Skip to main content

Advertisement

Log in

Effects of multicycle gonadotropin-releasing hormone antagonist protocols on oxidative stress of follicular fluid and ovarian granulosa cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The effect of repeated multicycle gonadotropin-releasing hormone antagonist (GnRH-ant) protocols on oxidative stress (OS) in follicular fluid (FF) and ovarian granulosa cells (GCs) remains unclear. This study investigated the effects of repeated multicycle GnRH-ant protocols on OS markers of FF and ovarian GCs. A total of 145 patients were enrolled and divided into four groups: 1 cycle group (n = 42), 2 cycles group (n = 37), 3 cycles group (n = 45), and 4–5 cycles group (n = 21). The FF and ovarian GCs of the patients were collected on the day of last oocyte retrieval and the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were tested by ELISA. The results showed that the serum estradiol levels on hCG injection day in the 3 and 4–5 cycles were significantly (P < 0.05) lower than in the 1 and 2 cycles. The number of retrieved oocytes (12.1 ± 3.3 in cycle 1, 11.7 ± 3.1 in cycle 2, 10.4 ± 2.4 in cycle 3, and 9.4 ± 2.4 in cycles 4–5), embryos with two pronuclei (7.6 ± 3.0 in cycle 1, 7.0 ± 2.5 in cycle 2, 6.2 ± 2.6 in cycle 3, and 5.5 ± 2.1 in cycles 4–5), and the rates of high-quality embryos (52.2% in cycle 1, 47.9% in cycle 2, 38.6% in cycle 3, and 36.5% in cycles 4–5), implantation (35.4% in cycle 1, 32.4% in cycle 2, 23.8% in cycle 3, and 22.9% in cycles 4–5) and clinical pregnancy (50.0% in cycle 1, 43.2% in cycle 2, 33.3% in cycle 3, and 23.8% in cycles 4–5) in cycles 3 and 4–5 were significantly (P < 0.05) lower than those in cycles 1 and 2. Compared with 1 and 2 cycles, the 8-OHdG and SOD were significantly increased in the 3–5 cycles, while the CAT and GSH-Px levels were significantly decreased. Together, this study reveals repeated COS with the use of GnRH-ant protocols results in OS and changes the follicle microenvironment of FF and GCs, possibly leading to poor IVF outcomes in patients with 3–5 cycles of COS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AMH:

Anti-Müllerian hormone

BMI:

Body mass index

CAT:

Catalase

COS:

Controlled ovarian stimulation

FF:

Follicular fluid

FSH:

Follicular stimulating hormone

GCs:

Granulosa cells

Gn:

Gonadotropin hormone

GnRH:

Gonadotropin-releasing hormone

GSH-Px:

Glutathione peroxidase

hCG:

Human chorionic gonadotrophin

IVF-ET:

In vitro fertilization embryo transfer

MDA:

Malondialdehyde

OS:

Oxidative stress

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

4-HNE:

4-Hydroxynonenal

8-OHdG:

8-Hydroxy-2-deoxyguanosine

References

  1. Nuñez-Calonge R, Cortés S, Gutierrez Gonzalez LM, Kireev R, Vara E, Ortega L, et al. Oxidative stress in follicular fluid of young women with low response compared with fertile oocyte donors. Reprod Biomed Online. 2016;32(4):446–56.

    Article  PubMed  CAS  Google Scholar 

  2. Silberstein T, Trimarchi JR, Gonzalez L, Keefe DL, Blazar AS. Pregnancy outcome in in vitro fertilization decreases to a plateau with repeated cycles. Fertil Steril. 2005;84(4):1043–5.

    Article  PubMed  Google Scholar 

  3. Shapiro BS, Richter KS, Harris DC, Daneshmand ST. Dramatic declines in implantation and pregnancy rates in patients who undergo repeated cycles of in vitro fertilization with blastocyst transfer after one or more failed attempts. Fertil Steril. 2001;76(3):538–42.

    Article  CAS  PubMed  Google Scholar 

  4. Rabinson J, Ashkenazi J, Homburg R, Meltcer S, Anteby EY, Orvieto R. Repeated in vitro fertilization cycle attempts in patients undergoing controlled ovarian hyperstimulation with use of gonadotropin-releasing hormone antagonists. Fertil Steril. 2009;91(4):1473–5.

    Article  CAS  PubMed  Google Scholar 

  5. Chao HT, Lee SY, Lee HM, Liao TL, Wei YH, Kao SH. Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries. Ann NY Acad Sci. 2005;1042:148–56.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Lai Z, Shi L, Tian Y, Luo A, Xu Z, et al. Repeated superovulation increases the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging in mice. Aging. 2018;10(5):1089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engel JB, Griesinger G, Schultze-Mosgau A, Felberbaum R, Diedrich K. GnRH agonists and antagonists in assisted reproduction: pregnancy rate. Reprod Biomed Online. 2006;13(1):84–7.

    Article  CAS  PubMed  Google Scholar 

  8. Pu D, Wu J, Liu J. Comparisons of GnRH antagonist versus GnRH agonist protocol in poor ovarian responders undergoing IVF. Hum Reprod. 2011;26(10):2742–9.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Inany HG, Youssef MA, Aboulghar M, Broekmans F, Sterrenburg M, Smit J, et al. GnRH antagonists are safer than agonists: an update of a Cochrane review. Hum Reprod Update. 2011;17(4):435.

    Article  PubMed  Google Scholar 

  10. Akman MA, Erden HF, Tosun SB, Bayazit N, Aksoy E, Bahceci M. Comparison of agonistic flare-up-protocol and antagonistic multiple dose protocol in ovarian stimulation of poor responders: results of a prospective randomized trial. Hum Reprod. 2001;16(5):868–70.

    Article  CAS  PubMed  Google Scholar 

  11. Lainas TG, Sfontouris IA, Papanikolau EG, Zorzovilis JZ, Petsas GK, Lainas GT, et al. Flexible GnRH antagonist versus flare-up GnRH agonist protocol in poor responders treated by IVF: a randomized controlled trial. Hum Reprod. 2008;23(6):1355–8.

    Article  CAS  PubMed  Google Scholar 

  12. Demirol A, Gurgan T. Comparison of microdose flare-up and antagonist multiple-dose protocols for poor-responder patients: a randomized study. Fertil Steril. 2009;92(2):481–5.

    Article  PubMed  Google Scholar 

  13. Choi YS, Ku SY, Jee BC, Suh CS, Choi YM, Kim JG, et al. Comparison of follicular fluid IGF-I, IGF-II, IGFBP-3, IGFBP-4 and PAPP-A concentrations and their ratios between GnRH agonist and GnRH antagonist protocols for controlled ovarian stimulation in IVF-embryo transfer patients. Hum Reprod. 2006;21(8):2015–21.

    Article  CAS  PubMed  Google Scholar 

  14. Celik E, Celik O, Kumbak B, Yilmaz E, Turkcuoglu I, Simsek Y, et al. A comparative study on oxidative and antioxidative markers of serum and follicular fluid in GnRH agonist and antagonist cycles. J Assist Reprod Genet. 2012;29(11):1175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clavero A, Castilla JA, Núñez AI, García-Peña ML, Maldonado V, Fontes J, et al. Apoptosis in human granulosa cells after induction of ovulation in women participating in an intracytoplasmic sperm injection program. Eur J Obstet Gynecol Reprod Biol. 2003;110(2):181–5.

    Article  PubMed  Google Scholar 

  16. Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54.

    Article  CAS  PubMed  Google Scholar 

  17. Ma CH, Yan LY, Qiao J, Sha W, Li L, Chen Y, et al. Effects of tumor necrosis factor-alpha on porcine oocyte meiosis progression, spindle organization, and chromosome alignment. Fertil Steril. 2010;93(3):920–6.

    Article  CAS  PubMed  Google Scholar 

  18. Karuputhula NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lu X, Wu Z, Wang M, Cheng W. Effects of vitamin C on the outcome of in vitro fertilization–embryo transfer in endometriosis: a randomized controlled study. J Int Med Res. 2018;46(11):4624–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seino T, Saito H, Kaneko T, et al. Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril. 2002;77(6):1184–90.

    Article  PubMed  Google Scholar 

  21. Tulić L, Vidaković S, Tulić I, Ćurčić M, Stojnić J, Jeremić K. Oxidative stress markers in GnRH agonist and antagonist protocols in IVF. J Med Biochem. 2017;36(2):163–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Oral O, Kutlu T, Aksoy E, Fiçicioğlu C, Uslu H, Tuğrul S. The effects of oxidative stress on outcomes of assisted reproductive techniques. J Assist Reprod Genet. 2006;23(2):81–5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matos L, Stevenson D, Gomes F, Silva-Carvalho JL, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Mol Hum Reprod. 2009;15(7):411–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rahiminejad ME, Moaddab A, Ganji M, Eskandari N, Yepez M, Rabiee S, et al. Oxidative stress biomarkers in endometrial secretions: a comparison between successful and unsuccessful in vitro fertilization cycles. J Reprod Immunol. 2016;116:70–5.

    Article  CAS  PubMed  Google Scholar 

  25. Pasqualotto EB, Lara LV, Salvador M, Sobreiro BP, Borges E, Pasqualotto FF. The role of enzymatic antioxidants detected in the follicular fluid and semen of infertile couples undergoing assisted reproduction. Hum Fertil. 2009;12(3):166–71.

    Article  CAS  Google Scholar 

  26. Cocchia N, Tafuri S, Del Prete C, Palumbo V, Esposito L, Avallone L, et al. Antioxidant supplementation to medium for in vitro embryo production in Felis catus. Pol J Vet Sci. 2019;22(3):573–9.

    CAS  PubMed  Google Scholar 

  27. Liang Y, Cao QY, Gao X, Du H. Increased bone morphogenetic protein-6 in follicular fluid and granulosa cells may correlate with fertilization and embryo quality in humans. Exp Ther Med. 2017;14(2):1171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alpha scientists in reproductive medicine and ESHRE special interest group of embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83.

    Article  Google Scholar 

  29. ESHRE special interest group of embryology and alpha scientists in reproductive medicine. The Vienna consensus: report of an expert meeting on the development of art laboratory performance indicators. Hum Reprod Open. 2017;2017(2):hox11.

    Google Scholar 

  30. Simonstein F, Mashiach-Eizenberg M, Revel A, Younis JS. Assisted reproduction policies in Israel: a retrospective analysis of in vitro fertilization-embryo transfer. Fertil Steril. 2014;102(5):1301–6.

    Article  PubMed  Google Scholar 

  31. Wang F, Sun HX, Wang JX, Zhang NY, Hu YL. Pregnancy results from repeated cycles of in vitro fertilization and embryo transfer. Natl J Androl. 2010;16(11):1007–11.

    Google Scholar 

  32. Templeton A, Morris JK. Reducing the risk of multiple births by transfer of two embryos after in vitro fertilization. N Engl J Med. 1998;339(9):573–7.

    Article  CAS  PubMed  Google Scholar 

  33. Homburg R, Meltcer S, Rabinson J, Scharf S, Anteby EY, Orvieto R. Is there a limit for the number of in vitro fertilization cycles for an individual patient? Fertil Steril. 2009;91(4 Suppl):1329–31.

    Article  PubMed  Google Scholar 

  34. Caligara C, Navarro J, Vargas G, Simón C, Pellicer A, Remohí J. The effect of repeated controlled ovarian stimulation in donors. Hum Reprod. 2001;16(11):2320–3.

    Article  CAS  PubMed  Google Scholar 

  35. Kolibianakis E, Osmanagaoglu K, Camus M, Tournaye H, Van Steirteghem A, Devroey P. Effect of repeated assisted reproductive technology cycles on ovarian response. Fertil Steril. 2002;77(5):967–70.

    Article  PubMed  Google Scholar 

  36. Park SJ, Kim TS, Kim JM, Chang KT, Lee HS, Lee DS. Repeated superovulation via PMSG/hCG administration induces 2-Cys peroxiredoxins expression and overoxidation in the reproductive tracts of female mice[J]. Mol Cells. 2015;38(12):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalthur G, Salian SR, Nair R, Mathew J, Adiga SK, Kalthur SG, et al. Distribution pattern of cytoplasmic organelles, spindle integrity, oxidative stress, octamer-binding transcription factor 4 (Oct4) expression and developmental potential of oocytes following multiple superovulation. Reprod Fertil Dev. 2016;28(12):2027–38.

    Article  CAS  PubMed  Google Scholar 

  38. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44(3):280–7.

    Article  CAS  PubMed  Google Scholar 

  39. Liu B, Wang JL, Wang XM, Zhang C, Dai JG, Huang XM, et al. Reparative effects of lycium barbarum polysaccharide on mouse ovarian injuries induced by repeated superovulation. Theriogenology. 2020;145:115–25.

    Article  CAS  PubMed  Google Scholar 

  40. Thaker R, Mishra V, Gor M, Agarwal R, Sheth H, Kapadia P, et al. The role of stimulation protocol, number of oocytes retrieved with respect to follicular fluid oxidative stress and IVF outcome. Hum Fertil (Camb). 2020;23(1):23–31.

    Article  CAS  Google Scholar 

  41. Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Antioxidant enzyme activity and oxidative stress in bovine oocyte in-vitro maturation. IUBMB Life. 2001;51(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  42. Younis A, Clower C, Nelsen D, Butler W, Carvalho A, Hok E, et al. The relationship between pregnancy and oxidative stress markers on patients undergoing ovarian stimulations. J Assist Reprod Genet. 2012;29(10):1083–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Da Broi MG, de Albuquerque FO, de Andrade AZ, Cardoso RL, Jordão Junior AA, Navarro PA. Increased concentration of 8-hydroxy-2′-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. 2016;366(1):231–42.

    Article  PubMed  CAS  Google Scholar 

  44. Takami M, Preston SL, Toyloy VA, Behrman HR. Antioxidants reversibly inhibit the spontaneous resumption of meiosis. Am J Physiol. 1999;276(4):E684–8.

    CAS  PubMed  Google Scholar 

  45. Olszak-Wąsik K, Bednarska-Czerwińska A, Olejek A, Tukiendorf A. From, “every day” hormonal to oxidative stress biomarkers in blood and follicular fluid, to embryo quality and pregnancy success? Oxid Med Cell Longev. 2019;2019:1092415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Paszkowski T, Traub AI, Robinson SY, McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta. 1995;236(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  47. Masjedi F, Keshtgar S, Agah F, Karbalaei N. Association between sex steroids and oxidative status with vitamin D levels in follicular fluid of non-obese PCOS and healthy women. J Reprod Infertil. 2019;20(3):132–42.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81774359, to HLD and No. 81803924, to LJF) and Postgraduate Innovation Funding Project of Hebei Province of China (No. CXZZBS2018150, to YCM).

Author information

Authors and Affiliations

Authors

Contributions

YCM, ZMZ and HLD designed this study. ZMZ and GMH collected cell samples, NC and YLF collected clinical data. YCM, YCC, ZWT, JRG and LJF detected the biochemical indicators. YCM, ZMZ and GMH analyzed the data; YCM and YCC wrote the manuscript. GBL revised the manuscript. ZMZ and HLD reviewed the manuscript. YCM and ZMZ contributed equally to this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huilan Du.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Ethics approval

This study was approved by the Ethics Committee of Hebei University of Chinese Medicine (Shijiazhuang, China).

Consent to participate

All enrolled patients had informed consent and signed informed consent forms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhao, Z., Hao, G. et al. Effects of multicycle gonadotropin-releasing hormone antagonist protocols on oxidative stress of follicular fluid and ovarian granulosa cells. Human Cell 34, 1324–1334 (2021). https://doi.org/10.1007/s13577-021-00545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00545-9

Keywords

Navigation