Skip to main content

Advertisement

Log in

The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSC) are promising options to cellular therapy to several clinical disorders, mainly because of its ability to immunomodulate and differentiate into different cell types. Even though MSC can be isolated from different sources, a major challenge to understanding the biological effects is that the primary cells undergo replicative senescence after a limited number of cell divisions in culture, requiring time-consuming and technically challenging approaches to get a sufficient cell number for clinical applications. Therefore, a new isolation, characterization, and expansion is necessary every time, which increases the variability and is time-consuming. Immortalization is a strategy that can overcome these challenges. Therefore, here, we review the different methodologies available to cellular immortalization, and discuss the literature regarding MSC immortalization and the broader biological consequences that extend beyond the mere increase in proliferation potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Friedenstein AJ, Gorskaja UF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.

    CAS  PubMed  Google Scholar 

  2. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    CAS  PubMed  Google Scholar 

  3. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–24. https://doi.org/10.1016/j.jcyt.2019.08.002.

    Article  CAS  PubMed  Google Scholar 

  4. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    PubMed  PubMed Central  Google Scholar 

  5. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  6. Macrin D, Joseph JP, Pillai AA, Devi A. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev Rep. 2017;13:741–56.

    CAS  PubMed  Google Scholar 

  7. Phinney DG, Senseb́e L. Mesenchymal stromal cells: Misconceptions and evolving concepts. Cytotherapy. 2013;15:140–5.

    CAS  PubMed  Google Scholar 

  8. Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020;6:1–19.

    Google Scholar 

  9. Jovic D, Yu Y, Wang D, Wang K, Li H, Xu F, et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep. 2022;18:1525–45. https://doi.org/10.1007/s12015-022-10369-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Wu Q, Yujia W, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (Review). Int J Mol Med. 2017;39:775–82.

    CAS  PubMed  Google Scholar 

  11. Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ. 2021;9:1–37.

    Google Scholar 

  12. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53. https://doi.org/10.1016/j.tcb.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  13. Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, et al. Novel insights from a multiomics dissection of the Hayflick limit. Elife. 2022;11:e70283.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9:1–14.

    Google Scholar 

  15. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol. 1999;107:275–81.

    CAS  PubMed  Google Scholar 

  16. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol. 2000;28:707–15.

    CAS  PubMed  Google Scholar 

  17. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci. 2000;113:1161–6.

    CAS  PubMed  Google Scholar 

  18. Siennicka K, Zołocińska A, Dȩbski T, Pojda Z. Comparison of the donor age-dependent and in vitro culture-dependent mesenchymal stem cell aging in rat model. Stem Cells Int. 2021;2021:1–16.

    Google Scholar 

  19. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:1–24.

    CAS  Google Scholar 

  20. Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007;25:646–54.

    CAS  PubMed  Google Scholar 

  21. Oja S, Komulainen P, Penttilä A, Nystedt J, Korhonen M. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther. 2018;9:1–13.

    Google Scholar 

  22. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.

    CAS  PubMed  Google Scholar 

  23. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22:675–82.

    CAS  PubMed  Google Scholar 

  24. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7:335–43.

    CAS  PubMed  Google Scholar 

  25. Gnani D, Crippa S, della Volpe L, Rossella V, Conti A, Lettera E, et al. An early-senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro-inflammatory program. Aging Cell. 2019;18:e12933.

    PubMed  PubMed Central  Google Scholar 

  26. Huang R, Qin C, Wang J, Hu Y, Zheng G, Qiu G, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging (Albany NY). 2019;11:7996–8014.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Yang J, Ai Z, Yu M, Li J, Li S. Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. Gene. 2019;692:79–87. https://doi.org/10.1016/j.gene.2018.12.063.

    Article  CAS  PubMed  Google Scholar 

  28. van der Wagen LE, Miranda-Bedate A, Janssen A, Fernando F, Appukudige N, van Dooremalen S, et al. Efficacy of MSC for steroid-refractory acute GVHD associates with MSC donor age and a defined molecular profile. Bone Marrow Transplant. 2020;55:2188–92.

    PubMed  Google Scholar 

  29. Guerrero EN, Vega S, Fu C, De León R, Beltran D, Solis MA. Increased proliferation and differentiation capacity of placenta-derived mesenchymal stem cells from women of median maternal age correlates with telomere shortening. Aging (Albany NY). 2021;13:24542–59.

    CAS  PubMed  Google Scholar 

  30. Zhang H, Fazel S, Tian H, Mickle DAG, Weisel RD, Fujii T, et al. Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol - Hear Circ Physiol. 2005;289:2089–96.

    Google Scholar 

  31. Pignolo RJ, Suda RK, Mcmillan EA, Shen J, Lee SH, Choi Y, et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell. 2008;7:23–31.

    CAS  PubMed  Google Scholar 

  32. Liu L, DiGirolamo CM, Navarro PAAS, Blasco MA, Keefe DL. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res. 2004;294:1–8.

    CAS  PubMed  Google Scholar 

  33. Lanna A, Vaz B, D’Ambra C, Valvo S, Vuotto C, Chiurchiù V, et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat Cell Biol. 2022;24:1461–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.

    CAS  PubMed  Google Scholar 

  35. Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene. 2019;38:6172–83. https://doi.org/10.1038/s41388-019-0872-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SIS, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20:592–6.

    CAS  PubMed  Google Scholar 

  37. Chen Y, Hu S, Wang M, Zhao B, Yang N, Li J, et al. Characterization and establishment of an immortalized rabbit melanocyte cell line using the sv40 large t antigen. Int J Mol Sci. 2019;20:1–12.

    Google Scholar 

  38. Yamamoto A, Kumakura SI, Uchida M, Barrett JC, Tsutsui T. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone. Int J Cancer. 2003;106:301–9.

    CAS  PubMed  Google Scholar 

  39. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    CAS  PubMed  Google Scholar 

  40. Lin JY, Simmons DT. The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J Virol. 1991;65:6447–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 1996;56:4620–4.

    CAS  PubMed  Google Scholar 

  42. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.

    CAS  PubMed  Google Scholar 

  43. Liu TM, Ng WM, Tan HS, Vinitha D, Yang Z, Fan JB, et al. Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev. 2013;22:268–78.

    PubMed  Google Scholar 

  44. Tátrai P, Szepesi Á, Matula Z, Szigeti A, Buchan G, Mádi A, et al. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun. 2012;422:28–35.

    PubMed  Google Scholar 

  45. Burk J, Holland H, Lauermann AF, May T, Siedlaczek P, Charwat V, et al. Generation and characterization of a functional human adipose-derived multipotent mesenchymal stromal cell line. Biotechnol Bioeng. 2019;116:1417–26.

    CAS  PubMed  Google Scholar 

  46. Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo ABH, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9:1–10.

    Google Scholar 

  47. Zheng Y, He L, Wan Y, Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev. 2013;22:256–67.

    CAS  PubMed  Google Scholar 

  48. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet Nature. 2017;49:349–57.

    CAS  Google Scholar 

  49. Wang N, Zhang W, Cui J, Zhang H, Chen X, Li R, et al. The piggyBac transposon-mediated expression of SV40 T antigen efficiently immortalizes mouse embryonic fibroblasts (MEFs). PLoS One. 2014;9:1–11.

    Google Scholar 

  50. Dale TP, Forsyth NR. Ectopic Telomerase expression fails to maintain chondrogenic capacity in three-dimensional cultures of clinically relevant cell types. Biores Open Access. 2018;7:10–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Okamoto T, Aoyama T, Nakayama T, Nakamata T, Hosaka T, Nishijo K, Nakamura T, Kiyono T, Toguchida J. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun. 2002;295:354–61.

    CAS  PubMed  Google Scholar 

  52. Adamo A, Delfino P, Gatti A, Bonato A, Takam Kamga P, Bazzoni R, et al. HS-5 and HS-27A stromal cell lines to study bone marrow mesenchymal stromal cell-mediated support to cancer development. Front Cell Dev Biol. 2020;8:1–13.

    Google Scholar 

  53. Masnikov D, Stafeev I, Michurina S, Zubkova E, Mamontova E, Ratner E, et al. hTERT-immortalized adipose-derived stem cell line ASC52Telo demonstrates limited potential for adipose biology research. Anal Biochem. 2021;628:114268. https://doi.org/10.1016/j.ab.2021.114268.

    Article  CAS  PubMed  Google Scholar 

  54. Marozin S, Simon-Nobbe B, Irausek S, Chung LWK, Lepperdinger G. Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells. Sci Rep. 2021;11:1–13. https://doi.org/10.1038/s41598-021-90161-2.

    Article  CAS  Google Scholar 

  55. Saldanha-Araujo F, Ferreira FIS, Palma PV, Araujo AG, Queiroz RHC, Covas DT, et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 2011;7:66–74. https://doi.org/10.1016/j.scr.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  56. Sattler C, Steinsdoerfer M, Offers M, Fischer E, Schierl R, Heseler K, et al. Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transplant. 2011;20:1221–30.

    PubMed  Google Scholar 

  57. Yu M, Guo G, Huang L, Deng L, Chang CS, Achyut BR, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-14060-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zippel N, Limbach CA, Ratajski N, Urban C, Luparello C, Pansky A, et al. Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev. 2012;21:884–900.

    CAS  PubMed  Google Scholar 

  59. Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, et al. Immortalization of mesenchymal stromal cells by TERT affects adenosine metabolism and impairs their immunosuppressive capacity. Stem Cell Rev Reports. 2020;16:776–91.

    CAS  Google Scholar 

  60. Zhang Y, Liu J, Mo Y, Chen Z, Chen T, Li Y, et al. Immortalized mesenchymal stem cells: a safe cell source for cellular or cell membrane-based treatment of glioma. Stem Cells Int. 2022;2022:1–15.

  61. Nishioka K, Fujimori Y, Hashimoto-Tamaoki T, Kai S, Qiu H, Kobayashi N, et al. Immortalization of bone marrow-derived human mesenchymal stem cells by removable simian virus 40T antigen gene: analysis of the ability to support expansion of cord blood hematopoietic progenitor cells. Int J Oncol. 2003;23:925–32.

    CAS  PubMed  Google Scholar 

  62. Trachana V, Petrakis S, Fotiadis Z, Siska EK, Balis V, Gonos ES, et al. Human mesenchymal stem cells with enhanced telomerase activity acquire resistance against oxidative stress-induced genomic damage. Cytotherapy. 2017;19:808–20. https://doi.org/10.1016/j.jcyt.2017.03.078.

    Article  CAS  PubMed  Google Scholar 

  63. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194.

    PubMed  PubMed Central  Google Scholar 

  64. Mori T, Kiyono T, Imabayashi H, Takeda Y, Tsuchiya K, Miyoshi S, et al. Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol. 2005;25:5183–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang H, Xiang Y, Jiang X, Ke Y, Xiao Z, Guo Y, et al. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs. Biochem Biophys Res Commun. 2013;440:502–8. https://doi.org/10.1016/j.bbrc.2013.09.053.

    Article  CAS  PubMed  Google Scholar 

  66. Stojiljković A, Gaschen V, Forterre F, Rytz U, Stoffel MH, Bluteau J. Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells. GeroScience. 2022;44:1301–23. https://doi.org/10.1007/s11357-021-00488-x.

    Article  CAS  PubMed  Google Scholar 

  67. Katz DB, Huynh NPT, Savadipour A, Palte I, Guilak F. An immortalized human adipose-derived stem cell line with highly enhanced chondrogenic properties. Biochem Biophys Res Commun. 2020;530:252–8. https://doi.org/10.1016/j.bbrc.2020.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haghighitalab A, Matin MM, Amin A, Minaee S, Bidkhori HR, Doeppner TR, et al. Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep. 2021;11:1–19. https://doi.org/10.1038/s41598-021-87153-7.

    Article  CAS  Google Scholar 

  69. Tejedor S, Buigues M, González-King H, Silva AM, García NA, Dekker N, et al. Oncostatin M-enriched small extracellular vesicles derived from mesenchymal stem cells prevent isoproterenol-induced fibrosis and enhance angiogenesis. Int J Mol Sci. 2023;24:6467.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Harley CB. Telomerase is not an oncogene. Oncogene. 2002;21:494–502.

    CAS  PubMed  Google Scholar 

  71. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  72. Ding D, Xi P, Zhou J, Wang M, Cong YS. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J. 2013;27:4375–83.

    CAS  PubMed  Google Scholar 

  73. Böker W, Yin Z, Drosse I, Haasters F, Rossmann O, Wierer M, et al. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med. 2008;12:1347–59.

    Google Scholar 

  74. Qin SQ, Kusuma GD, Al-Sowayan B, Pace RA, Isenmann S, Pertile MD, et al. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta. 2016;39:134–46. https://doi.org/10.1016/j.placenta.2016.01.018.

    Article  CAS  PubMed  Google Scholar 

  75. Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet. 1999;21:111–1114.

    CAS  PubMed  Google Scholar 

  76. Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet. 1999;21:115–8.

    CAS  PubMed  Google Scholar 

  77. Hung CJ, Yao CL, Cheng FC, Wu ML, Wang TH, Hwang SM. Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy. 2010;12:455–65. https://doi.org/10.3109/14653240903555827.

    Article  CAS  PubMed  Google Scholar 

  78. Gong M, Bi Y, Jiang W, Zhang Y, Chen L, Hou N, et al. Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies. J Biomed Sci. 2011;18:1–16.

    Google Scholar 

  79. Liang X, Chen X, Yang D, Huang S, Sun G, Chen Y. Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biol Int. 2012;36:215–21.

    CAS  PubMed  Google Scholar 

  80. Kraskiewicz H, Paprocka M, Bielawska-Pohl A, Krawczenko A, Panek K, Kaczyńska J, et al. Can supernatant from immortalized adipose tissue MSC replace cell therapy? An in vitro study in chronic wounds model. Stem Cell Res Ther. 2020;11:1–17.

    Google Scholar 

  81. Shima Y, Okamoto T, Aoyama T, Yasura K, Ishibe T, Nishijo K, et al. In vitro transformation of mesenchymal stem cells by oncogenic H-rasVal12. Biochem Biophys Res Commun. 2007;353:60–6.

    CAS  PubMed  Google Scholar 

  82. Tan TT, Lai RC, Padmanabhan J, Sim WK, Choo ABH, Lim SK. Assessment of tumorigenic potential in mesenchymal-stem/stromal-cell-derived small extracellular vesicles (MSC-sEV). Pharmaceuticals. 2021;14:345.

    PubMed  PubMed Central  Google Scholar 

  83. Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schrøder HD, Kassem M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res. 2005;65:3126–35.

    CAS  PubMed  Google Scholar 

  84. Zongaro S, De Stanchina E, Colombo T, D’Incalci M, Giulotto E, Mondello C. Stepwise neoplastic transformation of a telomerase immortalized fibroblast cell line. Cancer Res. 2005;65:11411–8.

    CAS  PubMed  Google Scholar 

  85. Rodriguez R, Rubio R, Masip M, Catalina P, Nieto A, de la Cueva T, et al. Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia. 2009;11:397-IN9. https://doi.org/10.1593/neo.81620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qin Y, Ji H, Wu Y, Liu H. Tissue-derived mesenchymal stem cells in long-term. Cloning Stem Cells. 2009;11:445–52.

  87. Volleth M, Zenker M, Joksic I, Liehr T. Long-term Culture of EBV-induced Human Lymphoblastoid Cell Lines Reveals Chromosomal Instability. J Histochem Cytochem. 2020;68:239–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahmadbeigi N, Shafiee A, Seyedjafari E, Gheisari Y, Vassei M, Amanpour S, et al. Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Prolif. 2011;44:67–74.

    CAS  PubMed  Google Scholar 

  89. Yalvaç ME, Yilmaz A, Mercan D, Aydin S, Dogan A, Arslan A, et al. Differentiation and neuro-protective properties of immortalized human tooth germ stem cells. Neurochem Res. 2011;36:2227–35.

    PubMed  Google Scholar 

  90. Mondello C, Chiesa M, Rebuzzini P, Zongaro S, Verri A, Colombo T, et al. Karyotype instability and anchorage-independent growth in telomerase-immortalized fibroblasts from two centenarian individuals. Biochem Biophys Res Commun. 2003;308:914–21.

    CAS  PubMed  Google Scholar 

  91. Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, et al. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. Vitr Cell Dev Biol Anim. 2007;43:129–38.

    CAS  Google Scholar 

  92. Takeuchi M, Higashino A, Takeuchi K, Hori Y, Koshiba-Takeuchi K, Makino H, et al. Transcriptional dynamics of immortalized human mesenchymal stem cells during transformation. PLoS One. 2015;10:1–23.

    Google Scholar 

  93. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumor cells with defined genetic elements. Nature. 1999;400:464–8.

    CAS  PubMed  Google Scholar 

  94. Gee CJ, Harris H. Tumorigenicity of cells transformed by simian virus 40 and of hybrids between such cells and normal diploid cells. J Cell Sci. 1979;36:223–40.

    CAS  PubMed  Google Scholar 

  95. Shu Y, Yang C, Ji X, Zhang L, Bi Y, Yang K, et al. Reversibly immortalized human umbilical cord–derived mesenchymal stem cells (UC-MSCs) are responsive to BMP9-induced osteogenic and adipogenic differentiation. J Cell Biochem. 2018;119:8872–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bouvard V, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Benbrahim-Tallaa L, et al. Carcinogenicity of malaria and of some polyomaviruses. Lancet Oncol. 2012;13:339–40. https://doi.org/10.1016/S1470-2045(12)70125-0.

    Article  PubMed  Google Scholar 

  97. Pal A, Kundu R. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front Microbiol. 2020;10:3116.

    PubMed  PubMed Central  Google Scholar 

  98. Hung SC, Yang DM, Chang CF, Lin RJ, Wang JS, Low-Tone Ho L, et al. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. Int J Cancer. 2004;110:313–9.

    CAS  PubMed  Google Scholar 

  99. Liu Z, Ghai J, Ostrow RS, Faras AJ. The expression levels of the human papillomavirus type 16 E7 correlate with its transforming potential. Virology. 1995;207:260–70.

    CAS  PubMed  Google Scholar 

  100. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G, et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther. 2009;17:844–50. https://doi.org/10.1038/mt.2009.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Boulad F, Maggio A, Wang X, Moi P, Acuto S, Kogel F, et al. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med. 2022;28:63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118:3143–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, et al. Target-site preferences of Sleeping Beauty transposons. J Mol Biol. 2005;346:161–73.

    CAS  PubMed  Google Scholar 

  104. Berry C, Hannenhalli S, Leipzig J, Bushman FD. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol. 2006;2:1450–62.

    CAS  Google Scholar 

  105. Hu X, Li L, Yu X, Zhang R, Yan S, Zeng Z, et al. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget. 2017;8:111847–65.

    PubMed  PubMed Central  Google Scholar 

  106. Huang E, Bi Y, Jiang W, Luo X, Yang K, Gao JL, et al. Conditionally immortalized mouse embryonic fibroblasts retain proliferative activity without compromising multipotent differentiation potential. PLoS One. 2012;7:1–11.

    Google Scholar 

  107. Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, et al. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res. 2016;8:3710–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Song D, Zhang F, Reid RR, Ye J, Wei Q, Liao J, et al. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients. J Cell Mol Med. 2017;21:2782–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nakahara H, Misawa H, Hayashi T, Kondo E, Yuasa T, Kubota Y, et al. Bone repair by transplantation of hTERT-immortalized human mesenchymal stem cells in mice. Transplantation. 2009;88:346–53.

    PubMed  Google Scholar 

  110. Lee WYW, Zhang T, Lau CPY, Wang CC, Chan KM, Li G. Immortalized human fetal bone marrow-derived mesenchymal stromalcell expressing suicide gene for anti-tumor therapy in vitro andin vivo. Cytotherapy. 2013;15:1484–97. https://doi.org/10.1016/j.jcyt.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  111. Rasko JEJ, Patel A, Griffin JE, Gilleece MH, Radia R, Yeung DT, et al. Results of the first completed clinical trial of an iPSC-derived product: CYP-001 in steroid-resistant acute GvHD. Biol Blood Marrow Transplant. 2019;25:S255–6.

    Google Scholar 

  112. Lei Q, Gao F, Liu T, Ren W, Chen L, Cao Y, et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Sci Transl Med. 2021;13:eaaz8697.

    CAS  PubMed  Google Scholar 

  113. Cárdenas-León CG, Mäemets-Allas K, Kuuse K, Salazar-Olivo LA, Jaks V. Enhanced proliferative capacity of human preadipocytes achieved by an optimized cultivating method that induces transient activity of hTERT. Biochem Biophys Res Commun. 2020;529:455–61.

    PubMed  Google Scholar 

  114. Caroti CM, Ahn H, Salazar HF, Joseph G, Sankar SB, Willett NJ, et al. A novel technique for accelerated culture of murine mesenchymal stem cells that allows for sustained multipotency. Sci Rep. 2017;7:1–14. https://doi.org/10.1038/s41598-017-13477-y.

    Article  CAS  Google Scholar 

  115. Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, et al. Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol. 2012;227:3216–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Paprocka M, Kraskiewicz H, Bielawska-Pohl A, Krawczenko A, Masłowski L, Czyżewska-Buczyńska A, et al. From primary MSC culture of adipose tissue to immortalized cell line producing cytokines for potential use in regenerative medicine therapy or immunotherapy. Int J Mol Sci. 2021;22:11439.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim M, Rhee JK, Choi H, Kwon A, Kim J, Lee GD, et al. Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-15155-5.

    Article  CAS  Google Scholar 

  118. Foudah D, Redaelli S, Donzelli E, Bentivegna A, Miloso M, Dalprà L, et al. Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosom Res. 2009;17:1025–39.

    CAS  Google Scholar 

  119. Moscoso I, Rodriguez-Barbosa JI, Barallobre-Barreiro J, Anon P, Domenech N. Immortalization of bone marrow-derived porcine mesenchymal stem cells and their differentiation into cells expressing cardiac phenotypic markers. J Tissue Eng Regen Med. 2011;12:181–204. https://doi.org/10.1016/j.trsl.2010.06.007.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, EDITAL FAPERGS 07/2021—PROGRAMA PESQUISADOR GAÚCHO—PqG (21/2551-0001947-6) and RITES (22/2551-0000385-0); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)MS-SCTIE-Decit/CNPq nº 12/2018 (441575/2018-8), MS-SCTIE-DECIT-DGITIS-CGCIS/CNPq nº 26/2020 (442586/2020-5), and National Institute of Science and Technology in 3D printing and Advanced Materials Applied to Human and Veterinary Health-INCT _3D-Saúde (406436/2022-3). Luana S. Lenz was a recipient of a Postdoc fellowship from (UFCSPA EDITAL Nº 07/2021). Márcia R. Wink is recipient of a Level 1 research productivity fellowship from the CNPq.

Author information

Authors and Affiliations

Authors

Contributions

MRW: first conceptualized the study and revised the work. LSL: performed literature searches, wrote the manuscript, and drew figures. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Márcia Rosângela Wink.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, L.S., Wink, M.R. The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence. Human Cell 36, 1593–1603 (2023). https://doi.org/10.1007/s13577-023-00925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00925-3

Keywords

Navigation