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Abstract
The two one-sided tests (TOST) method for mean equivalence or aver-

age equivalence has been extended to assessing similarity or switchability
for individual equivalence in clinical trials. Tolerance interval procedures
are available to establish similarity with respect to the proportion of the
response differences covered by a prespecified threshold range. However, the
extended TOST procedures based on tolerance intervals are potentially sus-
ceptible to the control of Type I errors. This article aims to present an exact
approach with the specified Type I error probability for appraising simi-
larity between two treatments in comparative studies with heterogeneous
variances. Analytic examination and numerical comparison are conducted to
clarify the utility of the suggested similarity test and the drawback of the
current TOST procedures. To enhance the usefulness of the described exact
method, the related power and sample size issues are also considered. Com-
puter algorithms are provided to implement the proposed test procedure,
power calculation, and sample size determination in similarity studies.

AMS (2000) subject classification. C12; C18; I10.
Keywords and phrases. Equivalence trials, method comparison, percentile,
similarity test, tolerance interval.

1 Introduction

The conventional tests of significance focus primarily on the detection of
difference between treatment effects. Alternatively, equivalence procedures
provide a better approach to demonstrating agreement or compatibility for
method comparisons in biological and medical sciences. The two one-sided
tests (TOST) procedure of Schuirmann (1981) and Westlake (1981) is the
most common method for claiming mean equivalence or average equivalence
between two treatment groups. Despite the approximate nature, the TOST
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procedure still maintains adequate control of Type I errors. The detection
of mean equivalence by TOST is technically identical to assess whether
the ordinary 100(1 − 2α)% two-sided confidence interval of mean difference
lie within the designated equivalence bounds. Accordingly, the conceptual
simplicity and computational ease facilitate general acceptance in practical
equivalence problems. The technical discussion and fundamental review of
different types of equivalence tests can be found in Berger and Hsu (1996)
and Meyners (2012), respectively. Moreover, the concepts and techniques for
the design and analysis of equivalence studies are described in Chow and Liu
(2008), Hauschke et al. (2007), and Wellek (2010).

Various statistical principles and tools for measuring agreement were
addressed in Barnhart et al. (2007), Choudhary and Nagaraja (2004, 2017),
and Lin et al. (2012). Particularly, the TOST principle has been extended to
evaluate similarity or switchability for individual equivalence in terms of the
desired proportion of the measurement differences between two subjects. The
basic concept and rationale of individual equivalence are given in Anderson
(1993), Anderson and Hauck (1990), Hauck and Anderson (1992), Schall and
Luus (1993), and Sheiner (1992). An important application of the similarity
tests is to judge the individual bioequivalence between the test and reference
formulations of a drug. Note that the one-sided confidence intervals of nor-
mal percentiles have a close link to the one-sided tolerance bounds of a nor-
mal distribution. Accordingly, tolerance interval technique is frequently used
to evaluate the percentiles of measurement difference in similarity studies.
General discussions of tolerance interval estimation are available in Krish-
namoorthy and Mathew (2009) and Meeker et al. (2017). Consequently, the
rejection regions of extended TOST tests are constructed with the tolerance
limits for the designated proportions of normal distributions. The similar-
ity problem is further complicated by the potentially unequal variances of
the two treatment groups. Similar to the renowned Behrens-Fisher problem,
approximate degrees-of-freedom techniques are often described to circum-
vent the inference issues under variance heterogeneity. Related heterogeneous
TOST for mean equivalence are presented in Dannenberg et al. (1994), Dette
and Munk (1997), Jan and Shieh (2017).

Several TOST procedures based on tolerance intervals were described in
Chen and Hsiao (2020), and Dong et al. (2014). These TOST procedures
declare similarity when the confidence limits for the percentiles of response
differences are contained in the specified thresholds. Despite the obtained
critical regions have a connection to the tolerance intervals, the TOST proce-
dures are not constructed with respect to the principals of hypothesis testing.
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Notably, Berger and Hsu (1996) noted that the incorrect association between
the size-α tests with the 100(1 − 2α)% confidence sets is rather confusing
and should be deemphasized. The overall message is that statistically sound
techniques should be adopted to derive a test with the specified Type I error
rate. Moreover, Berger and Hsu (1996) cautioned that there is no general
guarantee that a TOST procedure in terms of a 100(1−2α)% confidence set
will result in a size-α test. Related problems were also demonstrated in Shieh
(2020, 2022) for evaluating agreement between two methods of quantitative
measurements. The prescribed TOST methods for assessing similarity are
intrinsically vulnerable to the ultimate problem of Type I error control. It
is sensible to consider a proper test with the desired Type I error rate.

This article aims to describe an improved approach to establishing simi-
larity between two treatments in comparative studies. The critical values are
computed to meet the specified Type I error rate under the boundary param-
eter configurations of the null hypothesis. The proposed procedure declares
similarity when the critical interval for the central proportion of measure-
ment differences is within the designated threshold bounds. To explicate the
relative behavior in Type I error control, simulation studies were conducted
to examine and compare the rejection rates of the proposed approach and
the TOST procedures. Moreover, power and sample size calculations of the
suggested test are also described and evaluated. A real biosimilarity example
of biological and reference products is presented to demonstrate the proposed
techniques and computer algorithms for critical value, statistical power, and
sample size calculations. The developed software programs are available as
supplemental material.

2 The Proposed Similarity Test
Consider independent random samples from two normal populations:

Xij ∼ N(μi, σ
2
i ), (1)

where μi and σ2
i are unknown parameters, j = 1...Ni, and i = 1 and 2. To

establish the similarity between two treatment groups, the central portion
of the difference between the individual measurements X1j − X2j′ needs to
lie within a reasonable range around zero. The 100 · pth percentile of the
distribution N(μD, σ2

D) of X1j − X2j′ is denoted by

θp = μD + zpσD, (2)
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where μD = μ1 − μ2, σ2
D = σ2

1 + σ2
2, zp is the the 100 · pth percentile of

the standard normal distribution N(0, 1), and 0 < p < 1. The null and
alternative hypotheses of the similarity test are expressed as

H0 : θ1−p ≤ ΔL or ΔU ≤ θp versus H1 : ΔL < θ1−p and θp < ΔU , (3)

where p > 0.5 and the two designated constants ΔL and ΔU represent the
lower and upper thresholds of the percentile range for declaring similarity
between two groups. The alternative hypothesis indicates that there is at
least p∗ = 2p − 1 central proportion of the distribution N(μD, σ2

D) in the
range (ΔL, ΔU ). Because of ΔL < θ1−p and θp < ΔU , the coverage probabil-
ity Φ{(ΔU − μD)/σD} − Φ{(ΔL − μD)/σD} > p∗ where Φ is the cumulative
density function of the standard normal distribution.

Within the framework of the Behren-Fisher problem, the approximate
degrees-of-freedom procedure of Welch (1938) is commonly recommended as
an alternative to the usual t test for mean comparison. The well-established
Welch t statistic is of the form

T =
D

SDN
, (4)

where D = X̄1 − X̄2, X̄1 =
∑N1

j=1 X1j/N1, X̄2 =
∑N2

j=1 X2j/N2, S2
DN =

S2
1/N1 + S2

2/N2, S2
1 =

∑N1
j=1(X1j − X̄1)2/κ1, S2

2 =
∑N2

j=1(X2j − X̄2)2/κ2,
κ1 = N1 −1, κ2 = N2 −1. With the same theoretical arguments and analytic
derivations in Welch (1938), it can be shown that the statistic T has the
general approximate distribution

T ∼̇ t(ν, λ), (5)

where t(ν, λ) is a noncentral t distribution with degrees of freedom ν, and
noncentrality parameter λ = μD/σDN , σ2

DN = σ2
1/N1 + σ2

2/N2, and

ν =
(σ2

1/N1 + σ2
2/N2)2

(σ2
1/N1)2/(N1 − 1) + (σ2

2/N2)2/(N2 − 1)
.

In view of the desirable properties and practical applications of the T statis-
tic, an extended Welch procedure is proposed here for similarity assessment.

For the equidistant range of (θ1−p, θp) around the mean difference μD,
the suggested exact rejection region for declaring similarity is of the form

EXAT = {ΔL < θ̂EL and θ̂EU < ΔU}, (6)
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where θ̂EL = D − τESDN , θ̂EU = D + τESDN , and the quantity τE is desig-
nated to control the Type I error rate so that sup

H0

P{ΔL ≤ θ̂EL and θ̂EU ≤
ΔU} = α. It is important to note that the supremum sup

H0

P{ΔL ≤
θ̂EL and θ̂EU ≤ ΔU} is attained when the two percentiles coincide the
boundary values {θ1−p, θp} = {ΔL, ΔU} or alternatively, μD = (ΔU +ΔL)/2
and σD = (ΔU −ΔL)/(2zp). Thus, the actual magnitude of τE is determined
by

sup
Θ

P{θ1−p ≤ θ̂EL and θ̂EU ≤ θp} = α (7)

with respect to the boundary set of null parameters Θ = {(μ1, μ2, σ
2
1, σ

2
2)|μD

= (ΔU + ΔL)/2 and σD = (ΔU − ΔL)/(2zp)}.
With the model assumption given in Eq. (1), it is evident that Z =

(D − μD)/σDN ∼ N(0, 1) and K = κ1S
2
1/σ2

1 + κ2S
2
2/σ2

2 ∼ χ2(κ) where
κ = N1 + N2 − 2 and B = {κ1S

2
1/σ2

1}/K ∼ Beta{κ1/2, κ2/2}. The random
variables Z, K, and B are mutually independent. Moreover, the sample
variance S2

DN of the sample mean difference D can be written as S2
DN = K ·G

where G = (σ2
1/N1)(B/κ1)+(σ2

2/N2){(1 - B)/κ2}. Note that G is a function
of the random variable B. The probability evaluation in Eq. (7) can be
rewritten as

sup
Θ

EBEK [P (−Z0 < Z < Z0)] = sup
Θ

EBEK [2Φ(Z0) − 1] = α, (8)

where Z0 = {zpσD − τE(K0G)1/2}/σDN , K0 = min{K, (z2
pσ2

D)/(τ2
EG)}, and

the expectations EB and EK are taken with respect to the distributions
of B and K, respectively. It is vital to emphasize that the mean difference
μD is irrelevant to the Type I error calculation and the quantity Z0 can be
simplified as a function of the variance ratio ω = σ2

1/σ2
2. With the given

values of variances (σ2
1, σ

2
2) and other configurations, the particular critical

value τE(σ2
1, σ

2
2) that meets the equality EBEK [2Φ(Z0) − 1] = α can be

determined with an iterative algorithm.
Note that the critical value τE(σ2

1, σ
2
2) to attain the equality EBEK [2Φ

(Z0) − 1] = α varies with the specified variance components (σ2
1, σ

2
2) in

which the sum of the two variance components σ2
D = (ΔU − ΔL)2/(4z2

p).
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Thus, the optimal critical value τE is the maximum of all critical values
τE(σ2

1, σ
2
2) correspond to the set of variance combinations {(σ2

1, σ
2
2)|σ2

D =
(ΔU − ΔL)2/(4z2

p)}. Due to the complexity nature, it requires a searching
process to find the right solution. Detailed numerical investigations showed
that the resulting values τE(σ2

1, σ
2
2) has a U-shape form for σ2

1 in [0, (ΔU −
ΔL)2/(4z2

p)]. Therefore, the optimal critical value is the maximum of the two
extremes as τE = max{τE(0, σ2

D), τE(σ2
D, 0)}. It is constructive to note when

σ2
D is fixed that the variance σ2

DN = σ2
1/N1 + σ2

2/N2 = σ2
D/N1 if N1 = N2.

Also, σ2
DN has a minimum min(σ2

DN ) = σ2
D/N1 for (σ2

1, σ
2
2) = (σ2

D, 0) if
N1 > N2, and min(σ2

DN ) = σ2
D/N2 for (σ2

1, σ
2
2) = (0, σ2

D) if N1 < N2.
Following the prescribed results, the suggested agreement test rejects the

null hypothesis if
τE < TL and TU < −τE , (9)

where TL = (D − ΔL)/SDN and TU = (D − ΔU )/SDN . Under the alterna-
tive hypothesis, it can be shown that the power function of the suggested
similarity test is of the form

ΨE = P{ΔL < θ̂EL and θ̂EU < ΔU} = EBEK [Φ(ZU ) − Φ(ZL)], (10)

where ZL = {ΔL − μD + τE(KEG)1/2/σDN , ZU = {ΔU − μD −
τE(KEG)1/2/σDN , and KE = min{K, (ΔU−ΔL)2/(4τ2

EG)}. The power func-
tion ΨE can be utilized to compute the minimal sample sizes for achieving
the nominal power under the designated model configurations in planning
research studies. The computations of the critical value and statistical power
of the described extended Welch procedure can be readily conducted with
the beta, chi-square, and normal probability functions in common statistical
packages as shown in the supplementary materials.

3 TOST Procedures

The TOST procedure of Schuirmann (1981) and Westlake (1981) is widely
used for evaluating mean equivalence or average equivalence between two
treatment groups. To demonstrate comparability between two treatment
means for the TOST test, it is statistically identical to examine whether
the ordinary 100(1 - 2α)% equal-tailed confidence interval of mean differ-
ence is entirely within the equivalence bounds for declaring equivalence. The
same notion was extended to individual equivalence assessment for inter-
changeability or biosimilarity in Chen and Hsiao (2020), and Dong et al.
(2014).
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3.1 The Dong, Tsong and Shen Procedure With the approximate
degrees-of-freedom of the Welch (1938) statistic, it can be shown that the
approximate lower confidence limit of a 100(1−2α)% equal-tailed confidence
interval of θ1−p is

θ̂WL = D − τW SDN , (11)

where τW = t1−α(ν̂, zpH) is the 100(1 − α)%th percentile of a noncentral t
distribution t(ν̂, zpH) with degrees of freedom ν̂ and noncentrality parameter
zpH with H2 = S2

D/S2
DN , S2

D = S2
1 + S2

2 , and

ν̂ =
(S2

1/N1 + S2
2/N2)2

(S2
1/N1)2/(N1 − 1) + (S2

2/N2)2/(N2 − 1)
.

Also, the upper confidence limit of a 100(1 − 2α)% equal-tailed confidence
interval of θp can be approximated by

θ̂WU = D + τW SDN . (12)

The resulting rejection region of the Welch-type TOST procedure in Dong
et al. (2014, Section 2.2) is

TOSTW = {ΔL < θ̂WL and θ̂WU < ΔU}. (13)

Note that the formulations in Section 2.2 of Dong et al. (2014) have different
notation and the critical value τW was denoted by t1−α(ν, zpη) where η2 =
σ2

D/σ2
DN . It is a common practice to apply the substitution of (S2

D, S2
DN ) for

(σ2
D, σ2

DN ) in ν and η for data analysis. Evidently, the underlying properties
of the approximation are somehow affected by the direct replacement.

3.2 The Chen and Hsiao Procedure To construct approximate one-
sided tolerance limits for the difference of two independent normal variables,
Hall (1984) suggested that the lower confidence limit of a 100(1 − 2α)%
equal-tailed confidence interval of θ1−p is

θ̂H1L = D − τH1SD, (14)

where τH1 = t1−α(ν̂1, zpH1)/H1, ν̂1 = (A2
11/κ1 + A2

12/κ2)−1, A11 =
a1S

2
1/(a1S

2
1 + S2

2), A12 = S2
2/(a1S

2
1 + S2

2), H2
1 = (a1S

2
1 + S2

2)/(a1S
2
1/N1 +

S2
2/N2), and a1 = (N2 − 3)/(N2 − 1). On the other hand, the upper confi-

dence limit of a 100(1 − 2α)% equal-tailed confidence interval of θp can be
expressed as

θ̂H1U = D + τH1SD. (15)
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Due to the undesirable features in the tolerance interval estimation of
Hall (1984), Guo and Krishnamoorthy (2004) suggested that better estimates
of the prescribed lower confidence limit of θ1−p and upper confidence limit
of θp can be obtained by

θ̂HL = D − τHSD and θ̂HU = D + τHSD, (16)

respectively, where τH = max(τH1, τH2), τH2 = t1−α(ν̂2, zpH2)/H2, ν̂2 =
(A2

21/κ1 + A2
22/κ2)−1, A21 = S2

1/(S2
1 + a2S

2
2), A22 = a2S

2
2/(S2

1 + a2S
2
2),

H2
2 = (S2

1 + a2S
2
2)/(S2

1/N1 + a2S
2
2/N2), and a2 = (N1 − 3)/(N1 − 1). Note

that the two percentiles τH1 and τH2 have parallel forms and are functions
of a1 and a2, respectively. The consideration of the two quantities a1 and a2

for H1 and H2 is due to the fact that they yield unbiased estimation of the
two different variance ratios E[a1S

2
1/S2

2 ] = σ2
1/σ2

2 and E[a2S
2
2/S2

1 ] = σ2
2/σ2

1.
As a direct extension of Guo and Krishnamoorthy (2004), Chen and Hsiao
(2020) considered the adapted rejection region for assessing similarity

TOSTH = {ΔL < θ̂HL and θ̂HU < ΔU}. (17)

3.3 Critical Values Note that the critical values τW and τH of the
two TOST procedures are functions of the sample variances (S2

1 , S2
2). Thus,

the actual values of τW and τH presumably differ from sample to sample.
In contrast, the critical value τE of the suggested approach is completely
determined by the designated bounds (ΔL, ΔU ) and does not depend on
observed measurements. It should be emphasized that the estimated bounds
(θ̂EL, θ̂EU ), (θ̂WL, θ̂WU ) and (θ̂HL, θ̂HU ) for the prescribed rejection regions
are all equidistant around the sample mean difference. The null hypothesis
is rejected if such an interval is contained within the designated bounds
(ΔL, ΔU ). Accordingly, a narrower interval is more likely to reject the null
hypothesis and to claim similarity between the two treatments.

When p∗ = 0.80, p = 0.90, ΔL = z0.10 = −1.2816, ΔU = z0.90 = 1.2816,
N1 = 10, N2 = 20, and α = 0.05, it can be shown that the critical value
is τE = 7.0605 when the boundary parameter settings are μD = 0 and
(σ2

1, σ
2
2) = (0, 1). With the population variances (σ2

1, σ
2
2) = (0, 1), the sample

variances may be (S2
1 , S2

2) = (0.0001, 0.9999) and then, the critical values of
the three TOST procedures are τW = 8.6124 and τH = 1.9260. In this case
of S2

D = 1 and S2
DN = 0.0500, the half-width of the intervals (θ̂EL, θ̂EU ),

(θ̂WL, θ̂WU ) and (θ̂HL, θ̂HU ) can be computed as τESDN = 1.5789, τW SDN

= 1.9259, and τHSD = 1.9260, respectively. Alternatively, when (S2
1 , S2

2)
= (0.0020, 2.0000) or S2

D = 2.0020 and S2
DN = 0.1002, the critical values
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change into τW = 8.6047 and τH = 1.9256. The corresponding half-widths for
the intervals (θ̂WL, θ̂WU ) and (θ̂HL, θ̂HU ) are τW SDN = 2.7238 and τHSD =
2.7246, respectively. Also, the critical value remains as τE = 7.0605 and the
half-width of the critical interval (θ̂EL, θ̂EU ) of the exact method is τESDN

= 2.2350.
These numerical results suggest that the paired bounds (θ̂WL, θ̂WU ) and

(θ̂HL, θ̂HU ) of the TOST procedures are nearly identical, whereas the bounds
(θ̂EL, θ̂EU ) of the proposed approach apparently have a smaller interval.
Because the exact method is constructed to have the desired control of Type
I error rate, the comparisons reveal the TOST methods may reject the null
hypothesis less often than the nominal level and tend to be conservative
test procedures. The performance of these similarity tests will be further
examined in the subsequent numerical investigations.

4 Type I Errors
Numerical results were presented in Chen and Hsiao (2020), and Dong et al.
(2014) to justify the TOST procedures for assessing similarity. However,
the Type I error appraisals of the TOST methods were not examined with
respect to the supremum of the boundary set of null parameters Θ defined
in Eq. (7). A proper and thorough evaluation is required to demonstrate the
underlying behavior of the similarity tests. Accordingly, simulation study
was conducted to inspect their Type I error performance under a variety of
model configurations.

To elucidate the potential discrepancy between the suggested approach
and the TOST procedures, the numerical investigations cover the central
proportion p∗ = 0.80, 0.90, and 0.95. For ease of illustration, the mean
and variance of the null distribution N(μD0, σ

2
D0) for the measurement dif-

ference X1j − X2j′ is chosen as μD0 = 0 and σ2
D0 = 1. Accordingly, the

designated thresholds (ΔL, ΔU ) are determined by ΔL = μD0 − zpσD0 and
ΔU = μD0+zpσD0. The resulting similarity bounds are (ΔL, ΔU ) = (-1.2816,
1.2816), (-1.6449, 1.6449), and (-1.9600, 1.9600) for p = 0.90, 0.95, and 0.975,
respectively. Four sets of sample sizes are considered: (N1, N2) = (10, 20),
(20, 50), (50, 100), and (100, 200). Through the empirical examination, the
significance level is fixed as α = 0.05.

The simulated Type I error rates of the agreement tests were computed
via Monte Carlo simulation of 10,000 independent data sets. Under the model
settings, the optimal critical value τE of the proposed procedure is attained
when (σ2

1, σ
2
2) = (0, 1). To avoid computational ambiguity and maintain theo-

retical implication, the variance components are slightly modified as (σ2
1, σ

2
2)
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= (0.0001, 0.9999). For the four test procedures, the simulated Type I error
rates were the proportion of the 10,000 replicates whose critical intervals
(θ̂EL, θ̂EU ), (θ̂WL, θ̂WU ) and (θ̂HL, θ̂HU ) were within the range of (ΔL, ΔU ).
Accordingly, the simulated Type I error probabilities under the four different
sample sizes are summarized in Tables 1, 2, and 3 for the three central por-
tions p∗ = 0.80, 0.90, and 0.95, respectively. The adequacy of the contending
procedures is determined by the difference between the simulated outcomes
and the nominal level 0.05 as shown in the tables.

The results in Tables 1-3 showed that the simulated Type I error rates of
the suggested approach are rather close to the nominal value 0.05. Evidently,
the proposed similarity test has excellent control of Type I errors for the
model configurations considered here. In contrast, the performance of the
TOST procedures is highly disturbing. Due to the supremum consideration,
the simulated type I error probabilities of the TOST methods of TOSTW
and TOSTH have the identical values. Specifically, the resulting simulated
Type I error rates are within the ranges of [0.0024, 0.0054], [0.0063, 0.0105],
and [0.0096, 0.0122] in Tables 1-3, respectively. The discrepancy between the
simulated alpha and nominal alpha only marginally decreased with larger
sample sizes. The small rejection rates suggest that the TOST procedures
are overly conservative. Unlike the demonstration and evaluation presented
in Chen and Hsiao (2020), and Dong et al. (2014), these findings reveal that
the TOST procedures do not have adequate Type I error control and cannot
be recommended for similarity assessments.

5 Power and Sample Size Calculations

Power and sample size calculations are crucial elements in planning research
designs. The related power and sample size problems for equivalence and
agreement tests were addressed in Shieh (2016, 2020, 2022). It is of practi-
cal concern to explicate the power and sample issues of the current similar-
ity test under variance heterogeneity. Accordingly, simulation studies were
conducted to demonstrate the accuracy of derived power function and the
usefulness of accompanying computer algorithm in sample size determina-
tions. Sample size planning requires detailed specifications of Type I error
rate α, nominal power 1−β, equivalence bounds (ΔL, ΔU ), null central por-
tion p∗, and the alternative settings include the mean values (μ1, μ2), error
variances (σ2

1, σ
2
2), and sample size allocation ratio r = N2/N1. Note that

the designated parameters (μ1, μ2, σ
2
1, σ

2
2) are chosen such that ΔL < θ1−p

and θp < ΔU under the alternative distribution N(μD, σ2
D).
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In the following numerical investigations, two central portions are consid-
ered: p∗ = 0.90 and 0.95 (p = 0.95 and 0.975). The corresponding threshold
bounds are (ΔL, ΔU ) = (-1.6449, 1.6449), and (-1.9600, 1.9600), respectively.
For the alternative distribution, the treatment means are (μ1, μ2) = (0, 0),
(0.05, 0), and (0.10, 0). Also, three pairs of error variances are evaluated:
(σ2

1, σ
2
2) = {(1/3)σ2

D, (2/3)σ2
D} for σ2

D = 0.6, 0.7 and 0.8. With the selected
configuration, the minimum total sample size NT = N1 + N2 is computed
for the balanced design r = 1 (N1 = N2), significance level α = 0.05, and
nominal power 1−β = 0.8. The estimated sample sizes and estimated power
levels are summarized in Table 4 for the combined 18 cases. It can be seen
from the results in Table 4 that the total sample sizes cover a wide range of
values. The smallest sample size is 96 under the settings of p∗ = 0.95, μD

= 0, and σ2
D = 0.6. In contrast, the particular scenario of p∗ = 0.90, μD =

0.10, and σ2
D = 0.8 give the largest sample size 1838. Evidently, these vital

configurations impose unique and distinct impact in power and sample size
calculations.

Moreover, simulation study was conducted to justify the accuracy of the
proposed power and sample size procedures. Under the prescribed model
configurations, the simulated power of the proposed similarity test was com-
puted via Monte Carlo simulation of 10,000 independent data sets. The sim-
ulated power and the difference between the simulated power and estimated
power are also summarized in Table 4. The small differences show that the
simulated power is almost identical to the estimated power. Thus, the sug-
gested power and sample size algorithms are accurate for general use. How-
ever, the proposed techniques are not currently available in statistical pack-
ages. Computer algorithms are developed to facilitate the application of the
recommended approaches for similarity studies. The achieved power levels
and estimated sample sizes can provide useful guidance about the meaning
and influence of the vital factors in the intended research.

6 An Application

To further exemplify the utility of the suggested techniques and accompany-
ing programs, a biosimilarity example in Chen and Hsiao (2020) is presented
and extended for the suggested assessments of similarity, power analysis, and
sample size determination.

Chen and Hsiao (2020) discussed a problem of appraising the biosimilar-
ity of the biological Epoetin Hospira with the reference product Epogen/Procrit
as documented in FDA (2017). The primary endpoint being examined in
Chen and Hsiao (2020) is the mean weekly dosage per kilogram of body
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weight during the last 4 weeks of the double-blind treatment period. The
sample sizes, sample means, and sample variances of the groups of US
Epogen/Procrit and Epoetin Hospira are (N1, N2) = (122, 124), (X̄1, X̄2)
= (81.9, 79.6), and (S2

1 , S2
2) = (2329.8218, 2357.1904), respectively. With

respect to the central portion p∗ = 0.90, the reference bounds for the simi-
larity study are chosen as (ΔL, ΔU ) = (-157.29, 157.29). It can be shown that
the mean difference D = 2.3, sample standard deviation SDN = 6.1730, and
critical value τE = 19.8063 at the significance level α=0.05. The resulting
critical region can readily be obtained as (θ̂EL, θ̂EU ) = (-119.9654, 124.5654).
It is clear that the interval falls within the designated thresholds (ΔL, ΔU ).
Thus, the null hypothesis H0 : θ0.05 ≤ -157.29 or 157.29 ≤ θ0.95 is rejected
and the result declares the biosimilarity properties between the two drug
formulations of Epoetin Hospira and Epogen/Procrit.

Additional simulation study was conducted using the summary statistics
of the prescribed biosimilarity study as the population means and variances
where (μ1, μ2) = (81.9, 79.6) and (σ2

1, σ
2
2) = (2329.8218, 2357.1904). With

(N1, N2) = (122, 124), (ΔL, ΔU ) = (-157.9, 157.29), p∗ = 0.90, and α = 0.05,
the simulated Type I error rates of 10,000 replications are 0.0502, 0.0065 and
0.0065 for the EXAT, TOSTW and TOSTH procedures, respectively. These
results are consistent with those reported in the prescribed simulation study
of Type I errors under a wide variety of model configurations. For the purpose
of conducting power calculation and sample size determination for similarity
design, the minimum sample sizes to attain the nominal power 0.80 are N1(=
N2) = 11, 29 and 123 for p∗ = 0.80, 0.90 and 0.95 (p = 0.90, 0.95 and 0.975),
respectively. The achieved power levels for the sample sizes 0.8345, 0.8075,
and 0.8005 are marginally larger than the nominal level 0.80. Moreover,
the corresponding sample sizes for the nominal power 0.90 are obtained as
N1(= N2) = 13, 37, and 163 with the estimated power levels 0.9053, 0.9026,
and 0.9007 for p∗ = 0.80, 0.90 and 0.95, respectively. The sharp increase of
optimal sample size from p∗ = 0.90 to 0.95 suggests that the common rule
of thumb and simple linear interpolation are unlikely to account for such
structural change and delicate balance in model configurations. A detailed
and reliable procedure is essential to provide accurate power and sample size
calculations. These exemplifying configurations are presented in the user
specifications of the supplemental computer programs. Users can readily
accommodate their own model specifications by specifying the chosen values
in these statements.
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7 Conclusions
This paper presents an improved test procedure for assessing similarity in
two-group comparative studies. It is rigorously shown that the size of the
suggested approach is exactly equal to the nominal Type I error probability.
Alternatively, TOST extensions for establishing similarity have been consid-
ered in Dong et al. (2014), and Chen and Hsiao (2020), among others. Despite
the existing technical arguments and empirical evidences for the contending
TOST procedures, detailed numerical investigations reveal their underly-
ing deficiency in Type I error control. Specifically, these TOST procedures
based on tolerance intervals are excessively conservative. The results agree
with the concern of Berger and Hsu (1996) that the practice of evaluating
bioequivalence tests in terms of a 100(1−2α)% confidence intervals for aver-
age equivalence may not be sensible. Simulation studies were also conducted
to justify the usefulness of the suggested power and sample size procedures
for similarity analysis. Computer algorithms are presented to facilitate the
implementation of the proposed similarity test, power calculation, and sam-
ple size determination.
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