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Abstract
Radioresistance is a major cause of radiotherapy failure among patients with cervical cancer (CC), the fourth most common 
cause of cancer mortality in women worldwide. Traditional CC cell lines lose intra-tumoral heterogeneity, posing a chal-
lenge for radioresistance research. Meanwhile, conditional reprogramming (CR) maintains intra-tumoral heterogeneity and 
complexity, as well as the genomic and clinical characteristics of original cells and tissues. Three radioresistant and two 
radiosensitive primary CC cell lines were developed under CR conditions from patient specimens, and their characteristics 
were verified via immunofluorescence, growth kinetics, clone forming assay, xenografting, and immunohistochemistry. 
The CR cell lines had homogenous characteristics with original tumor tissues and maintained radiosensitivity in vitro and 
in vivo, while also maintaining intra-tumoral heterogeneity according to single-cell RNA sequencing analysis. Upon further 
investigation, 20.83% of cells in radioresistant CR cell lines aggregated in the G2/M cell cycle phase, which is sensitive to 
radiation, compared to 38.1% of cells in radiosensitive CR cell lines. This study established three radioresistant and two 
radiosensitive CC cell lines through CR, which will benefit further research investigating radiosensitivity in CC. Our present 
study may provide an ideal model for research on development of radioresistance and potential therapeutic targets in CC.
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Introduction

Cervical cancer (CC) is the fourth most common malig-
nancy among women, accounting for approximately 7% of 
cancer cases [1, 2]. Although relatively controlled for sev-
eral decades in many high-income countries, CC remains 
the major cause of cancer-related death among women 
in low- and lower middle-income countries [3], seri-
ously endangering women's health. Currently, treatment 
options for CC include surgery, radiotherapy, chemother-
apy, and immunotherapy [4]. Radiotherapy is the major 
radical treatment option for patients with CC in stages 
IB3 and IIA2‒IVA, and an optional radical therapy for 
patients with CC stages IB1‒2 and IIA [4]. Although CC 
is relatively sensitive to radiotherapy, recurrence occurs 
within 2 years among 20–40% of patients who receive 
radiotherapy [5–7], with local pelvic recurrence and dis-
tant metastasis being the main recurrence patterns [6]. 
Patients with recurrent CC often have poor prognosis, 
and the 5-year overall survival is approximately 10–20% 
[8–10]. Additionally, patients with advanced CC are more 
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likely to develop radioresistance [11]. Increasing doses of 
radiation elevates the risk of developing irradiation cys-
titis or enteritis, but low radiation dose cannot achieve 
its therapeutic effect [12]. Therefore, developing a better 
understanding of radiosensitivity in CC is a research hot-
spot for oncologists.

Most CC researches are based on traditional, established 
cell lines, such as SiHa, C33A, and ME180 etc. which 
are homologous in both morphology and phenotype and 
proliferate easily in vitro. However, loss of intra-tumoral 
heterogeneity is the main obstacle in developing drugs, 
including radiosensitizers, and research investigating 
radioresistance [13]. A comparison with transcriptomic 
sequencing data in The Cancer Genome Atlas (TCGA), 
patient-derived xenografts (PDXs), and conventional cell 
lines revealed that PDXs, as a substitution for patient-
derived tumors (PDTs), had consistent gene expression 
with those of TCGA, unlike traditional cell lines [14]. 
In addition, conventional cell lines had poor specificity 
for different cancer types and their gene expression pat-
terns differed from those of tumors, which was caused by 
genetic drift and clonal selection during culturing in vitro 
[14]. Thus, traditional CC cell lines established without 
receiving radiotherapy are not appropriate models for radi-
oresistance research.

Conditional reprogramming (CR) methods have been 
used to culture tumors from patients with CC with the 
support of feeder cells and conditional medium, enabling 
infinite proliferation in vitro [15]. Whole-exome sequenc-
ing (WES) and copy number variation (CNV) testing of 
CR cell lines and tumors have demonstrated high con-
servative phenomena of DNA and maintenance of tumor 
genomic heterogeneity [16–18]. Thus, CR is used in drug 
screening and cancer model construction for it maintaining 
the characteristics of cells in vitro [17, 19]. Radiosensi-
tive and radioresistant primary CR cell lines are needed 
for use as CC cell models in the study of radioresistance 
mechanisms, development of individualized therapies, and 
prognostic prediction [20, 21].

The development of high-throughput approaches, such 
as single-cell RNA sequencing (scRNA-seq), has enabled 
analysis of the molecular characteristics of individual cells 
in tumors. Nevertheless, the transcriptional spectrum of 
radioresistant and radiosensitive CC cells has not yet been 
investigated. The goal of current study was to establish 
radioresistant and radiosensitive CR cell lines from CC 
specimens and verified their characteristics in vitro and 
in vivo. For the first time, this study proclaims the molecu-
lar characteristics and biological changes of radioresistant 
and radiosensitive CC cells via scRNA-seq, providing a 
greater understanding of radiosensitivity that will benefit 
predictions of prognosis and radiotherapy response.

Materials and methods

Patient specimens

Three radioresistant CC specimens were collected from 
local recurrent lesions of patients who received radio-
therapy within 12 months and without re-irradiation or 
other treatments. Two radiosensitive CC specimens were 
collected from patients at diagnosis who achieved clini-
cal remission after radiotherapy and remained disease-free 
survival for at least 12 months.

Establish primary cell lines by conditional 
reprogramming

CC tumor tissues were excised and cell suspensions were 
prepared following the protocol described by Liu et al. 
[15]. Briefly, tissue was minced and digested by 0.1% 
collagenase type IV (Sigma-Aldrich, USA) solution for 
1 h in 37 °C incubator. Then, the cell suspension was fil-
tered through 100 µm cell strainer into a centrifuge tube 
and centrifuged at 1000 rpm for 5 min at 4 °C. The cells 
were plated with irradiated Swiss-3T3-J2 feeder cells in 
a T25 flask containing complete F medium at 37 °C in a 
5%  CO2 incubator. All experiments were performed using 
mycoplasma-free cells. After reaching 80% confluence, 
the primary cells were passaged with 0.02% EDTA (Pro-
cell, China) and 0.05% trypsin/EDTA (Procell, China) 
consequently.

Complete F medium was prepared using DMEM 
(Gibco, USA), 10% fetal bovine serum (Gibco, USA), 1% 
100 × Pen-Strep (Biosharp, China), 1% 100 × L-glutamine 
(Biosharp, China), 5 µg/mL insulin (Biosharp, China), 
250 ng/mL amphotericin B (Biosharp, China), 10 µg/
mL gentamicin (Biosharp, China), 0.1 nM cholera toxin 
(MedChem Express, China), 0.125 ng/mL EGF (Pepro-
tech, USA), 25 ng/mL hydrocortisone (Biosharp, China) 
and 10 µM ROCK inhibitor Y-27632 (AbMole Bioscience, 
USA).

Morphology and growth curve

Cellular morphology was examined and photographed 
using a phase-contrast microscope (Olympus, Japan). 
The population doubling times were calculated for cells 
in early passages. Briefly, 1 ×  104 cells were seeded onto a 
6-well plate in triplicate, and cell numbers were counted 
at 1, 3, 5, and 7 days. The growth rate and population 
doubling time were calculated from the growth curves.
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Clonogenic assay

Equal numbers of cells were plated in triplicate onto 6-well 
plates for 24 h, then received radiotherapy of 0, 2, 4, 6, 
8 Gy. The plates were incubated at 37 °C for 2–3 weeks. 
Then washed with phosphate-buffered saline (PBS), 
fixed with 4% paraformaldehyde, and stained with 0.05% 
crystal violet. Colonies with > 50 cells were counted and 
photographed.

Short tandem repeat (STR) profiling

Genomic DNA from primary cell lines and correspond-
ing peripheral blood samples of patients was isolated using 
the Tissue DNA Kit (Omega, China). Matching compari-
son of DNA fingerprinting including a total of 21 STR loci 
(D5S818, D13S317, D7S820, D16S539, VWA, TH01, 
AMEL, TPOX, CSF1PO, D12S391, FGA, D2S1338, 
D21S11, D18S51, D8S1179, D3S1358, D6S1043, PEN-
TAE, D19S433, PENTAD, and D1S1656) was conducted 
between peripheral blood samples and CR cell lines, as well 
as between the CR cell lines and data for traditional cell lines 
in the American Type Culture Collection (ATCC), Deutsche 
Sammlung von Mikroorganismen und Zellkulturen (DSMZ), 
Japanese Collection of Research Bioresources (JCRB) and 
RIKEN databases.

Xenograft models in nude mice 
and immunohistochemistry (IHC) straining

The animal research was performed under the NIH Guide-
lines for the Care and Use of Laboratory Animals and super-
vised by the Animal Care Committee of Tongji Medical Col-
lege. In vivo primary cell lines were injected into 4–6 weeks 
old BALB/c nude mice (Bioscience, China). Briefly, subcu-
taneous injections of 5 ×  106 cell suspensions which were 
prepared in 100 μL DMEM were conducted on left flank 
of the hindleg of anesthetized female mice. Injected mice 
were observed and the tumors were examined every three 
days. IHC straining was performed following the general 
procedure using the IHC kit (Biossci, China).

Immunofluorescence

A total of 5 ×  104 cells were seeded on a chamber slide 
(Nest Scientific, China) in a 24-well plate for 24 h, followed 
by washing 3 times with PBS before being fixed with 4% 
paraformaldehyde. After permeabilization with 0.3% Tri-
ton X-100 for 15 min, the cells were incubated with 5% 
bovine serum albumin (BSA) for 1 h at room temperature. 
Then cells were covered with primary antibodies against 
CK5 (1:200, Abcam, UK), Ki67 (1:200, Proteintech, USA), 
p63 (1:200, Proteintech, USA), and p16 (1:100, ABclonal, 

China), respectively, overnight at 4 °C. After 3 times washes, 
the secondary antibody (Servicebio, China) was added on 
the slides for 1 h. Nuclei were stained with DAPI (Biosharp, 
China). Chamber slides were analyzed and imaged by fluo-
rescence microscope (Olympus, Japan).

ScRNA‑seq analysis

Raw disembarkation data quality statistics, cell ranger, cell 
refiltration, dimensionality reduction and clustering, differ-
ential genes and functional enrichment analysis, pseudo-time 
trajectory analysis, gene set variation analysis, CNV evalua-
tion and transcriptional factor prediction were described in 
the Supplementary Methods (Online Resource 1. Methods 
and Materials).

Statistical analysis

Statistical significance was determined by the Student’s t-test 
or two-way ANOVA using GraphPad Prism 7.0 software 
(GraphPad Software, USA), and presented as *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001. Results were 
represented as the mean ± standard deviation (SD) or 
mean ± standard error of the mean (SEM). Data shown were 
representatives of at least three independent experiments, 
which showed similar results.

Results

The primary radioresistant CR cell lines (Union Hospital 
Cervical Cancer Radioresistant (UCR) 4, UCR7, and UCR8) 
and radiosensitive CR cell lines (Union Hospital Cervical 
Cancer Radiosensitive (UCS) 14, and UCS19) formed can-
cer nests when cultured with irradiated feeder cells (Fig. 1a). 
All CR cell lines exhibited a monolayer polygonal shape, 
indicating that the tumors were squamous cell carcinomas 
(Fig. 1b). As shown in Table 1, the CR cell lines expressed 
CK5 and p63 (markers of squamous cell carcinoma), Ki67 
(a proliferation index), and p16 (related to HPV infection) 
(Fig. 1c).

The CR cell lines grew in an adherent manner with differ-
ent population doubling times (Fig. 1d). The CR cell lines 
also maintained the characteristics of tumor radiosensitiv-
ity in vitro, for more double-strand breaks and γ-H2AX 
foci shown in radiosensitive CR cell lines compared with 
radioresistant ones after irradiation (Fig. 1c). The results of 
the clonogenic assay (SF2 values) were consistent with the 
conclusion (Fig. 1e).

The 21 STR loci were homogenous between the CR cell 
lines under passage 10 and parental peripheral blood sam-
ples, indicating that the CR cell lines maintained the genetic 
information of patients when cultured in  vitro (Online 



1138 B. Xing et al.

1 3

Resource 1. Table 1). However, the STR loci in the CR cell 
lines differed from those of traditional cell lines reported in 
the ATCC, DSMZ, JCRB, and RIKEN databases.

Next, xenografts of CR cell lines were established in mice 
and their tumorigenicity was verified. The xenografts kept 
the radiosensitivity of PDTs after irradiation (Fig. 2a, b), 

exhibiting positive expression of p63, Ki67, and p16, which 
aligned with the results for the PDTs (Fig. 2c). Thus, the 
xenografts of CR cell lines maintained the characteristics of 
tumors and were an alternative model for oncology research.

To investigate the crucial oncogenes or pathways asso-
ciated with radiosensitivity in CC, CR cell lines UCR4 
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and UCS19 were selected to conduct scRNA-seq using 
10 × Genomics Chromium platform. High-dimensional data 
were visualized into low dimensional space by t-distributed 
stochastic neighbor embedding (t-SNE). Cells with simi-
lar characteristics were classified into a cluster according 
to the algorithm of t-SNE, and the identified clusters were 
displayed. A mixture of human CR cell lines and murine 
feeder cells were captured (Fig. 3a, c). A total of 11,808 
cells for UCR4 and 12,208 cells for UCS19 were mapped 
to human genome CRCh38 (excluding those mapped to 
murine genome mm10) and investigated during the fol-
lowing analysis. Graph-based clustering identified 9 and 
8 cell clusters in UCR4 and UCS19, respectively (Fig. 3b, 
d). The different gene expression patterns of cell clusters in 
UCR4 and UCS19 indicated that CR cell culturing main-
tained intra-tumoral heterogeneity of the primary cell lines 
to some extent (Online Resource 1. Figure 1b, f), which truly 
presented the characteristics of tumor and was a more appro-
priate approach to study radiosensitivity compared with 
traditional cell lines. In addition, CNV analysis of UCR4 
and UCS19 compared to normal tissue further verified the 
heterogeneity of the CR cell lines (Fig. 3e, f).

In general, cells in different cell cycle phases exhibit 
different radiosensitivity. Previous studies have shown that 
cells were most sensitive to irradiation during mitosis and 
in the G2 phase, less sensitive in the G1 phase and least 

sensitive in the latter S phase [22]. The CR cell lines were 
enriched in different cell cycle phases based on the expres-
sion levels of highly expressed genes (Fig. 4a). The pro-
portion of cells in the G1 and G2/M phases in UCR4 was 
53.16% and 20.83%, respectively, compared with 28.10% 
and 33.8% of cells in UCS19 (Fig. 4b). We verified the 
difference in cell cycle distribution of CR cell lines UCR4, 
UCR7, UCR8, UCS14, and UCS19, as well as traditional 
cell lines ME180 and C33A in vitro (Fig. 4c). Generally, 
radioresistant cells accumulated in the G1 and S phases, 
which concurred with previously reported results.

Next, the scRNA-seq results for UCR4 and UCS19 were 
combined to better understand the radiosensitivity of CC 
cells, yielding 13 cell clusters using the graph-based clus-
tering method (Fig. 4d, e). Cell clusters 8, 5, 12, and 0 
were associated with radioresistance, with the majority 
originating from UCR4, whereas cell clusters 9, 1, 7, and 
10 were associated with radiosensitivity, with the major-
ity originating from UCS19 (Fig. 4f, g). Highly expressed 
genes in cell cluster 8 were correlated with Myc signal-
ing, while those in cluster 5 were enriched in the DNA 
repair pathway, which repaired DNA damage caused by 
irradiation. Highly expressed genes in cell cluster 12 were 
related to the IL6-JAK-STAT3 and IFN pathways, which 
were associated with immune response according to previ-
ous studies (Fig. 4g).

Table 1  Brief clinical information of patients with cervical cancer from whom CR cell lines were established

SCC squamous cell carcinoma; EBRT external beam radiation therapy; PFS progression-free survival; OS overall survival

CR cell lines

Characteristics UCR4 UCR7 UCR8 UCS14 UCS19

Age at diagnosis 56 56 69 67 46
Histological type SCC SCC SCC SCC SCC
HPV type HPV58 HPV16 HPV16 HPV16 HPV16
Tumor size at diagnosis 

(mm)
47 × 20 11 × 8 × 7 26 × 39 × 36 25 × 30 × 24 26 × 28

Clinical stage at diagnosis 
(FIGO 2018)

IIIB IVB IIIA IIIC1 IIIC1

Lymph node metastasis None Inguinal and 
retroperitoneal 
lymph node

None Pelvic lymph node Pelvic lymph node

Radiotherapy
 EBRT PCTV 50.4 Gy/28F PCTV 

50.4 Gy/28F, 
PGTVnd 
60 Gy/28F

PCTV 50.4 Gy/28F, PGT-
Vnd 56 Gy/25F

PCTV 50.4 Gy/28F, PGT-
Vnd 60 Gy/28F

PCTV 50.4 Gy/28F, PGT-
Vnd 62 Gy/28F

 Brachytherapy HRCTV D90
29.2 Gy/4F

HRCTV D90
33.4 Gy/5F

HRCTV D90 28.4 Gy/4F HRCTV D90 27.6 Gy/4F HRCTV D90 27.7 Gy/4F

Survival
 PFS of radiotherapy 

(months)
9 1 11 19 14

 OS of radiotherapy 
(months)

– 3 32 – –

Follow-up period (months) – 3 32 – –



1140 B. Xing et al.

1 3

To clarify the transcriptional changes associated with 
radiosensitivity, unsupervised pseudo-time analysis was 
employed to reveal the gene expression trajectory. Most radi-
oresistant cell clusters (5, 12, and 0) were addressed in state 
1, whereas the majority of radiosensitive cell clusters were 
placed in state 4. Branched expression analysis modeling 
(BEAM) indicated that cell cluster 8 was at one end of the 
pseudotemporal trajectory, while cell cluster 9 was located 
at the other end (Fig. 5a). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis at branch 1 of the 
transformation to radioresistance revealed that genecluster 

1 was enriched in oxidative phosphorylation and protein 
processing in the endoplasmic reticulum (ER), which were 
associated with oxidative stress (Fig. 5b, Online Resource 
1. Figure 2a). Genecluster 3 was enriched in the cell cycle, 
FoxO signaling, and cellular senescence pathways (Fig. 5b, 
Online Resource 1. Figure 2b). Furthermore, cells at branch 
1 showed increased expression of endoplasmic reticulum 
protein 29 (ERp29), a key component located in ER, which 
were crucial in transforming to a radioresistant phenotype, 
and decreased expression of human ubiquitin-specific 
protease 7 (USP7) in the forkhead boxO (FoxO) pathway 
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(Fig. 5c, d) [23, 24]. ERp29 promoted the chemoresistance 
mediated by ER stress. Besides, oxidative stress induced the 
mono-ubiquitination and transcriptional activity of FoxO4 
in radioresistant cells with decreased USP7, a deubiquit-
inating enzyme, thereby causing G0/S arrest and preven-
tion of irradiation-induced cell death [23]. We verified that 
USP7 decreased in radioresistant cells while no significant 
difference in expression of ERp29 was observed (Fig. 5e, f, 
Online Resource 1. Figure 3).

Discussion

Definitive chemoradiotherapy is the standard treatment for 
advanced CC, but the local relapse rate ranges from 17.3 
to 33.1%, with most cases recurring within 2 years [8, 25, 
26]. Previous studies reported that the median survival 
of patients with regional recurrence was 8 months with a 
4-year survival rate of 10.7%, confirming that patients with 
local relapse had poor prognosis [27]. Human cancers are 
characterized by their histological complexity and geneti-
cal diversity. However, cancer cell lines undergo long-term 
clonal proliferation and adapt to culturing conditions, which 

prevents their generalization to PDTs [16]. The use of tra-
ditional cancer models (cell lines and animal models) is 
limited in both basic and clinical research, while precision 
medicine based on genomics benefits no more than 20% of 
patients with solid tumors [28]. Primary cell lines are a more 
appropriate option for studying cell biology and the unique 
characteristics of PDTs. However, cell senescence limits the 
life span and population doubling times of primary cell lines, 
resulting to low yields and restricting their applicability [20]. 
Compared with PDX and organoids, CR has advantages of 
utilizing various specimen sources and is relatively cheap 
and rapid, making it ideal for high-throughput screening in 
tumor research. CR cell lines that possess the same radio-
sensitivity as patients will be part of the next-generation 
living biobanks and human cancer model initiative programs 
launched by the American Association for Cancer Research 
[17].

In addition to the intrinsic limitations of cancer cell lines, 
most traditional cell lines used today are without detailed 
documentation for treatment. The cell lines are over-simpli-
fied for different therapies, which may lead to overtreatment, 
inefficiency, and even unnecessary side effects [29, 30]. The 
radioresistant and radiosensitive CR cell lines established in 
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the current study maintained the characteristics of the origi-
nal PDTs both in vitro and in vivo. Besides, their biomark-
ers expression and radiosensitivity were verified. Thus, the 
current study established a feasible approach to investigate 
radiosensitivity in CC, while maintaining intra-tumoral het-
erogeneity and characteristics consistent with the patients’ 
clinical information.

The results of scRNA-seq analysis revealed that a greater 
proportion of radioresistant CR cells aggregated in the G1 
phase of cell cycle, which is resistant to radiation, while 
most radiosensitive cells were in the G2 phase, which is 
considered to be sensitive to radiation. Cyclins are proteins 

that activate specific CDKs, which are necessary for progres-
sion of the cell cycle [31].

A previous study reported that genes associated with the 
IFN-α response, IL2-STAT5, and IL6-JAK-STAT3 signaling 
pathways were enriched in tumors of patients with recurrent 
olfactory neuroblastoma [32]. The IL6-JAK-STAT3 signal-
ing pathway promotes tumor invasive growth and suppresses 
the antitumor immune response. Moreover, IFN-α signaling 
after chronic activation induces tumor PD-L1 expression and 
dendritic cell exhaustion, thus providing a pro-tumorigenic 
microenvironment [33]. In the current study, the expres-
sion of genes associated with the IL6-JAK-STAT3 signal-
ing pathways and IFN response changed significantly in the 
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UCR4 cell line (Online Resource 1. Figure 1c). Therefore, 
targeting the IL6-JAK-STAT3 pathway and IFN-α response 
may inhibit tumor proliferation and activate the antitumor 
immune response to benefit patients with radioresistant CC.

Pseudo-time analysis of the combined UCR4 and UCS19 
CR cell lines determined a branched gene expression trajec-
tory related to transformation to a more radioresistant state. 
KEGG enrichment analysis revealed that oxidative stress, 
the cell cycle, and the FoxO signaling pathway played an 
important role in the reprogramming of radiosensitivity. The 
ER is the central organelle of protein folding, and traffick-
ing, and ER stress contributes to many pathophysiological 
conditions caused by disturbances in the cell [34]. Radiore-
sistant cells showed active oxidative-stress-related pathways 
with increased expression of genes associated with oxidative 
phosphorylation and ER stress, which mediated the survival 
of cells under stress caused by irradiation.

The subfamily of transcription factors of Fox gene fam-
ily is widely expressed in cells and activated by a variety 
of growth factors and other stimulatory signals, including 
oxidative stress. The Fox genes regulates the specific expres-
sion of downstream molecules and cellular activity of the 
cell cycle, senescence, apoptosis, oxidative stress, stem 
cell differentiation, and tumor development and occurrence 
[35–37]. Increased cellular oxidative stress results in the 
mono-ubiquitination of FoxO4, which stimulates nuclear 
localization and raises transcriptional activity [23]. FoxO 
proteins promote tumor proliferation by inducing oxida-
tive stress resistance and DNA damage repair and arrest 
cells in the G0/S phase [38, 39]. However, in response to 
oxidative stress, USP7 binds to FoxO4 to deubiquitinate it 
and inhibits the transcriptional activity. Radioresistant cells 
exhibited decreased expression of USP7, which prevented 
irradiation-induced cell death. Taken together, these find-
ings suggest that USP7 may provide therapeutic targets for 
patients with recurrent CC.

Conclusions

This study is the first to establish primary radioresistant and 
radiosensitive CC cell lines using CR and verify their char-
acteristics and heterogeneity in vitro. Notably, the CR cell 
lines retained their tumorigenic phenotypes in vivo. With 
refinement of the CR technique and its combination with 
other advanced models (PDXs etc.), these cell lines may 
serve as a promising platform for cancer research, includ-
ing studies exploring cancer biology, high-throughput drug 
screening, personalized treatment, and biobanking reposito-
ries. Radioresistant cells are in G1 and S phases and increase 
the FoxO signaling and oxidative stress pathway to support 
the cells after irradiation. This study infers that USP7 can be 

the potential radiosensitization targets after careful scientific 
researches in the future.
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