Skip to main content

Advertisement

Log in

Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Women’s infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women’s infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women’s infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Liang G, Zhu Q, He X, et al. Effects of oil-soluble versus water-soluble contrast media at hysterosalpingography on pregnancy outcomes in women with a low risk of tubal disease: study protocol for a randomised controlled trial. BMJ Open. 2020;10: e039166.

    PubMed  PubMed Central  Google Scholar 

  2. Mascarenhas MN, Cheung H, Mathers CD, Stevens GA. Measuring infertility in populations: constructing a standard definition for use with demographic and reproductive health surveys. Popul Health Metrics. 2012;10:17.

    Google Scholar 

  3. Esfandyari S, Chugh RM, Park HS, Hobeika E, Ulin M, Al-Hendy A. Mesenchymal stem cells as a bio organ for treatment of female infertility. Cells. 2020;9(10):2253.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensébé L, Deschaseaux F. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells. 2013;31:2296–303.

    CAS  PubMed  Google Scholar 

  5. Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22:824–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25:829–48.

    PubMed  Google Scholar 

  7. Abbaszadeh H, Ghorbani F, Derakhshani M, et al. Regenerative potential of Wharton’s jelly-derived mesenchymal stem cells: a new horizon of stem cell therapy. J Cell Physiol. 2020;235:9230–40.

    CAS  PubMed  Google Scholar 

  8. Baglio SR, Rooijers K, Koppers-Lalic D, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6:127.

    PubMed  PubMed Central  Google Scholar 

  9. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    PubMed  PubMed Central  Google Scholar 

  10. Chen W, Zhu J, Lin F, et al. Human placenta mesenchymal stem cell-derived exosomes delay H(2)O(2)-induced aging in mouse cholangioids. Stem Cell Res Ther. 2021;12:201.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chao K, Zhang S, Qiu Y, et al. Human umbilical cord-derived mesenchymal stem cells protect against experimental colitis via CD5(+) B regulatory cells. Stem Cell Res Ther. 2016;7:109.

    PubMed  PubMed Central  Google Scholar 

  12. Shariatzadeh M, Song J, Wilson SL. Correction to: The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res. 2019;378:559–659.

    PubMed  Google Scholar 

  13. Bonaventura G, Incontro S, Iemmolo R, et al. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res. 2020;379:421–8.

    PubMed  Google Scholar 

  14. Margiana R, Markov A, Zekiy AO, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13:366.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang F, Thokerunga E, He F, Zhu X, Wang Z, Tu J. Research progress of the application of mesenchymal stem cells in chronic inflammatory systemic diseases. Stem Cell Res Ther. 2022;13:1.

    PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Hu Y, Zhou X, et al. Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell Tissue Res. 2022;388:549–63.

    CAS  PubMed  Google Scholar 

  17. Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow–derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Res. 2020;381:99–114.

    CAS  PubMed  Google Scholar 

  18. Van SY, Noh YK, Kim SW, Oh YM, Kim IH, Park K. Human umbilical cord blood mesenchymal stem cells expansion via human fibroblast-derived matrix and their potentials toward regenerative application. Cell Tissue Res. 2019;376:233–45.

    CAS  PubMed  Google Scholar 

  19. Hua Q, Zhang Y, Li H, et al. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium. Stem Cell Res Ther. 2022;13:301.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: an infertility perspective. Reprod Med Biol. 2021;20:13–9.

    PubMed  Google Scholar 

  21. Yoon SY. Mesenchymal stem cells for restoration of ovarian function. Clin Exp Reprod Med. 2019;46:1–7.

    PubMed  PubMed Central  Google Scholar 

  22. Zhao Y-x, Chen S-r, Su P-p, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int. 2019;2019:9071720.

    PubMed  PubMed Central  Google Scholar 

  23. Fu Y-X, Ji J, Shan F, Li J, Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and opportunities. Stem Cell Res Ther. 2021;12:161.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Saeed Y, Liu X. Mesenchymal stem cells to treat female infertility; future perspective and challenges: a review. Int J Reprod Biomed. 2022;20:709–22.

    PubMed  PubMed Central  Google Scholar 

  25. Mohamed Rasheed ZB, Nordin F, Wan Kamarul Zaman WS, Tan Y-F, Abd Aziz NH. Autologous human mesenchymal stem cell-based therapy in infertility: new strategies and future perspectives. Biology. 2023. https://doi.org/10.3390/biology12010108.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–4.

    CAS  PubMed  Google Scholar 

  27. Detamore MS. Human umbilical cord mesenchymal stromal cells in regenerative medicine. Stem Cell Res Ther. 2013;4:142.

    PubMed  PubMed Central  Google Scholar 

  28. Chen J, Wang C, Lü S, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res. 2005;319:429–38.

    PubMed  Google Scholar 

  29. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    CAS  PubMed  Google Scholar 

  30. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15:1009–16.

    CAS  PubMed  Google Scholar 

  31. Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, et al. Chronic obstructive pulmonary disease and asthma: mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Res Ther. 2022;13:262.

    PubMed  PubMed Central  Google Scholar 

  32. Ling L, Feng X, Wei T, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther. 2019;10:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Chiu S, Liang X, et al. Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discov. 2015;1:15007.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang ZB, Hao JX, Meng TG, et al. Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging (Albany NY). 2017;9:2480–8.

    CAS  PubMed  Google Scholar 

  35. Ghorbani F, Movassaghpour AA, Talebi M, Yousefi M, Abbaszadeh H. Renoprotective effects of extracellular vesicles: a systematic review. Gene Rep. 2022;26: 101491.

    CAS  Google Scholar 

  36. Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol. 2020;235:706–17.

    CAS  PubMed  Google Scholar 

  37. Goldman-Wohl DS, Yagel S. Examination of distinct fetal and maternal molecular pathways suggests a mechanism for the development of preeclampsia. J Reprod Immunol. 2007;76:54–60.

    CAS  PubMed  Google Scholar 

  38. Siegel G, Schäfer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009;87:S45–9.

    PubMed  Google Scholar 

  39. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 2012;35:213–21.

    CAS  PubMed  Google Scholar 

  40. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    CAS  PubMed  Google Scholar 

  41. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol. 2006;177:2080–7.

    CAS  PubMed  Google Scholar 

  42. Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther. 2018;9:336.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther. 2021;12:126.

    PubMed  PubMed Central  Google Scholar 

  44. Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133:473–85.

    CAS  PubMed  Google Scholar 

  45. Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res. 2022;389:41–70.

    CAS  PubMed  Google Scholar 

  46. Zhou L, Zhu H, Bai X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res Ther. 2022;13:195.

    PubMed  PubMed Central  Google Scholar 

  47. Tseng W-C, Lee P-Y, Tsai M-T, et al. Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Res Ther. 2021;12:367.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu C-H, Tseng Y-W, Chiou C-Y, et al. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Res Ther. 2019;10:275.

    PubMed  PubMed Central  Google Scholar 

  49. Zhao B, Liu J-Q, Zheng Z, et al. Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways. Cell Tissue Res. 2016;365:85–99.

    CAS  PubMed  Google Scholar 

  50. Gomes A, Coelho P, Soares R, Costa R. Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach. Cell Tissue Res. 2021;385:497–518.

    PubMed  Google Scholar 

  51. Fang X, Abbott J, Cheng L, et al. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J Immunol. 2015;195:875–81.

    CAS  PubMed  Google Scholar 

  52. Abdelrahman SA, Abdelrahman AA, Samy W, Dessouky AA, Ahmed SM. Hypoxia pretreatment enhances the therapeutic potential of mesenchymal stem cells (BMSCs) on ozone-induced lung injury in rats. Cell Tissue Res. 2022;389:201–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Koch JM, D’Souza SS, Schwahn DJ, Dixon I, Hacker TA. Mesenchymoangioblast-derived mesenchymal stromal cells inhibit cell damage, tissue damage and improve peripheral blood flow following hindlimb ischemic injury in mice. Cytotherapy. 2016;18:219–28.

    CAS  PubMed  Google Scholar 

  54. Park HW, Moon HE, Kim HS, et al. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res. 2015;93:1814–25.

    CAS  PubMed  Google Scholar 

  55. Peng X, Liang B, Wang H, Hou J, Yuan Q. Hypoxia pretreatment improves the therapeutic potential of bone marrow mesenchymal stem cells in hindlimb ischemia via upregulation of NRG-1. Cell Tissue Res. 2022;388:105–16.

    CAS  PubMed  Google Scholar 

  56. Yang Z, Du X, Wang C, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Res Ther. 2019;10:250.

    PubMed  PubMed Central  Google Scholar 

  57. Lin Y, Dong S, Ye X, et al. Synergistic regenerative therapy of thin endometrium by human placenta-derived mesenchymal stem cells encapsulated within hyaluronic acid hydrogels. Stem Cell Res Ther. 2022;13:66.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. da Silva ML, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–27.

    Google Scholar 

  59. Katsha AM, Ohkouchi S, Xin H, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther. 2011;19:196–203.

    CAS  PubMed  Google Scholar 

  60. Hoogduijn MJ, Lombardo E. Mesenchymal stromal cells anno 2019: dawn of the therapeutic era? Concise Review Stem Cells Transl Med. 2019;8:1126–34.

    PubMed  Google Scholar 

  61. Djouad F, Fritz V, Apparailly F, et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen-induced arthritis. Arthritis Rheum. 2005;52:1595–603.

    CAS  PubMed  Google Scholar 

  62. Ge W, Jiang J, Baroja ML, et al. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am J Transplant. 2009;9:1760–72.

    CAS  PubMed  Google Scholar 

  63. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One. 2010;5: e10088.

    PubMed  PubMed Central  Google Scholar 

  64. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21.

    CAS  PubMed  Google Scholar 

  65. Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109:228–34.

    CAS  PubMed  Google Scholar 

  66. Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9.

    PubMed  Google Scholar 

  67. Webster RP, Roberts VH, Myatt L. Protein nitration in placenta—functional significance. Placenta. 2008;29:985–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    PubMed  PubMed Central  Google Scholar 

  69. Chen X, Zhang Y, Wang W, Liu Z, Meng J, Han Z. Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cell Physiol Biochem. 2018;49:101–22.

    CAS  PubMed  Google Scholar 

  70. Zhang Z-h, Zhu W, Ren H-z, et al. Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther. 2017;8:70.

    PubMed  PubMed Central  Google Scholar 

  71. Schoemaker J, Drexhage H, Hoek A. Premature ovarian failure and ovarian autoimmunity. Endocrine Rev. 1997. https://doi.org/10.1210/edrv.18.1.0291.

    Article  Google Scholar 

  72. Kenney LB, Laufer MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91:613–21.

    CAS  PubMed  Google Scholar 

  73. Orlandini C, Regini C, Vellucci FL, Petraglia F, Luisi S. Genes involved in the pathogenesis of premature ovarian insufficiency. Minerva Ginecol. 2015;67:421–30.

    CAS  PubMed  Google Scholar 

  74. Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015;7:799–810.

    PubMed  PubMed Central  Google Scholar 

  75. Ayesha JV, Goswami D. Premature ovarian failure: an association with autoimmune diseases. J Clin Diagn Res. 2016;10:Qc10-qc12.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sassarini J, Lumsden MA, Critchley HO. Sex hormone replacement in ovarian failure - new treatment concepts. Best Pract Res Clin Endocrinol Metab. 2015;29:105–14.

    CAS  PubMed  Google Scholar 

  77. Lee HJ, Selesniemi K, Niikura Y, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 2007;25:3198–204.

    CAS  PubMed  Google Scholar 

  78. Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther. 2016;23:285–6.

    CAS  PubMed  Google Scholar 

  79. He Y, Chen D, Yang L, Hou Q, Ma H, Xu X. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther. 2018;9:263.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017;8:55.

    PubMed  PubMed Central  Google Scholar 

  81. Yoon SY, Yoon JA, Park M, et al. Recovery of ovarian function by human embryonic stem cell-derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice. Stem Cell Res Ther. 2020;11:255.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. de Rham C, Villard J. Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J Immunol Res. 2014;2014: 518135.

    PubMed  PubMed Central  Google Scholar 

  83. Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15:36–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yin N, Wu C, Qiu J, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8(+)CD28(-) T cells. Stem Cell Res Ther. 2020;11:49.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang B, Qian C, Ding C, Meng Q, Zou Q, Li H. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1. Stem Cell Res Ther. 2019;10:362.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu R, Zhang X, Fan Z, et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther. 2019;10:299.

    PubMed  PubMed Central  Google Scholar 

  87. Bagot CN, Troy PJ, Taylor HS. Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther. 2000;7:1378–84.

    CAS  PubMed  Google Scholar 

  88. Lédée-Bataille N, Bonnet-Chea K, Hosny G, Dubanchet S, Frydman R, Chaouat G. Role of the endometrial tripod interleukin-18, -15, and -12 in inadequate uterine receptivity in patients with a history of repeated in vitro fertilization-embryo transfer failure. Fertil Steril. 2005;83:598–605.

    PubMed  Google Scholar 

  89. Liang PY, Diao LH, Huang CY, et al. The pro-inflammatory and anti-inflammatory cytokine profile in peripheral blood of women with recurrent implantation failure. Reprod Biomed Online. 2015;31:823–6.

    PubMed  Google Scholar 

  90. Lédée N, Petitbarat M, Chevrier L, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75:388–401.

    PubMed  PubMed Central  Google Scholar 

  91. Lu X, Cui J, Cui L, et al. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice. Stem Cell Res Ther. 2019;10:214.

    PubMed  PubMed Central  Google Scholar 

  92. Sowers MR, Eyvazzadeh AD, McConnell D, et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab. 2008;93:3478–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Setiady YY, Samy ET, Tung KS. Maternal autoantibody triggers de novo T cell-mediated neonatal autoimmune disease. J Immunol. 2003;170:4656–64.

    CAS  PubMed  Google Scholar 

  94. Wang Z, Wang Y, Yang T, Li J, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. 2017;8:11.

    PubMed  PubMed Central  Google Scholar 

  95. Rocha AL, Oliveira FR, Azevedo RC, et al. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Res. 2019;8:565.

    CAS  Google Scholar 

  96. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.

    CAS  PubMed  Google Scholar 

  97. Giudice LC. Endometrium in PCOS: Implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20:235–44.

    CAS  PubMed  Google Scholar 

  98. Chugh RM, Park HS, El Andaloussi A, et al. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10. Stem Cell Res Ther. 2021;12:388.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chugh RM, Park HS, Esfandyari S, Elsharoud A, Ulin M, Al-Hendy A. Mesenchymal stem cell-conditioned media regulate steroidogenesis and inhibit androgen secretion in a PCOS cell model via BMP-2. Int J Mol Sci. 2021;22:9184.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xie Q, Xiong X, Xiao N, et al. Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. Stem Cells Int. 2019;2019:9782373.

    PubMed  PubMed Central  Google Scholar 

  101. Kalhori Z, Azadbakht M, Soleimani Mehranjani M, Shariatzadeh MA. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy. 2018;20:1445–58.

    CAS  PubMed  Google Scholar 

  102. Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, epigenetic, and steroidogenic modulation mechanisms in endometriosis. J Clin Med. 2020;9:1309.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Primers. 2018;4:9.

    PubMed  Google Scholar 

  104. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364:1789–99.

    PubMed  Google Scholar 

  105. Da Broi MG, Navarro PA. Oxidative stress and oocyte quality: ethiopathogenic mechanisms of minimal/mild endometriosis-related infertility. Cell Tissue Res. 2016;364:1–7.

    PubMed  Google Scholar 

  106. Meligy FY, Elgamal DA, Abdelzaher LA, et al. Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects. Clin Exp Reprod Med. 2021;48:322–36.

    PubMed  PubMed Central  Google Scholar 

  107. Hajazimian S, Maleki M, Mehrabad SD, Isazadeh A. Human Wharton’s jelly stem cells inhibit endometriosis through apoptosis induction. Reproduction. 2020;159:549–58.

    CAS  PubMed  Google Scholar 

  108. Dwiningsih SR, Darmosoekarto S, Hendarto H, et al. Effects of bone marrow mesenchymal stem cell transplantation on tumor necrosis factor-alpha receptor 1 expression, granulosa cell apoptosis, and folliculogenesis repair in endometriosis mouse models. Vet World. 2021;14:1788–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen P, Mamillapalli R, Habata S, Taylor HS. Endometriosis cell proliferation induced by bone marrow mesenchymal stem cells. Reprod Sci. 2021;28:426–34.

    CAS  PubMed  Google Scholar 

  110. Abreu JP, Rebelatto CLK, Savari CA, et al. The effect of mesenchymal stem cells on fertility in experimental retrocervical endometriosis. Rev Bras Ginecol Obstet. 2017;39:217–23.

    PubMed  PubMed Central  Google Scholar 

  111. Santamaria X, Isaacson K, Simón C. Asherman’s syndrome: it may not be all our fault. Hum Reprod. 2018;33:1374–80.

    PubMed  Google Scholar 

  112. Cervelló I, Gil-Sanchis C, Santamaría X, et al. Human CD133(+) bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril. 2015;104:1552-60.e1-3.

    PubMed  Google Scholar 

  113. Sehic E, Thorén E, Gudmundsdottir I, Oltean M, Brännström M, Hellström M. Mesenchymal stem cells establish a pro-regenerative immune milieu after decellularized rat uterus tissue transplantation. J Tissue Eng. 2022;13:20417314221118856.

    PubMed  PubMed Central  Google Scholar 

  114. Çil N, Yaka M, Ünal MS, et al. Adipose derived mesenchymal stem cell treatment in experimental asherman syndrome induced rats. Mol Biol Rep. 2020;47:4541–52.

    PubMed  Google Scholar 

  115. Gao L, Huang Z, Lin H, Tian Y, Li P, Lin S. Bone marrow mesenchymal stem cells (BMSCs) restore functional endometrium in the rat model for severe Asherman syndrome. Reprod Sci. 2019;26:436–44.

    CAS  PubMed  Google Scholar 

  116. Monsef F, Artimani T, Alizadeh Z, et al. Comparison of the regenerative effects of bone marrow/adipose-derived stem cells in the Asherman model following local or systemic administration. J Assist Reprod Genet. 2020;37:1861–8.

    PubMed  PubMed Central  Google Scholar 

  117. Domnina A, Novikova P, Obidina J, et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther. 2018;9:50.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Geographic variation in the incidence of hypertension in pregnancy. World Health Organization International Collaborative Study of Hypertensive Disorders of Pregnancy. Am J Obstet Gynecol. 1988;158:80–3.

  119. Turner JA. Diagnosis and management of pre-eclampsia: an update. Int J Womens Health. 2010;2:327–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Espinoza J, Vidaeff A, Pettker CM, Simhan H. Gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133:E1–25.

    Google Scholar 

  121. ACOG Practice Bulletin No. 202. Gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133:1.

    Google Scholar 

  122. Lamminpää R, Vehviläinen-Julkunen K, Gissler M, Heinonen S. Preeclampsia complicated by advanced maternal age: a registry-based study on primiparous women in Finland 1997–2008. BMC Pregnancy Childbirth. 2012;12:47.

    PubMed  PubMed Central  Google Scholar 

  123. Wang LL, Yu Y, Guan HB, Qiao C. Effect of human umbilical cord mesenchymal stem cell transplantation in a rat model of preeclampsia. Reprod Sci. 2016;23:1058–70.

    PubMed  Google Scholar 

  124. Fu L, Liu Y, Zhang D, Xie J, Guan H, Shang T. Beneficial effect of human umbilical cord-derived mesenchymal stem cells on an endotoxin-induced rat model of preeclampsia. Exp Ther Med. 2015;10:1851–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang D, Fu L, Wang L, et al. Therapeutic benefit of mesenchymal stem cells in pregnant rats with angiotensin receptor agonistic autoantibody-induced hypertension: Implications for immunomodulation and cytoprotection. Hypertens Pregnancy. 2017;36:247–58.

    CAS  PubMed  Google Scholar 

  126. Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood. 2007;110:3691–4.

    CAS  PubMed  Google Scholar 

  127. Chu Y, Zhu C, Yue C, et al. Chorionic villus-derived mesenchymal stem cell-mediated autophagy promotes the proliferation and invasiveness of trophoblasts under hypoxia by activating the JAK2/STAT3 signalling pathway. Cell Biosci. 2021;11:182.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu L, Zhao G, Fan H, et al. Mesenchymal stem cells ameliorate Th1-induced pre-eclampsia-like symptoms in mice via the suppression of TNF-α expression. PLoS One. 2014;9: e88036.

    PubMed  PubMed Central  Google Scholar 

  129. Nuzzo AM, Moretti L, Mele P, Todros T, Eva C, Rolfo A. Effect of placenta-derived mesenchymal stromal cells conditioned media on an LPS-induced mouse model of preeclampsia. Int J Mol Sci. 2022;23:1674.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chu Y, Chen W, Peng W, et al. Amnion-derived mesenchymal stem cell exosomes-mediated autophagy promotes the survival of trophoblasts under hypoxia through mTOR pathway by the downregulation of EZH2. Front Cell Dev Biol. 2020;8: 545852.

    PubMed  PubMed Central  Google Scholar 

  131. Liu H, Wang F, Zhang Y, Xing Y, Wang Q. Exosomal microRNA-139-5p from mesenchymal stem cells accelerates trophoblast cell invasion and migration by motivation of the ERK/MMP-2 pathway via downregulation of protein tyrosine phosphatase. J Obstet Gynaecol Res. 2020;46:2561–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang D, Na Q, Song GY, Wang L. Human umbilical cord mesenchymal stem cell-derived exosome-mediated transfer of microRNA-133b boosts trophoblast cell proliferation, migration and invasion in preeclampsia by restricting SGK1. Cell Cycle. 2020;19:1869–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Mashayekhi M, Mirzadeh E, Chekini Z, et al. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res. 2021;14:5.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yan L, Wu Y, Li L, et al. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency. Cell Prolif. 2020;53: e12938.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Igboeli P, El Andaloussi A, Sheikh U, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Reports. 2020;14:108.

    Google Scholar 

  136. Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum Reprod. 2016;31:2723–9.

    PubMed  Google Scholar 

  137. Ma H, Liu M, Li Y, et al. Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion. J Obstet Gynaecol Res. 2020;46:2347–55.

    PubMed  Google Scholar 

  138. Lee SY, Shin JE, Kwon H, Choi DH, Kim JH. Effect of autologous adipose-derived stromal vascular fraction transplantation on endometrial regeneration in patients of Asherman’s syndrome: a pilot study. Reprod Sci. 2020;27:561–8.

    PubMed  Google Scholar 

  139. Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31:1087–96.

    CAS  PubMed  Google Scholar 

  140. Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study. Stem Cell Res Ther. 2021;12:420.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kaczynski J, Rzepka J. Endometrial regeneration in Asherman’s syndrome and endometrial atrophy using Wharton’s jelly-derived mesenchymal stem cells. Ginekol Pol. 2022;93:904–9.

    PubMed  Google Scholar 

  142. Salama NM, Zaghlol SS, Mohamed HH, Kamar SS. Suppression of the inflammation and fibrosis in Asherman syndrome rat model by mesenchymal stem cells: histological and immunohistochemical studies. Folia Histochem Cytobiol. 2020;58:208–18.

    CAS  PubMed  Google Scholar 

  143. Wang Z, Wei Q, Wang H, et al. Mesenchymal stem cell therapy using human umbilical cord in a rat model of autoimmune-induced premature ovarian failure. Stem Cells Int. 2020;2020:3249495.

    PubMed  PubMed Central  Google Scholar 

  144. Zheng Q, Fu X, Jiang J, et al. Umbilical cord mesenchymal stem cell transplantation prevents chemotherapy-induced ovarian failure via the NGF/TrkA pathway in rats. Biomed Res Int. 2019;2019:6539294.

    PubMed  PubMed Central  Google Scholar 

  145. Yamchi NN, Rahbarghazi R, Bedate AM, Mahdipour M, Nouri M, Khanbabaee R. Menstrual blood CD146(+) mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure. Cell Biochem Funct. 2021;39:998–1008.

    CAS  PubMed  Google Scholar 

  146. Deng T, He J, Yao Q, et al. Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism. Reprod Sci. 2021;28:1718–32.

    CAS  PubMed  Google Scholar 

  147. Jie H, Jinxiang W, Ye L, et al. Effects of umbilical cord mesenchymal stem cells on expression of CYR61, FSH, and AMH in mice with premature ovarian failure. Cell Mol Biol (Noisy-le-grand). 2022;67:240–7.

    PubMed  Google Scholar 

  148. El-Derany MO, Said RS, El-Demerdash E. Bone marrow-derived mesenchymal stem cells reverse radiotherapy-induced premature ovarian failure: emphasis on signal integration of TGF-β, Wnt/β-Catenin and hippo pathways. Stem Cell Rev Rep. 2021;17:1429–45.

    CAS  PubMed  Google Scholar 

  149. Igboeli P, El Andaloussi A, Sheikh U, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Rep. 2020;14:108.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AR and RM performed, wrote the manuscript, collected the references, designed the table and figures; SS modified the manuscript; PN and RM designed the manuscript and approved the final manuscript for publication. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ria Margiana.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizano, A., Margiana, R., Supardi, S. et al. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Human Cell 36, 1604–1619 (2023). https://doi.org/10.1007/s13577-023-00941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00941-3

Keywords

Navigation