Skip to main content

Advertisement

Log in

Exosomes: a new way of protecting and regenerating optic nerve after injury

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

As an important part of the central nervous system (CNS), the optic nerve usually cannot regenerate directly after injury. Therefore, treating the injury and restoring the function of the optic nerve are a historical problem in the medical field. Due to the special anatomical position of the optic nerve, the microenvironment needed for protection and regeneration after injury is lacking. Therefore, preventing the continued loss of neurons, protecting the functional nerves, and promoting the effective protection of nerves are the main ways to solve the problem. Exosomes are nano-sized vesicles with a diameter of 30–150 nm, composed of lipid bilayers, proteins, and genetic material. They have key functions in cell-to-cell communication, immune regulation, inflammation, and regeneration. More and more shreds of evidence show that exosomes not only play an important role in systemic diseases such as cancer, cardiovascular diseases, and brain diseases; they also play a key role in ophthalmological diseases. This article reviews the role of exosomes in the protection and regeneration of the optic nerve after optic nerve injury in related experimental studies and clinical treatment methods.

Graphical abstarct

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

Ago2:

Argonaute 2

ATG3:

Autophagy-related 3

BNIP3:

Bcl-2-interacting protein 3

BTC:

Betacellulin

CNS:

Central nervous system

DAB2IP:

Disabled homolog 2-interacting protein

ESEs:

Early sorted inclusion bodies

EVs:

Extracellular vesicles

EXOPACAP38:

PACAP38 is loaded by exosomal anchoring peptide CP05

Frs2:

Fibroblast growth factor receptor substrate 2

GAP43:

Growth associated protein-43

GLT-1:

Glutamate transporter-1

GSK3b:

Glycogen synthase kinase 3 beta

IOP:

Intraocular pressure

LSE:

Late classified inclusion bodies

MNU:

Methyl-N-nitrosourea

MSC:

Mesenchymal stromal cells

mTOR:

Mammalian target of rapamycin

MVBs:

Multivesicular bodies

Pdcd4:

Programmed cell death 4

PI3K:

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homolog deleted on chromosome ten

RGC:

Retinal ganglion cell

RVG:

Exoglycoprotein

TON:

Traumatic optic neuropathy

TSC2:

Tuberous sclerosis 2

References

  1. Schumer R, Podos S. The nerve of glaucoma! Archiv Ophthalmol (Chicago, Ill: 1960). 1994;112(1):37–44.

    Article  CAS  Google Scholar 

  2. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317.

    Article  CAS  PubMed  Google Scholar 

  3. Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain. Science. 2017;356(6342):1031–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alenquer M, Amorim MJ. Exosome biogenesis, regulation, and function in viral infection. Viruses. 2015;7(9):5066–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8:307.

    Article  CAS  PubMed Central  Google Scholar 

  7. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.

    Article  CAS  PubMed  Google Scholar 

  8. Hajrasouliha AR, Jiang G, Lu Q, Lu H, Kaplan HJ, Zhang HG, et al. Exosomes from retinal astrocytes contain antiangiogenic components that inhibit laser-induced choroidal neovascularization. J Biol Chem. 2013;288(39):28058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stromal cells. Int J Mol Sci. 2014;15:4142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vlassov A, Magdaleno S, Setterquist R, Conrad R. Exosomes current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta Gen Subj. 2012;1820:940–8.

    Article  CAS  Google Scholar 

  11. Zöller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55.

    Article  CAS  PubMed  Google Scholar 

  12. Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stromal cells: biological aspects and clinical applications. J Immunol Res. 2015;2015:394917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan TF, et al. Identifying the therapeutic significance of mesenchymal stem cells. Cells. 2020;9(5):1145.

    Article  CAS  PubMed Central  Google Scholar 

  14. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  15. Yu B, Zhang X, Li X. Exosomes are derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mesentier-Louro LA, Zaverucha-do-Valle C, Rosado-de-Castro PH, Silva-Junior AJ, Pimentel-Coelho PM, Mendez-Otero R, et al. Bone marrow-derived cells as a therapeutic approach to optic nerve diseases. Stem Cells Int. 2016;2016:5078619.

    Article  CAS  PubMed  Google Scholar 

  17. Nuzzi R, Tridico F. Perspectives of autologous mesenchymal stem-cell transplantation in macular hole surgery: a review of current findings. J Ophthalmol. 2019;2019:8.

    CAS  Google Scholar 

  18. Nuzzi R, Buschini E. Prospettive di terapia oculare. Miner Oftalmol. 2010;52(2):55–61.

    Google Scholar 

  19. Xuqian W, Kanghua L, WeiHong Y. Intraocular transplantation of human adipose-derived mesenchymal stromal cells in a rabbit model of experimental retinal holes. Ophthal Res. 2011;46:199–207.

    Article  CAS  Google Scholar 

  20. da Silva-Junior AJ, Mesentier-Louro LA, Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasques JF, Chimeli-Ormonde L, et al. Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Res Ther. 2021;12(1):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung S, Rho S, Kim G, Kim SR, Baek KH, Kang M, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stromal cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med. 2016;37(5):1170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yeo RWY, Lai RC, Zhang B. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2003;65:336–41.

    Article  CAS  Google Scholar 

  23. Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stromal cells. Mol Cell Proteomics. 2007;6(10):1680–9.

  24. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.

    Article  CAS  PubMed  Google Scholar 

  25. Wooff Y, Cioanca AV, Chu-Tan JA, Aggio-Bruce R, Schumann U, Natoli R. Small-medium extracellular vesicles and their miRNA cargo in retinal health and degeneration: mediators of homeostasis, and vehicles for targeted gene therapy. Front Cell Neurosci. 2020;14:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stromal cells and their secretome in the treatment of glaucoma. Stem Cells Int. 2019;2019:7869130.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017;7:278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katsuda T, Ochiya T. Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Res Ther. 2015;6:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang T, Li Y, Guo M, Dong X, Liao M, Du M, et al. Exosome-mediated delivery of the neuroprotective peptide PACAP38 promotes retinal ganglion cell survival and axon regeneration in rats with traumatic optic neuropathy. Front Cell Dev Biol. 2021;9:659783.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma. Investig Ophthalmol Vis Sci. 2018;59(2):702–14.

    Article  CAS  Google Scholar 

  31. Li R, Jin Y, Li Q, Sun X, Zhu H, Cui H. MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma. Biomed Pharmacother. 2018;100:1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mak HK, Yung JSY, Weinreb RN, Ng SH, Cao X, Ho TYC, et al. MicroRNA-19a-PTEN axis is involved in the developmental decline of axon regenerative capacity in retinal ganglion cells. Mol Ther Nucleic Acids. 2020;21:251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marler KJ, Suetterlin P, Dopplapudi A, Rubikaite A, Adnan J, Maiorano NA, et al. BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP. J Neurosci. 2014;34(3):969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang QL, Wang W, Li J, Tian SY, Zhang TZ. Decreased miR-187 induces retinal ganglion cell apoptosis through upregulating SMAD7 in glaucoma. Biomed Pharmacother. 2015;75:19–25.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, He C, Li R, Ke Y, Sun K, Wang J. miR-708 and miR-335-3p inhibit the apoptosis of retinal ganglion cells through suppressing autophagy. J Mol Neurosci. 2021;71(2):284–92.

    Article  CAS  PubMed  Google Scholar 

  36. Nie XG, Fan DS, Huang YX, He YY, Dong BL, Gao F. Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma. Am J Physiol Cell Physiol. 2018;315(6):C839–49.

    Article  CAS  PubMed  Google Scholar 

  37. Yang J, Wang N, Luo X. Intraocular miR-211 exacerbates pressure-induced cell death in retinal ganglion cells via direct repression of FRS2 signaling. Biochem Biophys Res Commun. 2018;503(4):2984–92.

    Article  CAS  PubMed  Google Scholar 

  38. Moisseiev E, Anderson JD, Oltjen S, Goswami M, Zawadzki RJ, Nolta JA, et al. Protective effect of intravitreal administration of exosomes derived from mesenchymal stromal cells on retinal ischemia. Curr Eye Res. 2017;42(10):1358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan FY, Zhang MX, Shi YH, Li MH, Ou JY, Bai WF, et al. Bone marrow stromal cells-derived exosomes target DAB2IP to induce microglial cell autophagy, a new strategy for neural stem cell transplantation in brain injury. Exp Ther Med. 2020;20(3):2752–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li X, Wang Q, Ren Y, Wang X, Cheng H, Yang H, et al. Tetramethylpyrazine protects retinal ganglion cells against H2O2induced damage via the microRNA182/mitochondrial pathway. Int J Mol Med. 2019;44(2):503–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng CL, Hu CB, Ling ST, Zhao N, Bao LH, Zhou F, et al. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ. 2021;28(3):1041–61.

    Article  CAS  PubMed  Google Scholar 

  42. Cong M, Shen M, Wu X, Li Y, Wang L, He Q, et al. Improvement of sensory neuron growth and survival via negatively regulating PTEN by miR-21-5p-contained small extracellular vesicles from skin precursor-derived Schwann cells. Stem Cell Res Ther. 2021;12(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun. 2019;10(1):4136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y, Li Y, et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA. 2012;109(23):9149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tassew N, Charish J, Shabanzadeh A, Luga V, Harada H, Farhani N, et al. Exosomes mediate mobilization of autocrine wnt10b to promote axonal regeneration in the injured CNS. Cell Rep. 2017;20(1):99–111.

    Article  CAS  PubMed  Google Scholar 

  46. Koh K, Park M, Bae ES, Duong VA, Park JM, Lee H, et al. UBA2 activates Wnt/beta-catenin signaling pathway during the protection of R28 retinal precursor cells from hypoxia by extracellular vesicles derived from placental mesenchymal stromal cells. Stem Cell Res Ther. 2020;11(1):428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ortega A, Martinez-Arroyo O, Forner MJ, Cortes R. Exosomes as drug delivery systems: endogenous nanovehicles for treatment of systemic lupus erythematosus. Pharmaceutics. 2020;13(1):3.

    Article  CAS  PubMed Central  Google Scholar 

  48. Mead B, Ahmed Z, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2018;59:5473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma. Investig Ophthalmol Vis Sci. 2018;59:702–14.

    Article  CAS  Google Scholar 

  50. Dong X, Lei Y, Yu Z, Wang T, Liu Y, Han G, et al. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics. 2021;11(11):5107–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yonar M, Uehara M, Banouni N, Kasinath V, Li X, Jiang L, et al. Cellular mechanisms of rejection of optic and sciatic nerve transplants: an observational study. Transplant Direct. 2020;6(8):e589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suzuki N, Shimizu J, Takai K, Arimitsu N, Ueda Y, Takada E, et al. Establishment of retinal progenitor cell clones by transfection with Pax6 gene of mouse induced pluripotent stem (iPS) cells. Neurosci Lett. 2012;509(2):116–20.

    Article  CAS  PubMed  Google Scholar 

  53. Gokoffski KK, Lam P, Alas BF, Peng MG, Ansorge HRR. Optic nerve regeneration: how will we get there? J Neuroophthalmol. 2020;40(2):234–42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Grant of the Heilongjiang province of China (H2018035, No. 2020H040), and The Innovation and Development Foundation of First Affiliated Hospital of Harbin Medical University (2018L002).

Author information

Authors and Affiliations

Authors

Contributions

HZL carried out literature searches, and did data interpretation and writing; HZL did writing and editing; FW, YS, and FT conceptualized the paper, and did writing and editing. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ying Su, Feng Wang or Feng Tao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Su, Y., Wang, F. et al. Exosomes: a new way of protecting and regenerating optic nerve after injury. Human Cell 35, 771–778 (2022). https://doi.org/10.1007/s13577-022-00688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00688-3

Keywords

Navigation