IV administered mouse MSCs derived from bone
marrow entered the CNS but did not trans-differentiated into
cells of neural origin. However, they led to a reduction in
demyelination and inflammation by interfering with the
pathogenic autoimmune response, inhibiting the pathogenic
T and B cell response and the proliferation and production
of inflammatory cytokines of brain-derived T cells. In the
experiments of Zhang et al. [37, 39] and Bai et al. [27],
human bone marrow derived MSCs were injected IV into
mice with EAE and entered the demyelination areas of the
CNS. However, either no colocalization was observed, or
only a small number of MSCs colocalized with neuroglial
cell markers. Even if the colocalization of these markers is
due to actual trans-differentiation of a small proportion of
MSC:s into oligodendrocyte progenitor cells, their therapeu-
tic effect cannot be attributed to this. Instead, enhancement
of endogenous repair by stimulation of oligodendrogenesis
was found, as well as anti-inflammatory activity of MSCs,
with a decrease in inflammatory TH1 and TH17 cells, an
increase in anti-inflammatory TH2, and expression of neu-
rotrophic factors, such as brain-derived neurotrophic factor
(BDNF) and neural growth factor (NGF). Nor in the study by
Gordon et al. [38], where human MSCs were administered
intraperitoneally to EAE mice, did cell replacement take
place, as very little infiltration by MSCs was observed in
the CNS and the demyelinated lesions. It is, thus, speculated
that the beneficial effect is due to a peripheral or systemic
immune effect.

In the experiment of Harris et al. [40], bone marrow-
derived mouse MSCs were in vitro differentiated into neu-
ral progenitor cells, in order to have a greater neurogenic
potential. After intracranial injection in mice with EAE,
a reduction in demyelination and a detection of the stem
cells in inflammatory foci was observed. However, despite
the in vitro neural differentiation potential of these cells, no
evidence of in vivo trans-differentiation was detected. The
transplanted cells led to reduced T cell infiltration, indicat-
ing an anti-inflammatory mechanism of action and enhanced
endogenous repair, with the detection of increased numbers
of endogenous NPCs. Clinically, improvement in neurologi-
cal function was found with multiple intradural injections,
while a single injection did not affect disease scores.

In experiments involving the transplantation of MSCs
into EAE models, diverse outcomes were observed. This
variability reflects the differences in the studies’ design
mainly regarding the source of the MSCs and the site of
transplantation. It could also stem from other factors,
including the microenvironment encountered by MSCs dur-
ing homing. This environment may either enable them to
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eventually replace cells or hinder their functionality. The
causes of this variability could be an area of further research
and may reveal new roles for MSCs. Undoubtedly, this phe-
nomenon underscores the challenges associated with cell
therapy using MSCs.

Chemical demyelination

Three studies used rats with focal demyelination in the spinal
cord after ethidium bromide injections followed by irradia-
tion (EB-X model), to exclude the possibility of endogenous
remyelination by oligodendrocytes or Schwann cells for at
least 68 weeks [41-43]. MSCs from rodent bone marrow
were administered by direct injection into the lesion or I'V. In
the experiment of Akiyama et al. [42], GFP-labeled mouse
MSCs were administered by direct microinjection into the
EB-X model. Upon electron microscopy of the lesion at
3 weeks, relatively extensive remyelination was observed,
which was almost complete near the center of the lesion and
partial at the lateral borders. In the absence of endogenous
repair and in the presence of intense GFP fluorescence, it
was concluded that the injected MSCs differentiated mainly
into myelinating cells, thus cell replacement occurred. Fur-
thermore, the remyelinated axons were also shown to be
functional, as they showed improved conduction velocity.
Similarly, in another study by Akiyama et al. [41], rat MSCs,
contaminated with the LacZ gene, were administered, this
time IV, to rats with EB-X focal demyelination, leading to
remyelination. Approximately, 9% of the cells that formed
myelin in the lesion showed p-galactosidase reaction prod-
ucts, but the majority of myelinating cells did not. From this,
it is concluded that cell replacement occurs to a small extent,
but that some endogenous repair mechanism, probably
enhanced by MSC:s, is responsible for most of the induced
remyelination. However, given issues related to the low
efficacy of LacZ contamination and the possibility of gene
inactivation as cells progress to a myelinating phenotype,
we cannot discern whether the remyelination was caused by
the injected cells or whether the injection procedure facili-
tated an endogenous repair mechanism. Interestingly, in the
latter two studies, remyelinated axons showed, on electron
microscopy, morphological features similar to either central
myelination from oligodendrocytes or peripheral myelina-
tion from Schwann cells, with large nuclei and an envel-
oping basement membrane. In addition, colocalization of
both MPB, a myelin-specific protein for both central and
peripheral myelin, and PO, specific for peripheral myelin,
was observed with transplanted stromal cells. Functionally,
partial recovery of electrophysiological function was found,
with improved axon conduction velocity.

Contrary, in a study conducted by Hunt et al. [43], the
administration of MSCs not only did not lead to remyeli-
nation and cell replacement, but instead had deleterious

consequences, as they migrated to areas of normal tissue
where they deposited collagen and caused axonal dam-
age. The study by El-Akabawy and Rashed [44], used mice
with cuprizone-induced non-immune demyelination as an
experimental model, which were injected IV with MSCs
from mouse bone marrow. Cuprizone induces oligoden-
drocyte apoptosis and subsequent demyelination. MSCs
migrated, integrated and led to both a reduction in demyeli-
nation and an enhancement of remyelination. However, the
authors postulated that remyelination was not induced by the
administered cells, as no differentiation of MSCs towards
the oligodendroglial phenotype was detected (absence of
CNPase expression). The putative mechanisms of action
identified were the direct enhancement of endogenous repair
and the induction of oligo/neuroprotection, via reduction of
the neuroglial response (astroglia and microglia) to cupri-
zone and reduction of oligodendrocyte apoptosis.

Myelin twitcher mutant

In the experiment of Croitoru-Lamoury et al. [45], human
bone marrow MSCs were administered via intracerebral
injections into twitcher mice. In 28 of 40 animals, MSCs
were successfully integrated and maintained rounded or flat-
tened cellular morphologies with few dendritic appendages,
but did not migrate extensively into the CNS until day 14
post-transplant. Differentiation of MSCs into CNS cells was
observed, as they were found by immunostaining to express
the neuron-specific protein MAP2, the astrocytic protein
GFAP, and oligodendrocyte proteins, MBP and CNPase.
However, functionally, no change in clinical progression
was found.

Neural stem cells (NSCs)

During the last decade, increasing interest has been focused
on the use of neural stem cells (NSCs) to promote remyelina-
tion. In the adult CNS, tissue-specific stem sheaths, such as
the subventricular zone (SVZ) of the lateral ventricles and
the subgranular zone (SGZ) of the dentate gyrus of the hip-
pocampus, contain the majority of endogenous NSCs with
the ability to self-renew and differentiate into functional
neurons and glia [46].

Pluripotent NSCs have also been isolated from the sub-
cortical white matter of the adult human brain [47]. MS
has been shown to significantly affect the proliferation of
the endogenous NSCs and this effect has been correlated
with clinical and histopathological findings in animal mod-
els of the disease [48]. NSCs in the adult mammalian brain
produce rapidly dividing neural progenitor cells (NPCs) to
generate neurons, astrocytes, and oligodendrocytes and con-
tribute functionally to post-injury recovery processes [49].

@ Springer
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For example, SVZ neuroblasts of adult mice can be directed
mainly toward oligodendrocyte differentiation during lysol-
ecithin-induced demyelination of the corpus callosum [50].

Apart from endogenous NSCs, transplanted NSCs and
NPCs, which possess a high myelinogenic potential, provide
encouraging results in animal models of MS. Exogenously
administered NSCs and NPCs exert a beneficial effect on
demyelination through cell replacement and immunomod-
ulation, or by providing nutritional support, neuroprotec-
tion, and stimulating endogenous remyelination. For NSCs
therapy in MS to be successful, the cells must possess suf-
ficient plasticity to integrate and survive in the unfavorable
inflammatory environment of the CNS, excellent migratory
capacity to reach multiple lesion sites, and the ability to
contribute to remyelination [13].

Several studies report that transplanted NSCs reduce
the clinical and inflammatory signs of EAE, although they
remain in the perivascular region without migrating to the
site of injury [51-53] and suggest that NSCs exert beneficial
effects not through cell replacement but through other mech-
anisms, such as immune regulation. In particular, transplan-
tation of NSCs within brain ventricles reduces perivascular
infiltrates, CD3+T cells, and ICAM-1 and LFA-1 expression
and increases T-regulatory cells in the brain and spinal cord
[52, 53]. Adult NSCs overexpressing IL-10 significantly
suppress CD45+ cells, CD4+ T cells, CD68+ macrophages/
microglia, and CD8+T cells in the spinal cord. They also
inhibit the production of the inflammatory cytokines IFNy
and IL-17 and induce apoptosis of cerebellar T cells [54]. IV
administration of NSCs reduces the number of CD3+T cells
and Mac3+ macrophages infiltrating the spinal cord [55],
whereas subcutaneous injection of human NSCs inhibits T
executive cell generation, dendritic cell differentiation and
maturation, and cytokine production [56].

The nutritional and neuroprotective effects of NSCs are
exerted through the delivery of neurotrophins, growth fac-
tors, stem cell developmental regulators and immunomodu-
latory molecules, all of which serve to regulate the micro-
environment [57]. NSCs IV injected in an animal model
of EAE secrete PDGF-a and FGF2, causing stimulation of
proliferation and differentiation of oligodendrocyte progeni-
tor cells (OPCs), and consequently, enhancing remyelination
[58]. In EAE mice that were subcutaneously injected with
NPCs before disease onset, NPCs accumulated in lymph
nodes and inhibited myeloid dendritic cells [56]. Moreover,
in chronic Alzheimer’s disease (AD), SVZ-derived con-
genic NSCs promote neuroprotection through the secretion
of immunomodulatory molecules and neurotrophic factors
[59].

Transplanted NPCs can stimulate endogenous remyelina-
tion by inducing the proliferation and terminal differentia-
tion of endogenous OPCs. NPCs transplanted into the lateral
ventricles of mice with cuprizone-induced demyelination
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exerted a trophic effect on endogenous OPCs, and the
achieved remyelination in the corpus callosum was attrib-
uted exclusively to endogenous OPCs [58]. In another study,
intradural injection of MSC-NPCs at the onset of the chronic
phase of EAE in mice increased the number of endogenous
OPCs and accelerated remyelination [34].

Cell replacement with NSCs

The intrinsic ability of NSCs to differentiate into oligoden-
droglial lineage cells has fostered hope for their applica-
tion as clinical therapies in MS. Many preclinical studies
have been conducted in a variety of both rodents and non-
human primates to investigate the therapeutic potential of
transplanting NSCs or OPCs in MS. The current perspective
on the predominant mechanisms underlying the beneficial
effect of transplanted NSCs involves diverse graft-host inter-
actions, not focusing on the replacement of damaged tissue
[57, 60]. However, there is a number of preclinical studies in
animal models of MS that have used NSCs or OPCs investi-
gating their potential for cell replacement (Tables 3 and 4).
These cells are generated in specific stem cell-containing
regions of the CNS, from where they migrate extensively
into axonal pathways that myelinate. They persist into adult-
hood and are the cells responsible for remyelination [61].

EAE model

Eight experimental NPCs transplantation studies were per-
formed in the EAE model. All were implemented in rodents,
except for the study by Pluchino Gritti et al. [62], which was
performed in non-human primates and used human-derived
NSCs. Mclntyre et al. in their study used both human and
mouse NSCs in discrete experiments, while the remaining
studies used rodent-derived NSCs[51, 59, 63-66]. Of the 7
studies using rodent NSCs, in 5 studies, cell replacement
was observed, whereas no cell replacement was observed
after administration of human NSCs [62, 67].

In the experiment by Mclntyre et al. (2020), remyelination
was observed after transplantation of both human and mouse
NSCs intraspinal, but without significant clinical improve-
ment. The beneficial structural effect in the case of mouse
NSCs was attributed to cell replacement, whereas in the case
of human NSCs to immunomodulation and promotion of
endogenous repair. Similarly, in the study by Pluchino Gritti
et al. (2009), immune regulation, rather than neural differen-
tiation, is proposed as the main mechanism by which human
NPCs improve EAE in vivo when the cells were injected IV
and ITH. Immune functions, rather than cell replacement,
were also attributed to the reduction of demyelination upon
transplantation of congenic NPCs into mice with EAE in
the experiment of Pluchino et al. (2005). IV administered
NPCs selectively reached inflamed perivascular regions of
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the CNS (via activated integrins and chemokine receptors),
where they survived as undifferentiated cells and exerted
neuroprotective effects, inducing apoptosis of cerebellar T
cells and thus protecting against chronic loss of neural tis-
sue. Similarly, in the study by Merzaban et al. (2015), after
IV injection of NPCs, despite the mitigation of the clinical
process, no evidence of long-term stem cell integration was
observed and neural repair was attributed to endogenous
repair rather than direct cell replacement. Cell replacement
was observed in the rest of the studies performed on the EAE
model. In the experiment of Ben-Hur et al. (2003) injection
of rat NPCs ICV or ITH resulted in extensive cell migration
exclusively to the infiltrating white matter and expression of
astrocytic (GFAP) and oligodendrocyte (NG2, GalC) mark-
ers. Another study found that neurospheres administered IV
or intra-abdominally reduce demyelination and axonal loss
in EAE with a dual mechanism of action, leading to both
cell replacement and stimulation of endogenous remyelina-
tion [65]. Besides, Giannakopoulou et al. (2011) proposed
that the stage of the disease has an important role, as the
administration of mouse NPCs with bilateral ICV injection,
had a different effect in the acute and chronic phase of EAE,
with cell replacement occurring only in the chronic phase.
The study by Sher et al. (2012) used unmodified mouse
NSCs, but also NSCs with transient overexpression of the
transcription factor Olig2, which is crucial for OPC matura-
tion in myelinating oligodendrocytes [68]. Both cell types
injected ICV migrated directly to active lesions, however,
only Olig2-NSCs differentiated into OPCs (NG2+), while
NSCs remained undifferentiated, expressing nestin [66].

Viral demyelination

When NPCs were administered with intracerebral or
intraspinal injections to mice with virally induced demyeli-
nation after JHMYV infection, cell replacement was observed
as the transplanted cells migrated to the lesion sites and dif-
ferentiated into myelinating cells that remyelinated the axons
[69, 70]. Furthermore, it was shown that the Oligl function
is essential for the ability to remyelinate direct transplanted
NPCs [71]. The Oligl gene encodes the homonymous tran-
scription factor, which is particularly involved in the devel-
opment as well as the maturation of oligodendrocytes [72].
Oligl+/+NPCs differentiated mainly into NG2+ OPCs and
formed MBP-expressing appendages surrounding the axons,
whereas Oligl-/- NPCs differentiated into GFAP+ cells of
the astrocytic lineage [71]. Migration into the lesion, dif-
ferentiation into oligodendrocytes, and extensive remyelina-
tion after OPCs administration was also observed in another
study with viral demyelination from JHMV [73], in which
transplanted-retransplanted animals with OPCs injected
at T8 spinal cord, contained approximately twice as many

axons as non-transplanted animals, suggesting that remyeli-
nation is associated with axonal rescue.

Chemical demyelination

Three studies were found using rats with EB-X model. The
study by Akiyama et al. (2001) used human NPCs, while
the other two studies used rat NPCs [74, 75]. The myelinat-
ing cells displayed morphological and phenotypic charac-
teristics of Schwann cells [76]. In the study of Keirstead
et al. (1999), in which NPCs were directly injected into the
lesion, the majority of axons were remyelinated from oligo-
dendrocytes and only 19% were remyelinated from Schwann
cells. In the study of Mothe & Tator (2008), transplanted
NPCs in the spinal cord differentiated predominantly in
an oligodendrocyte direction. However, only some of the
oligodendrocyte progeny expressed MBP and remyelinated
host axons, while most differentiated into non-myelinating
oligodendrocytes. It is, therefore, concluded that NPCs have
the intrinsic plasticity to differentiate into oligodendrocytes
or Schwann-type cells depending on the host environment,
with both cell types capable of myelinating axons [75]. In
the experiments of Copray et al. (2006) performed with
stereotactic implantation of mouse NPCs in the striatum,
just below the demyelinated corpus callosum, mice with
cuprizone-induced demyelination of the corpus callosum
were used as experimental models, which were injected
with mouse NPCs, as Olig2-NSCs, in contrast to unmodified
NSCs, developed into active myelinating oligodendrocytes
that contributed to remyelination [77]. In the study by Ein-
stein et al. (2009), after intraventricular injection of NPCs,
the observed corpus callosum remyelination was not due to
cell replacement, as the transplanted cells did not migrate
to the corpus callosum, but remained mostly in the perive-
ntricular region in an undifferentiated state. Remyelination
was exclusively carried out by the endogenous OPCs of the
recipient. Cell replacement was performed in two studies
using lysolecithin demyelination rodents as experimental
models, which were injected with human NPCs [78, 79]. In
the study by Windrem et al. (2002), progenitor cells from
adult human subcortical white matter were injected into
the lesion of dysmyelination, migrated extensively through
the demyelination sites and differentiated into myelinating
MBP+ oligodendrocytes.

In the experiments of Franklin et al. (1995, 1996) and
Groves et al. (1993), OPCs were administered to adult rats
and cell replacement was observed, with OPCs differentiat-
ing into myelin-forming oligodendrocytes that remyelinate
the stripped axons[80-82]. In the study by Franklin et al.
(1995), differentiation of OPCs was performed not only in
oligodendrocytes but also in GFAP(+) astrocytes within
the lesion. Franklin et al. (1996) found that administered
OPCs do not survive in normal tissue, but survive in tissue
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irradiated with X-rays or damaged by gliotoxin injection.
Transplanted OPCs cannot migrate through normal tissue
separating areas of demyelination, leading to the conclusion
that transplantation of OPCs is only likely to be successful
if cells are injected either directly into or near a lesion [80].
Migration into the lesion, differentiation into oligodendro-
cytes, and extensive remyelination after OPCs administra-
tion was also observed in zymosan demyelination [83].

Shiverer model of congenital dysmyelination

Cell replacement occurred in all five studies in which NPCs
were transplanted into shiverer mice. In two of them, human
NPCs were used [78, 84] while in the others mouse NPCs
were used [75, 85, 86]. In all studies, the administered neural
progenitor cells migrated extensively, integrated, and dif-
ferentiated into oligodendrocytes that produced compact
functional myelin.

Many of the above studies demonstrate the ability of
transplanted human OPCs to myelinate the hypomyelinated
brain of shiverer animals and improve both their neurologi-
cal phenotype and lifespan [87-90]. All studies used OPCs
of embryonic origin, except for the study by Windrem et al.
(2004) where adult cells were also used. Both embryonic
and adult OPCs were extensively incorporated and differen-
tiated into oligodendrocytes that induced extensive myelina-
tion [87-90]. The myelination was so extensive that virtu-
ally complete chimerism of the recipient CNS was observed,
with mouse gray matter and human-derived white matter
glia [89]. However, some differences were observed between
cells of embryonic and adult origin. Embryonic OPCs had
a high migratory potential, whereas adult OPCs migrated
shorter distances. Adult OPCs, however, produced oligoden-
drocytes in much higher proportions and, unlike embryonic
OPCs, produced no astrocytes, indicating that adult OPCs
behave in a more restricted manner, while embryonic OPCs
act as glial progenitors. Furthermore, adult OPCs myelinated
the shiverer mouse brain much faster (6 weeks) than their
fetal counterparts (12—16 weeks) and covered more axons
per cell [88].

For more efficient isolation of myelinogenic OPCs, Sim
et al. (2011) selected embryonic human forebrain cells with
the marker CD140a, an epitope of platelet-derived growth
factor receptor that is specifically expressed by OPCs.
Embryonic CD140a+ cells showed in vivo faster and more
efficient remyelination, generating both oligodendrocytes
and astrocytes (at a much lower fraction) in the recipient’s
brains. Furthermore, they were observed to myelinate with
an efficiency and time course analogous to adult OPCs, yet
migrated widely, extending throughout the brain and stem,
like embryonic OPCs. Thus, given their relative homoge-
neity, ability to migrate widely, and rapid myelinogenesis,
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CD140a+ cells have a potential advantage as cellular vectors
for the treatment of myelin disorders [87, 88].

Myelin proteolipid protein (PLP) mutants

Administration of congenic OPCs to myelin-deficient rats
with a mutation in the PLP1 gene resulted in cell migra-
tion and formation of normal PLP-positive graft-derived
myelin [91-93]. In the study by Learish et al. (1999), long-
term survival of ICV transplanted cells and retention of the
capacity for astrocyte differentiation was observed, with a
small percentage of astrocytes (< 5%) being donor-derived,
although many of the transplanted cells seen in the gray
matter remained undifferentiated.

Taiep rats (rats with inherited disorder of myelination)

In the experiment of Foote and Blakemore (2005), rat OPCs
were administered to the Taiep model via injection into the
spinal cord. This study showed that transfected OPCs, as in
normal tissue [80] do not enter tissue containing endogenous
OPCs, but only in areas where OPCs are depleted. However,
even achieving extensive repopulation by OPCs, remyelina-
tion was limited to the cell injection site. This study also
shows a clear correlation between the induction of acute
inflammation and successful remyelination. This adds to the
growing body of evidence that acute inflammation provides
the stimulus for initiation of remyelination [94] and is evi-
dence for the 'time mismatch’ hypothesis, an explanation for
remyelination failure in MS. The absence of an acute inflam-
matory environment to provide the signals required to pro-
mote remyelination will fail the remyelination process [95].

Cells derived from embryonic stem cells
(ESCs)

Embryonic stem cells (ESCs) are pluripotent cells derived
from the internal cell mass of the blastocyst and are of inter-
est as candidate cells for the treatment of MS, as they can
differentiate into NSCs or OPCs [96]. The ability to form
myelin from ESCs has been tested in vivo in a variety of ani-
mal models (Table 5). Although NSCs/OPCs derived from
ESCs have shown promising preclinical results, their use is
constricted due to ethical concerns regarding the source of
the cells, as the collection of ESCs destroys the blastocyst.
Furthermore, any residual pluripotency from the persis-
tence of some undifferentiated ESCs remains an important
safety issue. Thus, alternative sources of stem cells other
than internal cell mass are favored for future clinical appli-
cations [22].
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Cell replacement with ESCs

When administering mouse ESC-OPCs, via ICV or intraspi-
nal infusion, to myelin-deficient rats with dysmyelination
due to PLP mutation, they differentiated into oligodendro-
cytes that myelinated their host axons [97, 98]. Similarly,
transplantation of ESCs of both humans [99, 100] and mice
[101] in a shiverer model of dysmyelination led to migra-
tion and differentiation of cells into mature oligodendrocytes
producing MBP+ myelin (Fig. 1).

When administering ESC-derived NSCs to mice with
EAE, a significant improvement in the clinical picture was
observed with a reduction in the severity of the disease.
However, this beneficial effect was not due to cell replace-
ment, but to the immunomodulatory and neuroprotective
properties of ESCs [102—104]. In the study of Aharonowiz
et al. (2008), human ESC-NPCs transplanted within the lat-
eral ventricles of mice with EAE reduced the number of T
cells which cause encephalitis, axonal damage, and demyeli-
nation. Although NPCs survived and migrated extensively
into the brain parenchyma, no differentiation into mature
oligodendrocytes occurred, and the extent of remyelination
was negligible [102]. In the experiment of Cao et al. (2011),
mouse ESC-NPCs administered I'V in mice with EAE led to
a reduction in inflammation and demyelination, but NPCs
were rarely detected in the CNS [103]. Furthermore, intra-
abdominal administration of human ESC-OPCs in mice with
EAE led to a reduction in inflammation and an increase in
the number of regulatory T cells within the CNS, while the
transplanted cells themselves remained within the ventricu-
lar system and did not survive for more than 10 days [104].

Similarly, in the model with demyelination by murine
hepatitis virus, human ESC-NPCs that were administered
intraductal survived in the parenchyma of the spinal cord for
only 1 week, but through immunomodulatory and paracrine
effects improved functional effects, reduced demyelination,
increased remyelination, and limited neuroinflammation. As
the transplanted human NPCs did not differentiate into oli-
godendroglia, the remyelination appeared in response to the
activation of endogenous OPCs via specific factors secreted
by human NPCs [105].

Cells derived from induced pluripotent stem
cells (iPSCs)

Reprogrammed cells, having similar characteristics to ESCs,
can be differentiated into all cell types, such as NSCs or
OPCs (iPSC-NSCs and iPSC-OPCs, respectively). Repro-
gramming somatic cells of patients into pluripotent cells
permit their differentiation in vitro towards desired cell
lines or tissues for pathophysiological research or in vivo
cell therapy. For the treatment of MS, the differentiation of

iPSCs towards oligodendrocyte direction plays a predomi-
nant role [106].

However, iPSCs-derived cells cannot yet be used in clini-
cal practice. There is growing evidence that the epigenetic
signature of cells can be maintained after induction into
iPSCs, leading to issues of immune rejection of grafts [107],
or unexpected functions of iPSCs. In one example, iPSC-
NSCs grown from patients with PPMS, when transplanted
into models of cuprizone-demyelinated mice, exhibited
inherent defects, as they lack the neuroprotective pheno-
type observed in control iPSC-NSCs [108]. Furthermore, the
induction process required for the generation of nervous sys-
tem cells from iPSCs and the expansion to produce enough
cells for transplantation is very time-consuming, increasing
the likelihood of genetic instability leading to oncogenesis
upon transplantation [91].

Cell replacement with iPSCs

iPSC-NSCs

iPSC-NSCs have similar results in animal models of MS,
with NSCs from the subventricular zone (Table 6). NSCs
from mouse iPSCs, administered intracranially to mice with
EAE, provided clinical improvement and reduction of demy-
elinating areas, axonal damage, and infiltrating inflammatory
cells, while no toxicity or tumorigenesis was observed [109].
In addition, they were attracted to damaged areas such as
somatic NSCs [65] and were found either in demyelinating
lesions or at sites of increased inflammatory cell infiltra-
tion. However, most transplanted NSCs did not differentiate
in vivo in an oligodendrocyte direction, demonstrating that
remyelination is not due to cell replacement. In contrast,
iPSC-NSCs, through secretion of a neurotrophin leukemia
inhibitory factor (LIF), promoted the survival and differen-
tiation of endogenous OPCs and mature oligodendrocytes
[109]. Similarly, a subsequent study observed an improve-
ment in symptoms and reduced T cells via ICV transplanta-
tion of iPSC-NSCs at the peak of EAE (18 days after induc-
tion) [110].

iPSC-OPCs

Another common source of cells for transplantation are
OPCs derived from iPSCs. Their in vivo administration in
different animal models of MS examined myelin formation
from iPSC-OPCs. After their infusion into the cuprizone-
induced demyelinated mouse mesenchyme, they differenti-
ated into mature MBP+ oligodendrocytes contributing to
the remyelination of neurons [111, 112]. They were also
transplanted into, demyelinated from lysolecithin, rat optic
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chiasm, leading to apparent remyelination. In addition,
they were incorporated into the chiasm and differentiated
into mature PLP+ and/or MBP+ oligodendrocytes, which
remyelinated the axons and contributed to the functional
recovery. Some of the transplanted cells also differenti-
ated into GFAP+ astrocytes or MAP2+ neurons [113]. In a
genetic model of congenital hypomyelination, administer-
ing OPCs derived from human iPSCs to mouse shiverer
observed potent derived donor myelination and electron
microscopy revealed the production of structurally mature
solid myelin, with alternating major dense and intraperiph-
eral lines [114, 115].

Mice transplanted with human iPSC-OPCs improved
survival and reduced mortality over a 9-month observation
period. In addition, they migrated widely, and differenti-
ated into myelinogenic oligodendrocytes throughout the
subcortical white matter and into astrocytes, especially
in the central white matter. The speed and efficiency of
myelination of human iPSC-OPCs were higher than that of
OPCs derived from embryonic tissue [115]. Human iPSC-
OPCs generated from MS patients were also injected into
shiverer mice and after 16 weeks, human MBP+ oligo-
dendrocytes were detected diffusely throughout the mes-
ocolonium and approximately 30% of the mouse axons
were myelinated by them; however, very few differentiated
into human GFAP+ astrocytes, localized in the SVZ and
periventricular, suggesting that the local environment may
induce astrocyte differentiation in these areas [114].

OPCs derived from human iPSCs were also tested in
EAE models, where they were transplanted ICV in mice or
marmosets with EAE, reducing inflammatory cell infiltra-
tion and demyelination, and improving functionality, but
without detecting exogenous cells in the lesions. Thus,
their beneficial effect did not appear to be due to cell
replacement, but most likely to secreted protective or anti-
inflammatory factors. However, when transplanted directly
into the parenchyma of primates (marmosets) with EAE,
the majority of iPSC-OPCs differentiated into mature oli-
godendrocytes that myelinated the stripped axons, while
the remainder retained characteristics of OPCs or differ-
entiated into astrocytes [112].

Direct transformation of body cells in NSCs
and OPCs (iNSCs, iOPCs)

CNS regeneration could also be based on stem cells related
to iNSCs and iOPCs that differentiated from somatic cells
such as fibroblasts. In this way, they circumvent the prob-
lem of multipotency and immunogenicity, and are able to
be used in autologous transplantation.

@ Springer

Cell replacement with iNSCs and iOPCs
iNSCs

According to Kim et al. (2011) [116], fibroblasts were trans-
formed into iNSCs cells under appropriate culture condi-
tions based on the four Yamanaka reprogramming factors
(Table 6). In vitro iNSCs cells grow stably and secrete pro-
regenerative molecules such as neurotrophic factors from
glial cells (GDNF) and the brain (BDNF). On the other
hand, in vivo, they can be integrated long-term and function-
ally into the CNS offering various regenerative applications.

iNSCs cells were transplanted into the cerebellum of
1-day-old shiverer mice, according to dysmyelination
models, and differentiated in 10 weeks into functional oli-
godendrocytes, producing MBP+myelin [117]. Besides,
in demyelinated mouse mesenchyme via cuprizone, trans-
planted iNSCs differentiated into either oligodendrocytes
or astrocytes or remained undifferentiated. Although this
transplantation did not reduce demyelination, it succeeded in
increasing oligodendrocytes and endogenous OPCs, improv-
ing motor deficits. Chronic neuroinflammation and behav-
ioral deficits were ameliorated by transplanted iNSCs cells,
which are equivalent to their somatic NSC counterparts
and migrate to the meningeal regions of mice, producing
proinflammatory MPs. However, few cells proliferated and
expressed neuronal, astroglial or oligodendroglial markers
[118]. Thus, the therapeutic effect of transplanted iNSCs
cells relies not only on cell replacement but also on stimula-
tion of endogenous repair and immunomodulation.

iOPCs

According to Najm et al. [119], regarding iOPCs cells,
fibroblasts through specific transcription factors are directly
reprogrammed into myeloid iOPCs without the mediation
of iPSCs cells. These surround host neurons, producing
structurally compact MBP+ myelin when transplanted
into hypomyelinated shiverer mice [119]. Similarly, Yang
et al. used shiverer mouse brains that were injected with
iOPCs cells derived from mouse and rat fibroblasts. These,
formed tubular structures around axons at all injection sites
expressing myelin, which is present in the CNS, because all
MBP+-cells expressed PLP. But they did not produce protein
zero, which is the main protein of peripheral myelin. This
finding supports the myelinogenicity of iOPCs [120].

Conclusion
While the treatment of MS continues to evolve, treatment

options appear to remain limited in the improvement or pre-
vention of relapses and episodes of acute inflammation in
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«Fig. 1 Human embryonic stem cell (hESC)-derived oligodendro-
cytes integrate, differentiate and display a functional myelinat-
ing phenotype following transplantation into the shiverer mutant
mouse. A BrdU immunostaining illustrating the presence of trans-
planted BrdU pre-labeled cells within the spinal cord white matter.
BrdU pre-labeled cells were found almost exclusively within spinal
cord white matter. B CC-1 immunostaining on the same section as
(A) illustrating oligodendrocytes. C Composite of BrdU and CC-1
double immunostaining, illustrating that transplanted BrdU* cells
adopted the oligodendroglial marker CC-1. Arrows point to dou-
ble labeled cells, arrowheads point to BrdU-CC-17 cells (endog-
enous shiverer oligodendrocytes). These panels indicate that trans-
planted BrdU pre-labeled cells survived and integrated within the
spinal cord white matter, and became oligodendrocytes. D Elec-
tron micrograph illustrating that axons of shiverer mice are devoid
of myelin or are surrounded by one or two uncompacted wraps of
myelin. E Electron micrograph of the dorsal column white matter
of a shiverer mouse 6 weeks after transplantation of hESC-derived
oligodendrocyte progenitors, illustrating multilayered compact
myelin. F High-magnification image of compact myelin 6 weeks
after transplantation of hESC-derived oligodendrocyte progenitors,
illustrating multilayered compact myelin. Shiverer mice do not con-
tain multilayered compact myelin. E, F Myelination by transplanted
cells. G, H MBP immunopositive myelin patches within the dorsal
column white matter of shiverer mice 6 weeks after transplantation
of hESC-derived oligodendrocyte progenitors. I MBP immunopo-
sitive myelin patches within the ventral column white matter of shiv-
erer mice 6 weeks after transplantation of hESC-derived oligodendro-
cyte progenitors; nuclei are in blue. As shiverer mice do not produce
MBP, G-I demonstrate myelination by transplanted cells. A, B, C, G,
H,x400; D, E,x20,500; F,x40,000; I,x2,000. (Reproduced with
permission from Nistor Gi et al. 2005 [100])

recurrent or active MS. There are no approved interventions
capable of effectively promoting the recovery of damaged
CNS and stopping the gradual accumulation of disability.
Stem cell transplantation is a promising treatment in terms
of its regenerative potential, however, most of the preclinical
and clinical research has shown that immunomodulatory and
trophic properties of stem cells, and not the cell replacement,
are the main mechanism of their beneficial effects, making
them candidates for the treatment of relapsing or progres-
sive forms of MS. The major hopes for cell replacement and
impact on progressive forms of the disease rest on NSCs,
somatic or trans-differentiated, for which there is strong pre-
clinical evidence for improving chronic neuroinflammation,
but which have not yet been clinically studied to a significant
extent in the context of MS [22].

Overall, cell therapies in MS have been experimentally
tested for at least 4 decades [121] and significant progress
has been made in recent years (Table 7). Hematopoietic
and mesenchymal stem cell-based approaches are already
in clinical trials. Regarding HSCs, it has strong efficacy in
recurrent MS, with markedly better outcomes in patients
with active inflammatory disease, short duration of disease,
and lower EDSS scores. This is consistent with a therapy
that aims to control peripheral immunopathology without
directly affecting pathological processes within the CNS.
Unfortunately, only one of the studies has shown direct cell

replacement when it was injected directly into the striatum
and hippocampus and remyelination was performed with
different pathways. Transplantation of other types of stem
cells, such as MSCs or NSCs/OPCs, may be more useful
in patients with progressive forms of MS, where degenera-
tive mechanisms dominate, but this hypothesis has not yet
been confirmed [122]. Recent clinical trials are exploiting
the immunomodulatory, neuroprotective, and reparative
properties of MSCs. Most of the experiments did not show
cell replacement despite the positive effect in the reverse
of clinical picture and symptomatology which was mainly
attributed to the beneficial paracrine action of transplanted
MSCs. MSCs administration showed cell replacement only,
in one experiment when they were transplanted in the demy-
elination area and showed no effect in ICV nor IV adminis-
tration. The use of MSCs has several practical advantages,
including relative ease of isolation, mainly when it comes to
MSC:s of dental pulp or adipose tissue origin, safe adminis-
tration, and avoidance of the need for immunosuppressive
therapy to prevent rejection since autologous transplantation
is possible [123]. To date, published clinical trials have been
limited to small safety and efficacy studies, and while they
have shown a favorable adverse event profile, the efficacy of
MSCs transplantation is modest [31].

NSCs/OPCs transplantation showed a significant posi-
tive effect in cell replacement in multiple demyelination
models with high percentages of successful outcomes. Only
when the injection was IV there was no cell replacement
but other ways of remyelination, immunomodulation, and
neuroprotection.

While HSCs, MSCs, and NSCs have long been used in
preclinical and/or clinical studies for the treatment of demy-
elination, the successful generation of iPSCs from somatic
cells opens a new era in stem cell therapy. The advantages
of easy obtaining from the patient’s tissues and good toler-
ance make stem cells derived from iPSCs or direct trans-
differentiation of somatic cells, such as iNSCs and iOPCs,
the most suitable candidates for personalized cell replace-
ment therapy. Following trials in EAE and other demyelinat-
ing models, stem cell-derived iPSCs have shown significant
potential in the treatment of MS when transplanted in the
demyelination area. Cell replacement and differentiation
into mature oligodendrocytes were observed in most of the
experiments when the cell was transplanted directly into
the parenchyma. Although there are still many issues to be
resolved before clinical application, it is expected that, with
the rapid progress in the field of iPSCs, these challenges
can be addressed, making iPSC-derived cell transplantation
an autologous, safe, and highly effective treatment for MS
[22, 106].

While the safety and feasibility of stem cell transplan-
tation have been demonstrated for various cell types and
routes of delivery, there is still a need for larger and/or more
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rigorous studies to quantify the benefits of stem cell therapy
and demonstrate superiority over current best treatment
models [22]. Thus, all forms of cell therapy for MS should
be considered experimental at this time. Rarely, there may be
patients with aggressive recurrent MS, with no response to
available therapies, for whom autologous HSC transplanta-
tion may be warranted. Except for these, cell therapy in MS
should only be applied in the context of rigorous clinical tri-
als. In all the cases, comprehensive safety and efficacy data
should be collected and reported to existing databases [122].
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