Skip to main content

Advertisement

Log in

ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The Rho/ROCK pathway regulates diverse cellular processes and contributes to the development and advancement of several types of human cancers. This study investigated the role of specific Rho GTPase-activating proteins (RhoGAP), ARHGAP6, in bladder cancer (BC). In this study, ARHGAP6 expression in BC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor‐related function and the underlying molecular mechanism ARHGAP6 of in BC. The mRNA and protein levels of ARHGAP6 significantly reduced in human BC tissues and cell lines compared with corresponding adjacent non-cancerous tissues and normal urothelial cells. In vitro, ARHGAP6 overexpression markedly decreased the viability, migration, and invasion of BC cells. Interestingly, low ARHGAP6 expression in BC strongly correlated with poor patient survival and was highly associated with metastasis and β-catenin signaling. Furthermore, ARHGAP6 expression strongly influenced the sensitivity of BC cells to mitomycin C treatment. Together, our results demonstrate that ARHGAP6 plays critical roles in regulating the proliferation, migration, invasion, and metastasis of BC cells possibly via the modulation of β-catenin and strongly influences the chemosensitivity of BC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–41.

    Article  PubMed  Google Scholar 

  2. Faltas BM, Prandi D, Tagawa ST, et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat Genet. 2016;48(12):1490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee HW, Lee HH, Park EY, et al. Clinical efficacy of neoadjuvant intravesical mitomycin-C therapy immediately before transurethral resection of bladder tumor in patients with nonmuscle-invasive bladder cancer: preliminary results of a prospective, randomized phase II study. J Urol. 2023;209(1):131–9.

    Article  PubMed  Google Scholar 

  4. Bakhshpour M, Yavuz H, Denizli A. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes. Artif Cells Nanomed Biotechnol. 2018;46(sup1):946–54.

    Article  CAS  PubMed  Google Scholar 

  5. Hegmann L, Sturm S, Niegisch G, Windolf J, Suschek CV. Enhancement of human bladder carcinoma cell chemosensitivity to Mitomycin C through quasi-monochromatic blue light (λ = 453 ± 10 nm). J Photochem Photobiol B. 2022;236: 112582.

    Article  CAS  PubMed  Google Scholar 

  6. Wang SC, Yu CY, Wu YC, Chang YC, Chen SL, Sung WW. Chidamide and mitomycin C exert synergistic cytotoxic effects against bladder cancer cells in vitro and suppress tumor growth in a rat bladder cancer model. Cancer Lett. 2022;530:8–15.

    Article  CAS  PubMed  Google Scholar 

  7. Deng L, Jin K, Zhou X, et al. Blockade of integrin signaling reduces chemotherapy-induced premature senescence in collagen cultured bladder cancer cells. Precis Clin Med. 2022;5(2): pbac007.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shetty R, Kumar NR, Subramani M, et al. Safety and efficacy of combination of suberoylamilide hydroxyamic acid and mitomycin C in reducing pro-fibrotic changes in human corneal epithelial cells. Sci Rep. 2021;11(1):4392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwartz M. Rho signalling at a glance. J Cell Sci. 2004;117(Pt 23):5457–8.

    Article  CAS  PubMed  Google Scholar 

  10. Qi L, Sun B, Yang B, Lu S. circRNA RPPH1 facilitates the aggravation of breast cancer development by regulating miR-542-3p/ARHGAP1 pathway. Cancer Biother Radiopharm. 2022;37(8):708–19.

    CAS  PubMed  Google Scholar 

  11. Li Y, Wang NX, Yin C, Jiang SS, Li JC, Yang SY. RNA editing enzyme ADAR1 regulates METTL3 in an editing dependent manner to promote breast cancer progression via METTL3/ARHGAP5/YTHDF1 axis. Int J Mol Sci. 2022;23(17):9656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong DCP, Pan CQ, Er SY, et al. The scaffold RhoGAP protein ARHGAP8/ BPGAP1 synchronizes Rac and Rho signaling to facilitate cell migration. Mol Biol Cell. 2023. https://doi.org/10.1091/mbc.E21-03-0099.

    Article  PubMed  Google Scholar 

  13. Sun L, Zhang Y, Lou J. ARHGAP9 siRNA inhibits gastric cancer cell proliferation and EMT via inactivating Akt, p38 signaling and inhibiting MMP2 and MMP9. Int J Clin Exp Pathol. 2017;10(12):11979–85.

    PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Yao L, Li Y, et al. miR-337-3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep. 2020;21(2):705–19.

    CAS  PubMed  Google Scholar 

  15. Wang X, Zhang L, Liang Q, et al. DUSP5P1 promotes gastric cancer metastasis and platinum drug resistance. Oncogenesis. 2022;11(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang C, Mou Z, Wu S, et al. High-throughput sequencing identified circular RNA circUBE2K mediating RhoA associated bladder cancer phenotype via regulation of miR-516b-5p/ARHGAP5 axis. Cell Death Dis. 2021;12(8):719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li JP, Liu Y, Yin YH. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Liu Y, Yin Y. Inhibitory effects of Arhgap6 on cervical carcinoma cells. Tumour Biol. 2016;37(2):1411–25.

    Article  CAS  PubMed  Google Scholar 

  19. Li P, Lv H, Xu M, Zang B, Ma Y. ARHGAP6 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through STAT3 signaling pathway. Cancer Manag Res. 2020;12:9665–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Cui Y, Wang S, et al. MiR-96-5p is an oncogene in lung adenocarcinoma and facilitates tumor progression through ARHGAP6 downregulation. J Appl Genet. 2021;62(4):631–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lin LL, Yang F, Zhang DH, Hu C, Yang S, Chen XQ. ARHGAP10 inhibits the epithelial–mesenchymal transition of non-small cell lung cancer by inactivating PI3K/Akt/GSK3β signaling pathway. Cancer Cell Int. 2021;21(1):320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji W, Zhang L, Zhu H. GATA binding protein 5 (GATA5) induces Rho GTPase activating protein 9 (ARHGAP9) to inhibit the malignant process of lung adenocarcinoma cells. Bioengineered. 2022;13(2):2878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Zhao X, Jiang H, et al. ARHGAP9 inhibits colorectal cancer cell proliferation, invasion and EMT via targeting PI3K/AKT/mTOR signaling pathway. Tissue Cell. 2022;77: 101817.

    Article  CAS  PubMed  Google Scholar 

  24. Liu L, Xie D, Xie H, et al. ARHGAP10 inhibits the proliferation and metastasis of CRC cells via blocking the activity of RhoA/AKT signaling pathway. Onco Targets Ther. 2019;12:11507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun MY, Song YN, Zhang M, Zhang CY, Zhang LJ, Zhang H. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett. 2019;17(1):965–73.

    CAS  PubMed  Google Scholar 

  26. Zhang H, Tang QF, Sun MY, et al. ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin. Cell Death Dis. 2018;9(9):916.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee D. miR-769-5p is associated with prostate cancer recurrence and modulates proliferation and apoptosis of cancer cells. Exp Ther Med. 2021;21(4):335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen Y, Chen G, Gao H, et al. miR-939-5p contributes to the migration and invasion of pancreatic cancer by targeting ARHGAP4. Onco Targets Ther. 2020;13:389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seng TJ, Low JS, Li H, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene. 2007;26(6):934–44.

    Article  CAS  PubMed  Google Scholar 

  30. Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40(6):1378–82.

    Article  CAS  PubMed  Google Scholar 

  31. Chang HR, Huang HP, Kao YL, et al. The suppressive effect of Rho kinase inhibitor, Y-27632, on oncogenic Ras/RhoA induced invasion/migration of human bladder cancer TSGH cells. Chem Biol Interact. 2010;183(1):172–80.

    Article  CAS  PubMed  Google Scholar 

  32. Kim JG, Mahmud S, Min JK, et al. RhoA GTPase phosphorylated at tyrosine 42 by src kinase binds to β-catenin and contributes transcriptional regulation of vimentin upon Wnt3A. Redox Biol. 2021;40: 101842.

    Article  CAS  PubMed  Google Scholar 

  33. Garg M, Maurya N. WNT/beta-catenin signaling in urothelial carcinoma of bladder. World J Nephrol. 2019;8(5):83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhong Z, Virshup DM. Wnt signaling and drug resistance in cancer. Mol Pharmacol. 2019;97(2):72–89.

    Article  PubMed  Google Scholar 

  35. Wu Y, Xu M, He R, Xu K, Ma Y. ARHGAP6 regulates the proliferation, migration and invasion of lung cancer cells. Oncol Rep. 2019;41(4):2281–888.

    CAS  PubMed  Google Scholar 

  36. Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.

    Article  CAS  Google Scholar 

  37. Prakash SK, Paylor R, Jenna S, et al. Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum Mol Genet. 2000;9(4):477–88.

    Article  CAS  PubMed  Google Scholar 

  38. Kang WK, Lee I, Park C. Characterization of RhoA-mediated chemoresistance in gastric cancer cells. Cancer Res Treat. 2005;37(4):251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shu Y, Zhang W, Hou Q, et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun. 2018;9(1):2447.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang WH, Zhang SY, Hou QQ, et al. The significance of the CLDN18-ARHGAP fusion gene in gastric cancer: a systematic review and meta-analysis. Front Oncol. 2020;10:1214.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yao F, Kausalya JP, Sia YY, et al. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 2015;12(2):272–85.

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Zhu G, Wu K, et al. FGF2-mediated reciprocal tumor cell-endothelial cell interplay contributes to the growth of chemoresistant cells: a potential mechanism for superficial bladder cancer recurrence. Tumour Biol. 2016;37(4):4313–21.

    Article  CAS  PubMed  Google Scholar 

  43. Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016;95(1 Suppl 1):S20–5.

    Article  CAS  PubMed  Google Scholar 

  44. Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769–92.

    Article  PubMed  Google Scholar 

  45. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73.

    Article  CAS  PubMed  Google Scholar 

  46. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 2009;23(3):265–77.

    Article  CAS  PubMed  Google Scholar 

  47. Rossol-Allison J, Stemmle LN, Swenson-Fields KI, et al. Rho GTPase activity modulates Wnt3a/beta-catenin signaling. Cell Signal. 2009;21(11):1559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amin E, Jaiswal M, Derewenda U, et al. Deciphering the molecular and functional basis of RHOGAP family proteins: a systematic approach toward selective inactivation of rho family proteins. J Biol Chem. 2016;291(39):20353–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (81774064), Shanghai Pujiang Program (18PJD042), and the Foundation of Pudong New District’s Medical Discipline Priority (PWZzk2022-22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yang or Hua Gong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This usage of clinical samples was reviewed and approved by the Ethical Board at Longhua Hospital, Shanghai University of Traditional Chinese Medicine with written informed consent from all the patients. All animal experiments involved in this study were approved by the Ethics Committee of Longhua Hospital, Shanghai University of Traditional Chinese Medicine. All methods were carried out in accordance with relevant guidelines and regulations. The study is reported in accordance with the ARRIVE guidelines. The approval number of the clinical study and that of the animal study is 22017LCSY337.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Tan, M., Yu, C. et al. ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity. Human Cell 36, 786–797 (2023). https://doi.org/10.1007/s13577-023-00860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00860-3

Keywords

Navigation