Skip to main content

Advertisement

Log in

Circ-SFMBT2 sponges miR-224-5p to induce ketamine-induced cystitis by up-regulating metadherin (MTDH)

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

There is increasing evidence that circular RNAs (circRNAs) play significant roles in various biological processes, yet few reports have examined their roles and molecular mechanisms in ketamine-induced cystitis (KIC). This study examines the possible molecular mechanisms underlying the circRNA-microRNA-mRNA regulatory network in the development of KIC. Transcriptome data were collected, and bioinformatics analysis was conducted to create a circRNA-miRNA-mRNA regulatory network (ceRNA network) associated with the occurrence of KIC. Human bladder epithelial cells (SV-HUC-1) were used in in vitro cell assays. The binding affinity among circ-SFMBT2, miR-224-5p, and Metadherin (MTDH) was identified. To investigate the effects of circ-SFMBT2/miR-224-5p/MTDH on bladder function, KIC mouse models were induced by intraperitoneal injection of ketamine, and gain- or loss-of-function experiments were conducted. Our results demonstrate that MTDH may be a key gene involved in the occurrence of KIC. Both bioinformatics analysis and in vitro cell assays verified that circ-SFMBT2 can competitively bind to miR-224-5p, and miR-224-5p can target and inhibit MTDH. In the bladder tissues of KIC mice, circ-SFMBT2 and MTDH were up-regulated, while miR-224-5p was down-regulated. Animal experiments further confirmed that circ-SFMBT2 can up-regulate MTDH expression by sponging miR-224-5p, thereby exacerbating bladder dysfunction in KIC mice. This study proved that circ-SFMBT2 up-regulates MTDH by competitively binding to miR-224-5p, thereby exacerbating the bladder dysfunction of KIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sultana S, Berger G, Cox A, Kelly MEM, Lehmann C. Rodent models of ketamine-induced cystitis. Neurourol Urodyn. 2021;40:1704–19. https://doi.org/10.1002/nau.24763.

    Article  CAS  PubMed  Google Scholar 

  2. Xie X, Liang J, Huang R, et al. Molecular pathways underlying tissue injuries in the bladder with ketamine cystitis. FASEB J. 2021;35:e21703. https://doi.org/10.1096/fj.202100437.

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Vandorpe DH, Xie X, et al. Disruption of Cav1.2-mediated signaling is a pathway for ketamine-induced pathology. Nat Commun. 2020;11:4328. https://doi.org/10.1038/s41467-020-18167-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chuang SM, Lu JH, Lin KL, et al. Epigenetic regulation of COX-2 expression by DNA hypomethylation via NF-kappaB activation in ketamine-induced ulcerative cystitis. Int J Mol Med. 2019;44:797–812. https://doi.org/10.3892/ijmm.2019.4252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen CL, Wu ST, Cha TL, Sun GH, Meng E. Molecular pathophysiology and potential therapeutic strategies of ketamine-related cystitis. Biology (Basel). 2022. https://doi.org/10.3390/biology11040502.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu WT, Peng FF, Li HY, et al. Metadherin facilitates podocyte apoptosis in diabetic nephropathy. Cell Death Dis. 2016;7:e2477. https://doi.org/10.1038/cddis.2016.335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan D, Jia Z, Li W, Dou Z. The targeting of MTDH by miR-145-5p or miR-145-3p is associated with prognosis and regulates the growth and metastasis of prostate cancer cells. Int J Oncol. 2019;54:1955–68. https://doi.org/10.3892/ijo.2019.4782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu Q, Li K, Li H, et al. Ketamine induced bladder fibrosis through MTDH/P38 MAPK/EMT pathway. Front Pharmacol. 2021;12:743682. https://doi.org/10.3389/fphar.2021.743682.

    Article  CAS  PubMed  Google Scholar 

  9. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20246249.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang CZ. Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene. 2017;607:47–55. https://doi.org/10.1016/j.gene.2017.01.009.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang Y, Zhang H, Li W, et al. FOXM1-activated LINC01094 promotes clear cell renal cell carcinoma development via microRNA 224–5p/CHSY1. Mol Cell Biol. 2020. https://doi.org/10.1128/MCB.00357-19.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Mo Y, Peng M, et al. The influence of circular RNAs on autophagy and disease progression. Autophagy. 2022;18:240–53. https://doi.org/10.1080/15548627.2021.1917131.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Qin W, Yang S, et al. Circular RNA SFMBT2 inhibits the proliferation and metastasis of glioma cells through Mir-182-5p/Mtss1 pathway. Technol Cancer Res Treat. 2020;19:1533033820945799. https://doi.org/10.1177/1533033820945799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun H, Xi P, Sun Z, et al. Circ-SFMBT2 promotes the proliferation of gastric cancer cells through sponging miR-182-5p to enhance CREB1 expression. Cancer Manag Res. 2018;10:5725–34. https://doi.org/10.2147/CMAR.S172592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan Q, Wu T, Yi X, et al. Changes to the bladder epithelial barrier are associated with ketamine-induced cystitis. Exp Ther Med. 2017;14:2757–62. https://doi.org/10.3892/etm.2017.4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye X, Ding J, Chen Y, Dong J. Adenovirus-mediated artificial miRNA targetting fibrinogen-like protein 2 attenuates the severity of acute pancreatitis in mice. Biosci Rep. 2017;https://doi.org/10.1042/BSR20170964https://doi.org/10.1042/BSR20170964.

  17. Liu B, Ding Y, Li P, et al. MicroRNA-219c-5p regulates bladder fibrosis by targeting FN1. BMC Urol. 2020;20:193. https://doi.org/10.1186/s12894-020-00765-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li B, Luan S, Chen J, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–26. https://doi.org/10.1016/j.omtn.2019.11.034.

    Article  CAS  PubMed  Google Scholar 

  19. Tkachuk VN, Komiakov BK. Nephrectomy with resection of the pancreas and splenectomy in cancer of the kidneys. Urol Nefrol (Mosk). 1987;3:56–7.

    Google Scholar 

  20. Xiang Y, Hwa J. Regulation of VWF expression, and secretion in health and disease. Curr Opin Hematol. 2016;23:288–93. https://doi.org/10.1097/MOH.0000000000000230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dasgupta S, Repesse Y, Bayry J, et al. VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood. 2007;109:610–2. https://doi.org/10.1182/blood-2006-05-022756.

    Article  CAS  PubMed  Google Scholar 

  22. Zeineddin A, Dong JF, Wu F, Terse P, Kozar RA. Role of Von Willebrand factor after injury: it may do more than we think. Shock. 2021;55:717–22. https://doi.org/10.1097/SHK.0000000000001690.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hosper NA, van den Berg PP, de Rond S, et al. Epithelial-to-mesenchymal transition in fibrosis: collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Exp Cell Res. 2013;319:3000–9. https://doi.org/10.1016/j.yexcr.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  24. Flier SN, Tanjore H, Kokkotou EG, et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010;285:20202–12. https://doi.org/10.1074/jbc.M110.102012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50. https://doi.org/10.1172/JCI15518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee YL, Lin KL, Chuang SM, et al. Elucidating mechanisms of bladder repair after hyaluronan instillation in ketamine-induced ulcerative cystitis in animal model. Am J Pathol. 2017;187:1945–59. https://doi.org/10.1016/j.ajpath.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  27. Tao M, Zheng M, Xu Y, et al. CircRNAs and their regulatory roles in cancers. Mol Med. 2021;27:94. https://doi.org/10.1186/s10020-021-00359-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu W, Chen X, Wang Y, et al. Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice. Pharmacol Res. 2019;150:104506. https://doi.org/10.1016/j.phrs.2019.104506.

    Article  CAS  PubMed  Google Scholar 

  29. Wang SS, Zhai GQ, Chen G, et al. Metadherin promotes the development of bladder cancer by enhancing cell division. Cancer Biother Radiopharm. 2022. https://doi.org/10.1089/cbr.2021.0392.

    Article  PubMed  Google Scholar 

  30. Peng F, Li H, Li S, et al. Micheliolide ameliorates renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway. Lab Invest. 2019;99:1092–106. https://doi.org/10.1038/s41374-019-0245-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Chen Y, Gu D, et al. Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-beta1. Am J Physiol Renal Physiol. 2017;313:F961–72. https://doi.org/10.1152/ajprenal.00686.2016.

    Article  PubMed  Google Scholar 

  32. Hussen BM, Hidayat HJ, Salihi A, et al. MicroRNA: a signature for cancer progression. Biomed Pharmacother. 2021;138:111528. https://doi.org/10.1016/j.biopha.2021.111528.

    Article  CAS  PubMed  Google Scholar 

  33. Jia Y, Tian C, Wang H, et al. Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of beta-catenin. Mol Cancer. 2021;20:162. https://doi.org/10.1186/s12943-021-01455-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Zhang N, Han D, et al. MTDH promotes intestinal inflammation by positively regulating TLR signalling. J Crohns Colitis. 2021;15:2103–17. https://doi.org/10.1093/ecco-jcc/jjab086.

    Article  PubMed  Google Scholar 

  35. Xie F, Li Y, Wang M, et al. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer. 2018;17:144. https://doi.org/10.1186/s12943-018-0892-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh AJ, Amore G, Sultan W, et al. Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer’s disease. PLoS ONE. 2019;14:e0226197. https://doi.org/10.1371/journal.pone.0226197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Hainan Provincial Natural Science Foundation of China (821MS120).

Author information

Authors and Affiliations

Authors

Contributions

FZ conceived and designed research. QW performed experiments. MS interpreted results of experiments. XK analyzed data. ZO prepared Figures. ZY drafted paper. LL and DL edited and revised manuscript. All authors read and approved final version of manuscript.

Corresponding author

Correspondence to Daoyuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Animal experiments were carried out according to the scheme approved by the Animal Experiment Committee of our Hospital. The animal experiments have complied with the appropriate ethical standards to minimize the pain and discomfort caused to the animals. The mice underwent standardized care and protection throughout the study. Additionally, relevant anesthetization and pain relief protocols were strictly followed to minimize the animals' pain and distress.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Wu, Q., Song, M. et al. Circ-SFMBT2 sponges miR-224-5p to induce ketamine-induced cystitis by up-regulating metadherin (MTDH). Human Cell 36, 2040–2054 (2023). https://doi.org/10.1007/s13577-023-00972-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00972-w

Keywords

Navigation