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Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, 
and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progres-
sion and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors’ genetic 
and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse 
process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain 
proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets 
for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been devel-
oped for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. 
The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells 
to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting 
and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being 
explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into 
their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such 
treatments offers great potential for enhancing patient outcomes and halting disease progression.
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Introduction

Circulating tumor cells (CTCs) are cancer cells that detach 
from a primary tumor site and enter the bloodstream or body 
fluids. They are considered promising cancer biomarkers by 
the American Society of Clinical Oncology (ASCO) [1], 
and their presence and distinct characteristics are associated 

with progression and poor prognosis in various cancers [2]. 
Due to shear stress, immune surveillance, and unfavorable 
microenvironment, most CTCs last in the circulation only 
for a brief time. As such, their number in patients’ blood 
does not typically exceed ten cells per milliliter of blood 
[3]. CTCs interact with components of the tumor microen-
vironment, such as tumor-associated macrophages (TAMs) 
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and fibroblasts, and promote cancer spread to distant organs. 
Therefore, targeting and eliminating CTCs can potentially 
prevent metastasis and improve patient outcomes.

The detection of CTCs is an area of active research. 
Several techniques, including immunocytochemistry, fluo-
rescence in situ hybridization (FISH), microfluidics, and 
next-generation sequencing, have been developed to iden-
tify CTCs in diagnostic samples [4]. Monitoring CTCs 
levels during treatment can help assess treatment response 
and identify patients at higher risk of metastasis [4, 5]. The 
analysis of CTCs provides insights into tumors’ genetic and 
molecular heterogeneity, guiding personalized therapy. New 
strategies targeting CTCs, such as immunotherapy, targeted 
therapies, and nanotechnology-based approaches, are cur-
rently being explored to prevent cancer spread [4].

CTCs play a vital role in the development of tumor 
immune modulation. Numerous interactions with the tumor 
immune microenvironment increase their potential to metas-
tasize and escape host immune surveillance [5]. TAMs, 
transglutaminase 2 (TGM2), a cluster of differentiation 44 
(CD44), Epithelial cell adhesion molecule (EpCAM), and 
vimentin promote tumor growth and metastasis by support-
ing the infiltration and activity of effective immune cells 
and facilitating CTCs extravasation at the site of metastasis. 
This review presents recent progress in detecting CTCs, the 
mechanisms of their interactions, and the development of 
therapies targeting CTCs to prevent cancer metastasis. We 
aim to summarize the recent reports to improve the general 
understanding of CTCs interactions and their role in treat-
ment selection. We will also structure the new insights to 
facilitate further clinical trials.

Methods and selection criteria

Methods

We searched multiple medical databases, including Pub-
Med and Google Scholar, and identified articles containing 
selected keywords. The search terms included “circulating 
tumor cells,” “CTCs,” “tumor-associated macrophages,” 
“TAMs,” “TGM2,” “CD44,” “EpCAM,” “vimentin,” 
“metastases,” “flow cytometry in cancer,” “macrophages,” 
“circulating tumor cells therapies,” “tumor-associated mac-
rophages therapies,” “epithelial-derived cancer,” “mes-
enchymal-derived cancer,” “glioblastoma,” “melanoma,” 
“CTCs detection.”

Inclusion criteria

Research articles were selected and assessed only if they met 
the following criteria

(1) Cancer-related research.
(2) Reporting of cancer prognosis and metastases.
(3) Reporting of cancer therapies targeting CTCs and 

TAMs.
(4) Studies published in English with indicated dates and 

locations and indexed in MEDLINE.
(5) Studies that include cancer detection, therapies, and 

perspectives.
(6) Studies that address the role of CD44, TGM2, EpCAM, 

and vimentin in cancer detection and perspectives.
(7) Studies that address the role of CD44 and TGM2 in 

cancer mechanisms and interactions.
(8) Studies that address the role of CTCs and TAMs in 

metastases and cancer prognosis.

Exclusion criteria

Letters to the editor, abstracts without full text, and stud-
ies related to some extent to the content of the article but 
containing outdated data were not included in this review.

Circulating tumor cells: overview

Epithelial‑mesenchymal transition 
and mesenchymal‑epithelial transition

Several routes of CTCs infiltration into the bloodstream 
and body fluids have been described. Passive infiltration is 
known as the non-epithelial-mesenchymal transition (non-
EMT). This mechanism is initiated by external mechani-
cal forces, which force epithelial cells into circulation [6]. 
Since non-EMT CTCs are scarce and almost immediately 
eliminated by circulating immune cells, their role in metas-
tasis is negligible. During active infiltration, epithelial CTCs 
acquire mesenchymal-like features, which allow them to 
gain mobility, detach from the primary tumor site, and enter 
the bloodstream. This phenomenon, called epithelial-mesen-
chymal transition (EMT), is critical for cancer progression. 
Suppose those cells survive in the circulation and arrive at 
the metastatic site. In that case, they undergo a reverse pro-
cess called mesenchymal-epithelial transition (MET), which 
allows them to bypass the vascular endothelium and form 
micrometastases (Fig. 1) [7].

EMT is a multidimensional process initiated by the 
interactions between tumor cells in their microenviron-
ment. Epithelial CTCs have closely adjoined and polar-
ized structures maintained through cell–cell adhesion and 
junctions. There are five cell junctions: tight junctions, 
adherens junctions, desmosomes, hemidesmosomes, and 
gap junctions [8]. All of them are necessary to maintain 
the integrity of epithelial tissues. In contrast, mesenchy-
mal cells do not exhibit adhesion or polarity; thus, they 
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are mobile and can bypass the epithelial barrier [7]. 
The switch from epithelial to mesenchymal phenotype 
requires the downregulation of epithelial markers, such 

as E-cadherin, and the upregulation of mesenchymal mark-
ers, including N-cadherin, fibronectin, vitronectin, and 
smooth-muscle actin [7, 8]. During MET, this process is 

Fig. 1  The CTCs interactions’ impact on metastasis. Active intravasa-
tion requires CTCs to undergo EMT at the primary site. Acquiring 
mesenchymal properties enables CTCs to escape immune surveil-
lance and survive in circulation. Platelet coating and interactions with 
CAFs, TAMs, and WBCs hinder antigen presentation, protect CTCs 
from shear force, and increase their metastatic potential. TAMs and 
CAFs form clusters with CTCs—those heterogeneous structures 
consist of broad populations of epithelial and mesenchymal CTCs 

that are more invasive and likely to arrive at the target pre-metastatic 
niche. This complicated crosstalk favors CTCs’ survival and migra-
tion and facilitates the formation of distant metastasis. EMT epithe-
lial-mesenchymal transition, CCL2 chemokine C–C motif chemokine 
ligand 2, CD a cluster of differentiation, EpCAM Epithelial cell adhe-
sion molecule, IL interleukin, TAMs tumor-associated macrophages, 
CTC-CAF cluster—circulating tumor cell-cancer-associated fibroblast 
cluster
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reversed—mesenchymal cells transform into epithelial 
cells, epithelial markers undergo upregulation, and mes-
enchymal markers undergo downregulation [7].

Application in research

CTCs have numerous applications in cancer research and 
treatment. The CellSearch system is currently considered 
the gold standard for CTCs detection [9]. It detects periph-
eral CTCs and provides information regarding the tumor 
and the patient’s prognosis in conjunction with clinical 
outcomes. CTCs can monitor residual disease, assess treat-
ment response, and track disease progression and tumor 
evolution, including developing resistance to therapy [10]. 
Their distinctive features are associated with patients’ 
overall survival and progression-free survival [2].

In early breast cancer (EBC), disseminated tumor cells 
(DTCs) in the bone marrow were associated with a worse 
prognosis. Braun et  al. analyzed 4,703 EBC patients 
and found that those with DTCs had worse clinical and 
laboratory outcomes before treatment [11]. Janni et al. 
analyzed data from 3,173 EBC patients from five breast 
cancer institutes. They found that the presence of CTCs 
was associated with larger tumors, increased lymph node 
involvement, higher-grade tumors, and lobular tumor type 
[12]. The authors found no significant association between 
the presence of CTCs, hormone-receptor status, or HER2 
status. CTCs were an independent prognostic factor for 
shorter, disease-free, breast cancer-specific, and overall 
survival. CTCs were not significantly associated with 
prognosis in patients without lymph node involvement or 
triple-negative breast cancer. Since, unlike in metastatic 
breast cancer, there is no established cutoff value for CTCs 
in EBC, the presence of CTCs may facilitate prognosis 
prediction [13].

Personalized treatment of metastatic lung cancers relies 
heavily on biomarker testing, especially oncogene-addicted 
cancers, which can be treated with tyrosine kinase inhibitors 
(TKIs) [14]. While CellSearch is an FDA-approved system 
for monitoring breast and colon cancers, it has yet to be vali-
dated for lung cancer. Consequently, circulating tumor DNA 
(ctDNA) is favored over CTCs in the diagnosis and outcome 
prediction of lung cancer patients [15]. Recently, Krebs et al. 
compared two methods for detecting CTCs in advanced lung 
cancer patients: a surface marker-dependent method using 
CellSearch for EpCAM + cells and a surface marker-inde-
pendent method based on isolation by the size of epithelial 
tumor cells (ISET) [16]. Out of 40 patients, only 23% had 
CTCs detected using the surface-marker approach, while 
the ISET tests detected CTCs in 83% of cases. However, 
we found no studies comparing the applicability of ctDNA 
versus CTCs in detecting and monitoring lung cancer.

Advantage over the biopsy

CTCs offer several advantages over traditional biopsy 
methods [17]. CTCs can be obtained non-invasively, 
allowing for repeated sampling without invasive proce-
dures and reducing the number of adverse events com-
pared to conventional biopsies [18–20]. CTCs acquisi-
tion is more accessible than accessing target tissue via 
traditional biopsies; therefore, they provide an alternative 
method of molecular genotyping, especially when the can-
cer’s primary site is unknown or when the quantity of tis-
sue available for analysis is limited [21]. CTCs’ phenotype 
and dynamics change over time and reflect cancer progres-
sion; hence, their rapid testing provides real-time prognos-
tic data, guiding personalized therapy [21, 22]. CTCs can 
be rapidly tested, providing real-time information about 
tumor progression. Furthermore, CTCs can help reduce 
diagnosis bias from tumor heterogeneity, providing a more 
comprehensive understanding of the tumor’s biology [23, 
24].

Diversity among clusters

CTCs exhibit extreme phenotypic heterogeneity, existing 
as individual cells or clusters of 2 to 50 cells. They form 
through collective invasion, passive shedding, and aggrega-
tion of individual tumor cells during migration and in cir-
culation [25]. Their appearance predicts the switch toward a 
mesenchymal-like phenotype [25, 26]. However, the lack of 
a comprehensive analysis of CTCs heterogeneity at genetic, 
phenotypic, and morphological levels is a significant chal-
lenge in characterizing their impact on metastatic progres-
sion [26].

The metastatic potential of CTCs depends on the epige-
netic modifications of their signaling. Genes associated with 
cell stemness and proliferation responsible for their higher 
metastatic potential are usually hypomethylated and, there-
fore, more active in cluster CTCs. Genomic changes can give 
rise to different subclones within the tumor and CTCs, and 
the subsequent metastasis process is guided, at least in part, 
by epigenetic reprogramming [26].

Interactions among clusters and metastases

CTCs clusters are enriched by adhesive proteins, such as 
plakoglobin, CD44, or claudin-11 [25]. They respond to 
alterations in the extracellular matrix, remodeling and 
shaping the structure of intercellular junctions within 
the tumor microenvironment [27]. Increased intercellular 
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adhesion allows the clusters to intravasate and maintain 
stem-like properties necessary to form micrometastasis in 
distant organs. The knockdown of pro-adhesive signaling 
abrogates CTCs cluster formation and suppresses metas-
tasis [25].

CTCs interact with blood cells and use them to enhance 
their adhesive properties and facilitate metastasis [25]. 
CTC-neutrophil clusters found the blood of women with 
advanced-stage breast cancer was associated with a higher 
risk of early metastasis [28]. After injecting CTCs from 
CTC-neutrophil clusters into the bloodstream of tumor-
free mice, Szczerba et al. observed substantially increased 
metastases. In contrast, eradicating neutrophils in mice 
with breast tumors delayed cancer spread to the lungs [28].

In the circulation, platelets rapidly coat CTCs and 
facilitate cluster formation by interacting with adhesive 
proteins, such as fibronectin and integrins. Platelet-coated 
CTCs are more likely to escape immune surveillance due 
to impaired antigen presentation [29]. At the same time, 
the MHC I complexes transferred to CTCs from plate-
lets give them a new self-identity that prevents NK cell-
mediated cytolytic attacks. Platelets also inactivate natural 
killer (NK) group 2D receptors on NK cells and T lym-
phocytes, protecting CTCs against immune response [30]. 
Despite this support, CTCs survive in circulation only for 
a short time (1–2.4 h) due to shear stresses and apoptosis 
induced upon losing the attachment to neighboring cells 
or extracellular matrix [30].

The literature suggests the existence of other types of 
CTC, in which detection and analysis are far more chal-
lenging. For instance, lymphatic circulating tumor cells 
(L-CTCs) are commonly found in lymphatic vessels, 
which are tiny, colorless structures characterized by low 
intraluminal pressure and low cell concentration; thus, 
their visualization requires additional labeling and map-
ping using lymphography [31]. Lymph sampling is tedious 
and methodologically challenging and rarely performed 
in clinical practice. Since acquiring even a few milliliters 
of lymph for conventional in-vitro assays (such as flow 
cytometry, PCR, and genomic/proteomic tests) may be dif-
ficult, the interactions and metastatic potential of L-CTCs 
still need to be established [31].

The mechanical pressure and permission blood flow are 
key factors driving CTCs extravasation and subsequent 
metastatic growth [32]. Regions with low hemodynamic 
flow are most suitable for CTCs to engage with endothe-
lial cells. When the adhesive capacity of CTCs surpasses 
the shear forces of the blood flow, they attach to the walls 
of blood vessels at distant sites. There, single CTCs can 
sequentially form intravascular clusters [32]. Once fixed 
in the microvasculature, they generate immune-interacting 
molecules that strengthen the adhesion to endothelial cells 
and enable CTCs’ extravasation (Fig. 1) [32].

Circulating tumor cells detection

Molecular markers

EMT and MET are fundamental for CTCs to acquire 
mobility, resistance to apoptosis, and intravasate and 
metastasize [33]. During both processes, cells possessing 
epithelial-mesenchymal properties switch their phenotypes 
to adapt better to the local microenvironment [34]. These 
changes are associated with altered expression of specific 
proteins, which may become potential therapeutic targets. 
Some CTCs markers indicate the primary tumor deriva-
tive. In contrast, others, such as EpCAM and vimentin, are 
present in every tumor cell and can be potentially used to 
detect every type of CTCs [35, 36].

Interestingly, De Wit et al. used filtration and fluores-
cent labeling to detect EpCAM-negative CTCs in the blood 
of patients with metastatic lung cancer. The presence of 
EpCAM-negative CTCs doubled the number of CTCs and 
CTC-positive patients in this cohort, but EpCAM-negative 
CTCs were not associated with the patient’s prognosis 
[37]. DeWit et al.’s results indicate that EpCAM may not 
be suitable for detecting mesenchymal-like CTCs, which 
lose the expression of EpCAM during EMT, invalidating 
the theorem of “universal” CTCs markers [38].

Epithelial cell adhesion molecule (EpCAM) is 
expressed only by epithelial cells and partakes in all steps 
of the metastatic cascade. Its expression decreases during 
EMT but can still be detected on every CTC, regardless 
of its epithelial-mesenchymal phenotype [35]. EpCAM 
mediates the adhesion of tumor cells to its primary site. 
Therefore, its loss is crucial for increasing the migratory 
potential of cancer cells. EpCAM enables binding between 
adjacent CTCs in clusters by forming tight and adherens 
junctions [35, 39]. EpCAM also facilitates CTCs adhesion 
to distant metastatic sites [39].

Vimentin is an intermediate filament protein that sta-
bilizes the intracellular structure. Its high expression is 
typically associated with mesenchymal cells and is upreg-
ulated during EMT [36]. It aids CTCs in dissociating from 
the primary site and acquiring invasive properties. Vimen-
tin facilitates the adaptation to the new microenvironment, 
forming metastatic attachment and promoting colonization 
of metastatic sites [36].

CD44 and TGM2 are other critical mediators of EMT 
and MET [40, 41]. CD44 is a cell surface glycoprotein 
that regulates cell interactions and microenvironment 
interactions. Its upregulation has been associated with 
cancer progression, invasion, and metastasis [42]. TGM2 
is a multifunctional enzyme that promotes cell adhesion, 
migration, and extracellular matrix remodeling [40]. CD44 
and TGM2 are present in every CTCs and gained attention 
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as novel detection markers [41, 43] and potential therapeu-
tic targets [40]–[42, 44].

While the links between CD44, TGM2, and metastasis 
have already been established, further research is needed to 
advance our understanding of the role of CD44 and TGM2 
in EMT and MET [41, 43, 45]. It is also essential to evaluate 
their potential as detection markers and consider their imple-
mentation in CTCs-targeting therapies to prevent metastasis.

Detection technologies

Transitioning from CTCs detection in a laboratory to clinical 
practice remains challenging [46]. Only the CellSearch sys-
tem has been approved by the FDA to detect CTCs (Table 1), 
but it has some limitations [47]. CellSearch employs anti-
body-coated magnetic beads to isolate and enrich captured 
cells based on EpCAM expression. It uses in-vivo enrich-
ment and ligand capture to ensure high CTCs purity [46]. 
Capturing ligands with density gradient sedimentation may 
cause interference with free microbeads.

Furthermore, size exclusion filtration and ligand capture 
are time-consuming and have low throughput, while barcode 
particles are yet to be automated. Self-propeller microma-
chines have uncontrollable motion direction and velocity, 
and magnetic beads cannot capture CTCs with low expres-
sion of biomarkers. Moreover, microfluidic chips with ligand 
capture have a slow flow rate, leading to long CTCs enrich-
ment times.

Targeting circulating tumor cells

CTCs emerge as a hallmark of disease progression and 
indicate prompt metastasis [63]. During the epithelial-mes-
enchymal transition (EMT), cancer cells acquire stem-like 
properties and detach from the original tissue [64]. In the 
bloodstream, CTCs activate multiple mechanisms, including 
platelet clothing and the secretion of growth factors, to evade 
immune surveillance. If not recognized by immune cells, 
CTCs will extravasate and form metastasis [65]. CTCs are 
associated with poor prognosis in hepatocellular carcinoma 
[66], lung [67, 68], and bladder cancer [69]. Therefore, their 
early diagnosis and eradication may prolong patients’ sur-
vival [70]. Despite the recent progress in detecting CTCs, 
designing a reliable therapeutic approach seems much more 
challenging. Therefore, we will summarize current therapies 
targeting CTCs and review their clinical utility (Table 2).

Surgical resection

Surgical resection is the primary method of managing low-
stage cancers. The excision of the primary tumor can also 
reduce the burden of circulating tumor cells and decrease the 

risk of early metastasis [71, 72]. However, we must address 
some discrepancies. While the primary tumor resection 
decreased CTC’s volume in an orthotopic HCC model, the 
same intervention in HCC patients had the opposite effect 
[71, 73]. The increase in CTCs volume appeared to depend 
on the presence of CTCs macroscopic tumor thrombi. Dur-
ing liver rotation [74], the HCC cell was forced into the 
bloodstream from the hepatic vein tumor thrombi and caused 
cancer spread. In desmoplastic cancers, such as pancre-
atic ductal adenocarcinoma (PDAC), stroma often forms 
enclosed compartments, potentially slowing tumor progres-
sion and preventing early metastasis [75]. Its removal during 
surgery may paradoxically facilitate cancer spread. However, 
Tamminga et al. did not observe increased CTCs volume 
after lung cancer surgery [76].

Chemotherapy

Chemotherapy remains the first-line treatment in multiple 
advanced cancers. This approach is usually chosen consider-
ing the primary tumor stage, and the effect on CTCs count 
seems secondary to the systemic toxicity of used drugs. 
Chemotherapeutics effectively reduce the number of CTCs 
and decrease the risk of early metastasis [77]. In metastatic 
breast cancer, chemotherapy alone reduced the count of 
CTCs in the blood of 15 out of 30 patients (50%). Patients 
with low CTCs had significantly longer progression-free sur-
vival and overall survival than patients with higher CTCs 
volume [78]. Nevertheless, the lack of target-specificity hin-
ders the introduction of CTC-oriented therapy [79]. A more 
selective approach is required since CTCs differ genetically 
and phenotypically from primary tumor cells.

Interestingly, CTCs showed significant heterogeneity 
even within the same patient. Some acquired hybrid epithe-
lial-mesenchymal phenotype, as if during a partial endothe-
lial-mesenchymal transformation. They became more sensi-
tive to tumor environmental stimuli and gained the ability 
to colonize distant organs [25, 80]. Mesenchymal-like cells 
in the bloodstream are associated with progressive disease 
post-therapy in breast cancer patients. Chemotherapy may 
induce a CTCs phenotype switch by enforcing the selec-
tive survival of resistant clones and increasing the number 
of CTCs with mesenchymal features [80–82]. Since cancer 
stem cells and partial-EMT CTCs are resistant to conven-
tional chemotherapy, the increase in their number predicts a 
lack of long-term efficacy and a worse prognosis.

Immune checkpoint blockade

CTCs and distant metastasis cells have different phenotypes 
than the primary tumor. They may resist first-line therapy—
most express surface proteins, such as PD-L1 and CD47, 
facilitate immune surveillance escape [83]. The interaction 
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Table 1  CTCs detection methods in cancers

CTCs circulating tumor cells, EpCAM epithelial cell adhesion molecule, LC lung cancer, NSCLC non-small-cell lung cancer, BRCA  breast can-
cer, PCa prostate cancer, PDAC pancreatic ductal adenocarcinoma, OVCA ovarian cancer, CRC  colorectal cancer, < WBCs white blood cells, 
CD45 cluster of differentiation 45, CK cytokeratin, RT-PCR reverse transcription polymerase chain reaction

Device name Cancer Study results and specifications

CELLSEARCH® (Janssen Diagnostics) [48, 49] BRCA, PD, OVCA, CRC [48, 49] Low purity of captured CTCs; variable sensitivity 
(20–70%); variable specificity (89% to 99.7%) [48, 
49]

AdnaTest (Adnagen) [50] BRCA, PCa, OVCA, CRC [50] Blood and bone marrow samples analysis; down-
stream RNA analysis after RT—PCR enrichment; 
high sensitivity (73%); frequent WBCs contamina-
tion; detection limit ≥ 2 CTCs per 7.5 mL sample 
[50]

MACS system (Miltenyi Biotec) [51] NSCLC, BRCA [51] The detection of EpCAM-negative, CK-positive 
CTCs; can be used with leukocyte depletion, 
achieved through negative enrichment via anti-
CD45 antibodies [51]

MagSweeper (Illumina) [52] BRCA, PCa, CRC [52] High sensitivity (100%); high purity of captured 
CTCs (~ 100%); high throughput processing of 
9 mL/hr; able to detect 1—3 CTCs/mL [52]

GILUPI CellCollector™ [53] BRCA [53] Invasive and time-consuming method; in-vivo-based 
detection; may soon process large volumes of blood 
[53]

Modular Sinusoidal Microsystems (BioFluidica) 
[48]

PDAC [48] Impedance-sensing cell enumeration; determination 
of cell viability; high yield and purity of captured 
CTCs (> 86%); processing up to 7.5 mL of blood 
per hour [48]

Herringbone (HB) Chip [54] PCa [54] Processing up to 4.8 mL/h; detection limited to 12 
CTCs/ mL; low purity of captured CTCs (~ 14%); a 
limited number of conducted preclinical studies [54]

GEDI [55] BRCA, PCa [55] High capture specificity and sensitivity (94%); high 
purity of captured CTCs; can detect up to 27 CTCs/
mL [55]

GEM Chip [56] PDAC [56] Antibodies-based method; it possesses high selection 
efficiency; processes 3.6 mL/h [56]

OncoCEE (Biocept) [57] BRCA [57] Feasible for the analysis of CK + and CK- CTCs; high 
probability of capturing CTCs; 95% sensitivity and 
92% specificity [57]

LiquidBiopsy® (Cynvenio) [58] BRCA, LC [58] Processing of 5 mL/h; high purity of detected cells; 
the sheath flow reduces non-specific binding; error 
accuracy of 20% and error precision of 25% [58]

Graphene oxide (GO) Chip [59] BRCA, PDAC, LC [59] Processing of 1–3 mL/h with high capture yield; high 
but variable sensitivity (73% ± 32.4% at 3–5 cells 
per mL of blood); limited clinical validation [59]

Ephesia (CTC-Chip) [60] BRCA, NSCLC, PCa, CRC [60] High capture specificity; the processing of more than 
3 mL/h; it maintains the viability of 98% of captured 
cells; high sensitivity (99.1%) and specificity 
(100%) [60]

IsoFlux (Fluxion) [61] BRCA, PCa [61] It detects genetic alterations with a CTCs capture rate 
of 50% [61]

Quadruple magnetic separator [61] BRCA [61] Minimal preclinical data; detects heterogeneity among 
CTCs through immunofluorescence; requires mul-
tiparameter analysis [61]

CTC-iChip [62] EpCAM-positive cancer, 
EpCAM-negative cancer [62]

Under development by Janssen Diagnostics, it utilizes 
positive and negative enrichment and combines 
size-based separation of WBCs; processing of 
8 mL/h; detection limit of < 30 CTCs/ 7.5 mL; very 
low purity of captured CTCs (~ 8%) [62]
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between those proteins and their respective ligands on the 
surface of immune cells causes T-cell suppression and 
impairs antitumor response [84]. In-vivo, the absence of PD-
L1-positive CTCs can predict sustained response to long-
term immunotherapy [85]. Therefore, PD-L1-expressing 
CTCs became a potential therapeutic target [86].

Dual immune checkpoint blockade may further enhance 
the efficacy of therapy. The co-inhibition of CD47 and 
PD-L1 decreased lung cancer nodules in mice dose-depend-
ently [83]. However, selecting a therapeutic group is usually 
complex and may require real-time assessment of biomarker 
dynamics depending on the type of disease. The analysis 
of CTCs from patients’ peripheral blood emerges as a non-
invasive tool to determine the indications for immunother-
apy and predict the resistance to therapy [87]. Clinical trials 
evaluating the changes in the count and phenotype of CTCs 
during immunotherapy may determine whether CTCs can 
be implemented into clinical practice [88].

Platelets‑targeted therapy

In the bloodstream, CTCs associate with platelets and form 
clusters. Those complexes can withstand shear force, limit 
antigen presentation on the surface of tumor cells, and evade 
the immune response [89, 90]. Platelet coating protects 
CTCs from T and natural killer cells, facilitating their spread 
and early metastasis [65, 91].

Interestingly, platelets adhere to the injury side upon vas-
cular endothelial cells’ damage and release their contents, 
invoking an immune response and forming platelet-derived 
microparticles (PMP) [92]. PMPs promote the binding of 
anti-PD-L1 to CTCs, block PD-L1 on tumors and antigen-
presenting cells (APCs), and inhibit metastasis [92, 93]. In 
mice with TNBC and primary melanoma, this approach 
effectively released aPDL-1 during platelet activation, 
reducing the risk of cancer recurrence and prolonging mice 
survival. Since the concentration of antibodies increases 
around cancer cells, Platelets-aPDL-1 conjugates are more 
effective than free anti-PD-L1 therapy. Furthermore, plate-
let activation recruits other immune cells, which, after the 
PD-L1 blockade, can induce a strong anticancer immune 
response [89].

Monoclonal antibodies

Recently, monoclonal antibodies have become a frontline 
strategy to treat cancer. However, their role in targeting 
CTCs still needs to be defined. Antibody-dependent phago-
cytosis by murine Kupffer cells can remove CTCs from the 
bloodstream [94]. This effect depends on FcγRI and FcγRIV, 
which are required to prevent liver metastasis [95].

ICAM1 overexpression in lung and breast cancer pro-
motes spontaneous metastasis to the lung and is associated 

with shorter survival in breast cancer [96]. ICAM1 levels 
are higher in CTCs clusters than in single CTCs, increase 
upon clustering, and enhance cancer stemness and cell-cycle 
progression. In the orthotopic model, anti-ICAM antibod-
ies inhibited CTCs aggregation and reduced spontaneous 
lung metastasis but did not impact the primary tumor growth 
[96]. Although data regarding monoclonal antibodies target-
ing CTCs is limited, the results prompt further investigation.

Immunomodulation

Cancer cells associate with platelets during the migration 
in the bloodstream and release immunosuppressive factors, 
such as cytokines, cell surface proteins, and growth factors, 
to avoid the immune response. Under their influence, tumor-
associated cells suppress the ability of immune-competent 
cells to present antigens and eliminate tumor cells. There-
fore, methods that enhance the ability of immune cells to 
recognize and execute CTCs have been proposed.

CTCs must interact with white blood cells and cross 
vascular endothelial cells before they can extravasate. In 
many CTCs, surface-expressed ligands bind to E-selectin 
(ES) expressed on endothelial cells, which triggers the death 
receptor TRAIL-induced autophagy of tumor cells [97]. 
Furthermore, white blood cells carrying ES and TRAIL 
liposomes can directly promote CTCs phagocytosis, reduce 
CTCs count, and prevent metastasis [98].

Cancer-associated fibroblasts (CAF) are populations 
of fibroblasts that acquire immunomodulatory properties 
through the crosstalk with tumor cells, facilitate immune 
escape, and drive tumor progression [99]. CAFs circulate 
in the bloodstream, form complexes with CTCs, and pro-
tect them from an anticancer immune response. The number 
of circulating cCAFs/CTCs clusters increases in the blood 
of advanced breast cancer patients and is associated with 
poor prognosis. In-vitro, cCAFs/CTCs clusters were present 
only in metastatic breast cancer, while no such phenomenon 
occurs in cancers without metastasis [100]. Therefore, dis-
rupting the formation of cCAF/CTCs complexes may be a 
potential therapeutic strategy.

While many researchers focus on reprogramming CAFs 
[101], the therapeutic potential of targeting CTCs and their 
clusters still needs to be explored. Prolonged treatment 
with ouabain and digitoxin, Na + /K + ATPase inhibitors, 
caused CTCs cluster dissociation and preserved optimal 
proliferation compared to control cells without causing 
generalized DNA methylation [102]. It also reduced the 
ability of BR16 cells to survive during the early steps of 
metastasis, hindering cancer spread. CAFs and prostate 
cancer cells form conglomerates that enhance CTCs’ sur-
vival in fluid shear stress [103, 104]. CTCs cluster integ-
rity corresponds with disease progression and is more 
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compact in a more advanced stage. Thus, CAFs disso-
ciation may limit prostate cancer metastasis and increase 
therapy efficacy [105–107].

CTCs and tumor‑associated macrophages

Tumor-associated macrophages (TAMs) are immune cells 
that reside within the tumor microenvironment and pro-
mote tumor dissemination via direct contact with tumor 
cells [118]. TAMs secrete growth factors, cytokines, and 
chemokines, supporting EMT and cancer cell proliferation 
migration. They enhance proliferation by secreting growth 
factors, cytokines, and chemokines [118, 119]. They also 
degrade the extracellular matrix, promoting the migration 
and CTCs attachment to vascular endothelium. The cross-
talk between TAMs and CTCs seems crucial for forming 
distant metastasis [120, 121]. Hence, targeting TAMs has 
emerged as a strategy to reduce metastases [118].

The emerging role of TAMs in CTCs‑targeted 
therapies

Macrophages play a crucial role in tissue repair and defend 
the organism from pathogens. Distinct populations of mac-
rophages play different roles in the immune response. How-
ever, their functions are not set in stone and may change 
depending on the microenvironmental cues [122]. In cancer, 
their proinflammatory activity may drive tumorigenesis and 
metastasis [123].

TAMs are a population of macrophages that infiltrate 
tumors and contribute to the development and progression of 
cancer. TAMs can be classified into two major subtypes: pro-
inflammatory M1 macrophages—which exhibit antitumor 
activity by secreting interleukin-12 (IL-12), tumor necro-
sis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) 
[124]—and immunosuppressive M2 macrophages, promot-
ing tumor growth via the secretion of interleukin-10 (IL-10) 
and transforming growth factor-beta (TGF-β) (Fig. 2) [125, 
126].

Fig. 2  The function of macrophages’ subtypes. Macrophages can 
be divided into two main subtypes. The antitumor M1 macrophages 
release proinflammatory cytokines, facilitating proinflammatory, 
microbial, and tumoral activity. It is widely responsible for tissue 
damage. The immunosuppressive M2 macrophages facilitate tumor 
growth by secreting anti-inflammatory cytokines. They also pre-
sent phagocytosis capacity and anti-inflammatory activity. M2 mac-
rophages are involved in tissue regeneration, repair, angiogenesis, 

immunomodulation, and tumor formation and progression. TNF-α 
tumor necrosis factor α, IL interleukin, CXCL chemokine C-X-C 
motif ligand, CCL chemokine C–C motif ligand, TGF-β transform-
ing growth factor β, VEGF vascular endothelial growth factor, NF-κB 
nuclear factor kappa-light-chain-enhancer of activated B cells, STAT  
signal transducer and activator of transcription, HIF hypoxia-induci-
ble factor, PPAR peroxisome proliferator-activated receptor
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TAMs in the tumor microenvironment are associated 
with poor clinical outcomes in various cancers, includ-
ing breast, ovarian, and lung cancer [127]. They stimulate 
angiogenesis, suppress antitumor immune responses, and 
remodel the extracellular matrix [128]. In this way, TAMs 
favor the development of an immunosuppressive niche in 
which cancer cells undergo EMT, acquire resistance to 
apoptosis, and proliferate. Therefore, targeting TAMs has 
emerged as a promising approach to improve the efficacy 
of existing treatments [123]. Recent studies have provided 
new insight into cancer biology, which raised the inhibition 
of TAMs recruitment to the tumor site, their repolarization 
to an antitumor phenotype, or depletion to the forefront of 
macrophage-targeting therapies [123, 129].

The ominous crosstalk between TAMs and CTCs

Macrophages can interact with CTCs through cell-to-cell 
contact or the secretion of growth factors and cytokines 
(Fig. 3). On the one hand, TAMs secrete vascular endothe-
lial growth factor or fibroblast growth factor—and cytokines 
(i.e., IL-6, TNF-α, and TGF-β) to promote CTCs survival, 
proliferation, and migration [126, 130].

On the other hand, macrophages express cell surface 
receptors that interact with ligands expressed by CTCs. 
For instance, CD47, a receptor expressed by CTCs, inter-
acts with the macrophage surface receptor signal regulatory 
protein alpha (SIRPα) [131]. Their interaction inhibits mac-
rophage phagocytosis of CTCs and allows CTCs to evade 
immune surveillance. Blocking the CD47-SIRPα interac-
tion can promote macrophage-mediated phagocytosis of 
CTCs and improve antitumor immunity [132]. The inter-
actions between CTCs, macrophage integrins, and toll-like 
receptors (TLRs) promote CTCs adhesion, migration, and 
invasion [133, 134]. Since TLR4 promotes CTCs migration 
in pancreatic cancer and blocking TLR4 signaling inhibits 
CTCs migration and invasion, TLR4 appears to be a poten-
tial therapeutic target [135].

Macrophages can also transfer exosomes to CTCs. 
Exosomes are small, cell-derived vesicles that move pro-
teins, lipids, and nucleic acids between cells [134]. Mac-
rophage-derived exosomes transfer growth factors and 
cytokines, promoting CTCs proliferation, migration, and 
invasion [136]. Tumor cell-derived exosomes can switch 
macrophage phenotype to M2 and suppress antitumor immu-
nity [137].

Fig. 3  Tumor-associated macrophages (TAMs) and their implications 
for metastasis. TAMs participate in various stages of tumorigenesis. 
TAMs produce NO and reactive oxygen intermediates during cancer 
initiation, which induce DNA damage and genetic instability. TAM-
derived EGF, VEGF, HGF, IL-6, and GPNMB promote cancer stem 
cell proliferation. TAMs also secrete IL-1 and TGF-β, which are 
involved in ECM remodeling and cancer dissemination. IL-10, TGF, 
prostaglandins, and IDO stimulate regulatory T cell growth, dendritic 
cells’ immune tolerance, and T cell metabolic deprivation. Immuno-

suppressive TAMs exhibit increased expression of immune-check-
point markers (PD-L1, PD-L2, B7-H4), contributing to T cell exhaus-
tion. ILC3 type 3 innate lymphoid cell, Th17 T helper 17, Treg T 
regulatory, EMT epithelial-mesenchymal transition, NO nitric oxide, 
ROI reactive oxygen intermediates, GPNMB glycoprotein non-meta-
static b, IL interleukin, EGF epidermal growth factor, HGF hepato-
cyte growth factor, VEGF vascular endothelial growth factor, TGF-
β tumor growth factor-β, IDO indoleamine 2,3-dioxygenase, ECM 
extracellular matrix. “Created with BioRender.com.”
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Interestingly, macrophages can also induce CTCs apop-
tosis and inhibit CTCs proliferation. Activated M1 mac-
rophages produce reactive oxygen and nitrogen species, 
causing DNA damage, and secrete TRAIL and IFN-γ to 
induce apoptosis in CTCs [138, 139]. Moreover, mac-
rophages can directly eliminate CTCs via phagocytose [140].

Macrophage‑targeting therapies

Since macrophages have emerged as a promising therapeutic 
target, reports discussing the rationale of inhibiting the activ-
ity of M2 macrophages, promoting M2 macrophage differ-
entiation, or modifying the functions of a given macrophage 
population started appearing. In the following section, we 
will shortly review the available methods that target TAMs 
and can soon complement CTCs-targeting approaches.

Macrophage‑targeting agents

Macrophage-targeting agents, such as bisphosphonates, 
liposomes, and nanoparticles, can exploit the ability of 
macrophages to phagocytose foreign particles [141] and 
express specific surface receptors [142]. Bisphosphonates, 
commonly used to treat bone metastases, inhibit the activ-
ity of M2-like macrophages and reduce tumor growth and 
metastasis in preclinical models [143].

Immunotherapeutic agents

Immunotherapeutics can modulate macrophage polariza-
tion. IL-12 and IFN-α switch toward the M1 phenotype and 
enhance antitumor immunity [144, 145]. Blocking signaling 
pathways that promote M2-like macrophage polarization, 
such as the TGF-β pathway, enhances antitumor immunity 
and improves therapeutic outcomes in preclinical models 
[125].

Monoclonal antibodies against macrophage surface mark-
ers, such as CD40, CD47, and CD163, induce macrophage 
activation and antitumor immune responses [146, 147]. 
Immunomodulatory drugs, such as lenalidomide and tha-
lidomide, inhibit the secretion of pro-tumor cytokines by 
M2-like macrophages and stimulate the secretion of antitu-
mor cytokines by M1-like macrophages [148, 149].

Gene therapy

Gene therapy involves the introduction of genes encoding mol-
ecules that can modify the behavior of macrophages within 
the tumor microenvironment [122, 150]. For instance, repro-
gramming macrophages to switch from the tumor-promoting 
M2 phenotype to the tumor-inhibiting M1 phenotype can be 
achieved by using viral vectors, which deliver genes encoding 

cytokines or chemokines activating the M1 phenotype, such 
as IFN-γ and IL-12 [122, 150].

Gene therapy can also deliver genes encoding molecules 
that target specific signaling pathways or molecules involved 
in macrophage-mediated tumor progression. Macrophages 
transfected with small hairpin RNA (shRNA) targeting the 
C–C motif chemokine receptor 2 (CCR2) via a lentiviral vec-
tor reduced macrophage infiltration and tumor growth in a 
preclinical model of breast cancer [151].

In addition, non-viral methods such as electroporation, lipo-
some-mediated transfection, and CRISPR-Cas9 gene editing 
have also been explored for gene therapy approaches in target-
ing macrophages in cancer [152].

Tumor microenvironment modulation

Several studies have also explored using drugs that modu-
late the tumor microenvironment to reprogram macrophages. 
Vascular disrupting agents, such as combretastatin A4 phos-
phate (CA4P), selectively induce tumor hypoxia, leading 
to the recruitment of M1-like macrophages, suppression of 
M2-like macrophages [153], and enhancing antitumor immune 
response [154]. Chemotherapeutics, such as gemcitabine, also 
favor the switch toward the M1 phenotype in the tumor micro-
environment [155].

Extracellular vesicles

Extracellular vesicles (EVs) are nanosized lipid bilayer struc-
tures released by cells into the extracellular environment. 
They play a crucial role in cell-to-cell communication and 
carry a variety of biomolecules, such as proteins, lipids, and 
nucleic acids. EVs can cross biological barriers, including the 
blood–brain barrier, and cells selectively and efficiently deliver 
therapeutic cargo to target [156]. Therefore, they have emerged 
as attractive carriers of therapeutic agents.

Several studies have explored the potential of EVs as deliv-
ery vehicles for targeting macrophages in cancer therapy. For 
instance, EVs can be engineered to express specific ligands or 
antibodies to target macrophage surface markers and modify 
their functions selectively [156]. EVs can also be loaded with 
particular cargo, such as siRNA or miRNA, that can modu-
late macrophage polarization towards an antitumor pheno-
type. Moreover, EVs derived from mesenchymal stem cells 
can target and modulate the function of macrophages within 
the tumor microenvironment, enhancing antitumor immune 
response [157].
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Conclusion

The last years have brought immense progress in detecting 
and targeting circulating tumor cells. CTCs detected in 
patients’ bloodstream are associated with more advanced 
diseases and predict poor prognosis in multiple cancers. 
EpCAM, vimentin, CD44, and TGM2 have emerged as 
promising CTCs biomarkers, which study allows for deter-
mining molecular characteristics of CTCs. Dynamic analy-
sis of CTCs and molecular markers on their surface, such 
as PD-L1, can predict clinical response to immunotherapy, 
help monitor disease course, and guide personalized ther-
apy. However, the heterogeneity and constant evolution of 
CTCs phenotype make their analysis challenging. Further 
research is required to utilize their role in cancer therapy 
fully.

Targeting CTCs has emerged as a promising therapeu-
tic strategy to improve cancer treatment outcomes. By 
eliminating or preventing the spread of CTCs, clinicians 
aim to reduce the risk of metastasis and prolong patients’ 
survival. Reducing the CTCs count via surgical resection, 
chemotherapy, and immunotherapy can reduce the risk of 
progression, but those methods have inherent limitations. 
CTCs localized in venous thrombi can be easily spread due 
to careless handling during the procedure; the “no touch” 
approach may limit the number of CTCs.

Chemotherapy and immunotherapy are associated with 
systemic toxicities, which may diminish their beneficial 
effects on CTCs volume. Platelet coating and interactions 
with blood cells in the bloodstream impart CTCs’ antigen 
presentation and improve their adhesive properties, facili-
tating immune surveillance escape and CTCs anchoring 
to the vascular endothelium at the metastatic site. Both 
mechanisms diminish the efficacy of systemic therapy and 
may require targeted therapy, but such approaches have yet 
to be tested in clinical settings.

CTCs extensively interact with TAMs through cell-
to-cell contact or by secreting soluble factors that attract 
TAMs to the tumor site. TAMs promote CTCs’ sur-
vival and dissemination by secreting growth factors and 
cytokines. They also contribute to forming a supportive 
environment for CTCs by remodeling the extracellular 
matrix and promoting angiogenesis. TAM-targeted thera-
pies aim to decimate the population of tumor-suppressing 
M2 macrophages, enhance the antitumor activity of M1 
macrophages, or force an M2-to-M1 phenotype switch to 
interrupt the positive feedback loop between TAMs and 
CTCs.

Since CTCs significantly impact patients’ prognosis, 
their detection is essential for accurate diagnosis and per-
sonalized therapy. Targeting CTCs holds on the premise of 
improving patient outcomes. Biomarkers such as EpCAM, 

CD44, and TGM2 improve the reliability of CTCs detec-
tion, but the constantly evolving phenotype of CTCs may 
limit their utility. Further research into the detection, inter-
actions, and evolution of CTCs may improve our under-
standing of their role in cancer metastasis and increase the 
accuracy of patient prognosis.
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