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Abstract
We investigate the statistical evidence for the use of ‘rough’ fractional pro-
cesses with Hurst exponent H < 0.5 for modeling the volatility of financial
assets, using a model-free approach. We introduce a non-parametric method
for estimating the roughness of a function based on discrete sample, using the
concept of normalized p-th variation along a sequence of partitions. Detailed
numerical experiments based on sample paths of fractional Brownian motion
and other fractional processes reveal good finite sample performance of our
estimator for measuring the roughness of sample paths of stochastic pro-
cesses. We then apply this method to estimate the roughness of realized
volatility signals based on high-frequency observations. Detailed numerical
experiments based on stochastic volatility models show that, even when the
instantaneous volatility has diffusive dynamics with the same roughness as
Brownian motion, the realized volatility exhibits rough behaviour corre-
sponding to a Hurst exponent significantly smaller than 0.5. Comparison
of roughness estimates for realized and instantaneous volatility in fractional
volatility models with different values of Hurst exponent shows that, irre-
spective of the roughness of the spot volatility process, realized volatility
always exhibits ‘rough’ behaviour with an apparent Hurst index ̂H < 0.5.
These results suggest that the origin of the roughness observed in realized
volatility time series lies in the estimation error rather than the volatility
process itself.

AMS (2000) subject classification. Primary 60L90, 62P05; Secondary 60G22,
62G10, 62M07.
Keywords and phrases. Roughness, variation index, p-th variation, realized
volatility, instantaneous volatility, fractional Brownian motion, hurst expo-
nent, high-frequency data.

1 Introduction

1.1 Fractional Processes in Finance: from Long-Range Dependence to
‘Rough Volatility’ Beginning with Mandelbrot and Van Ness (1968), frac-
tional Brownian motion and fractional Gaussian noise have been used as
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building blocks of stochastic models of various phenomena in physics, engi-
neering (Lévy-Véhel et al. 2005) and finance (Baillie 1996, Bollerslev and
Ole Mikkelsen 1996, Comte and Renault 1998, Cont 2007, Gatheral et al.
2018, Rogers 1997, Willinger et al. 1999). Fractional Brownian motion has
two remarkable properties which have contributed towards its adoption as
a building block in stochastic models: first, its ability to model long-range
dependence, as measured by the slow decay ∼ T 2H−2 of auto-correlation
functions of increments, where 0 < H < 1 is the Hurst exponent; second, its
ability to generate trajectories which have varying levels of Hölder regularity
(‘roughness’). The former is a property that manifests itself over long time
scales while the latter manifests itself over short time scales and, in general,
these two properties are unrelated. But in the case of fractional Brownian
motion, the two properties are linked through self-similarity and governed
by the Hurst exponent 0 < H < 1: for H > 1/2 one obtains long-range
dependence in increments and trajectories smoother than Brownian motion
while for H < 1/2 one obtains ‘anti-correlated’ increments and trajectories
rougher than Brownian motion1. Processes driven by fractional Gaussian
noise with H < 1/2 are thus sometimes referred to as ‘rough processes’.

In early applications to financial data (Baillie 1996, Bollerslev and Ole
Mikkelsen 1996, Comte and Renault 1998, Willinger et al. 1999), fractional
processes were adopted in order to model long-range dependence effects in
financial time series (Cont 2005). More specifically, statistical evidence of
volatility clustering (Cont 2007) - positive dependence of the amplitude of
returns over long time scales - led to the development of stochastic volatility
models driven by fractional Brownian motion. A well-known example of such
a fractional stochastic volatility model is the one proposed by Comte and
Renault (1998) who modelled the dynamics of the (instantaneous) volatility
σ(t) of an asset as:

Y (t) = lnσ(t) dY (t) = −γY (t)dt + θdBH(t) (1)

where BH is a fractional Brownian motion (fBM) with Hurst exponent H.
This long-range dependence in volatility is modelled by choosing fractional
models which correspond to 1 > H > 1/2 (Bollerslev and Ole Mikkelsen
1996, Breidt et al. 1998, Comte and Renault 1998, Fleming and Kirby 2011,
Lahiri and Sen 2020).

A recent strand of literature, starting with Gatheral et al. (2018), has
suggested the use of fractional Brownian models with H < 1/2 for mod-

1 Incidentally, Hurst and Hölder happen to have the same initials, adding to the confusion...
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elling volatility. Unlike previous studies based on auto-correlations of vari-
ous volatility estimators over long time scales (Baillie 1996, Bollerslev and
Ole Mikkelsen 1996, Cont 2005, Fleming and Kirby 2011), Gatheral et al.
(2018) rely on the analysis of the behaviour of volatility estimators over short
intraday time scales in order to assess the ‘roughness’ of these signals and
concluded that volatility is ‘rough’ i.e. has paths with a Hölder regularity
which is strictly less than 1/2, suggest to use stochastic models with sample
paths rougher than Brownian motion.

However, it has not been lost on experts working in this area that pre-
vious estimation results for fractional models in the literature on long-range
dependence in volatility, pointed towards Hurst exponents H > 0.5 (close to
0.55) (Baillie 1996, Comte and Renault 1998, Lahiri and Sen 2020) while the
recent ‘rough volatility’ literature indicates Hurst exponents close to 0.1.
Together with the well-known statistical issues plaguing the estimation of
Hurst exponents (Beran 1994, Rogers 2019), these conflicting results call for
a critical examination of the empirical evidence for ‘rough volatility’.

Compounding this issue is the fact that (spot) volatility is not directly
observed but estimated from price series, with an inherent estimation error
which has been the subject of many studies (Barndorff-Nielsen and Shephard
2002, Jacod and Protter 2012, Lahiri and Sen 2020). This estimation error is
far from i.i.d.: it is known to possess path-dependent features (see Jacod and
Protter, 2012). As a result, measures of roughness for realized volatility indi-
cators may be quite different from those of the underlying ‘spot volatility’.
This is simply because the convergence of high-frequency volatility estima-
tors in Lp norms does not imply in any way their functional convergence in
Hölder norms or other norms related to roughness.

As already pointed out by Rogers (1997), these two properties, namely
the short-range behaviour which determines the roughness of the path,
and the long-range dependence property, can (and should) be modeled
through different mechanisms. Bennedsen et al. (2022) discuss several such
approaches.

The focus of the literature on parametric models based on fractional
Brownian motion or fractional Gaussian noise concentrates these two, very
different, properties in a single parameter: the Hurst exponent H (Bolko
et al. 2022, Fukasawa et al. 2022, Gatheral et al. 2018). Such parametric
approaches proceed as follows: one estimates a parametric model for volatil-
ity dynamics based on some fractional Gaussian driving noise with Hurst
exponent 0 < H < 1 using a MLE (Fukasawa et al. 2022) or method of
moments (Bolko et al. 2022). Then, based on the estimated value of this
parameter H, one concludes that “volatility is rough” if Ĥ < 0.5.
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The validity of such approaches hinges on the assumption that the class
of models used is well-specified. As pointed out by Bennedsen et al. (2022),
this is unlikely to be the case for SDEs driven by fractional Gaussian noise
if one wants to accommodate both (long-range) dependence properties and
(short-range) roughness properties.

To avoid this caveat, we propose a model-free non-parametric method
which focuses solely on the roughness properties of sample paths. Although
less ambitious in its scope -we only focus on roughness properties rather than
developing a full model for volatility dynamics- our approach is robust to the
specification errors and estimation biases which plague parametric methods.

1.2 Contribution In this work we investigate whether the assertion
that ‘volatility is rough’ (i.e. rougher than typical paths of Brownian motion)
is supported by empirical evidence. We address this question in detail by re-
examining the statistical evidence from high-frequency financial data. We
investigate the statistical evidence for the use of ‘rough’ fractional processes
with Hurst exponent H < 0.5 for the modelling of volatility of financial
assets, using a non-parametric, model-free approach.

We introduce a non-parametric method for estimating the roughness of a
function/path based on a (high-frequency) discrete sample, using the concept
of normalized p-th variation along a sequence of partitions, and discuss the
consistency of our estimator in a pathwise setting. We investigate the finite
sample performance of our estimator for measuring the roughness of sample
paths of stochastic processes using detailed numerical experiments based on
sample paths of fractional Brownian motion and other fractional processes.
We then apply this method to estimate the roughness of realized volatility
signals based on high-frequency observations. We did a detailed numeri-
cal experiment based on stochastic volatility model. Our experiment shows
that even when the instantaneous (spot) volatility has diffusive dynamics
driven by Brownian motion, the realized volatility exhibits rough behaviour
corresponding to a Hurst exponent significantly smaller than 0.5. In partic-
ular, as shown in Section 4.1, under the null hypothesis that (instantaneous)
volatility follows an Ornstein-Uhlenbeck process with H = 0.5 one typically
observes an apparent Hurst exponent Ĥ � 0.1 for realized volatility, simi-
lar to values reported in empirical studies as evidence of ’rough volatility’.
This suggests that the origin of the roughness observed in realized volatility
time series lie in the estimation error rather than the volatility process itself.
Comparison of roughness estimates for realized and instantaneous volatil-
ity in fractional volatility models for different values of Hurst parameter H
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shows that whatever the value of H for the (spot) volatility process, realized
volatility always exhibits ‘rough’ behaviour.

Our results are broadly consistent with the observations by Rogers
(2019). We pinpoint more precisely the origin of the apparent ‘rough’
behaviour of volatility as being the estimation error inherent in the estima-
tion of realized volatility from discrete observations. In particular, our results
question whether the empirical evidence presented from high-frequency
volatility estimates may be used to infer that ‘volatility is rough’. In fact, as
shown in Section 4.1, we show that estimated values of the Hurst exponent
close to 0.1 for realized volatility are typically obtained in stochastic volatility
model with diffusion dynamics for which H = 0.5.

2 Measuring the Roughness of a Path

Determining the roughness of realized volatility from a sample path plays a
crucial role in model specification. In practice, we observe only a single price
path sampled on a discrete grid of observation times, so one is faced with
the problem of determining the roughness of a process from a single path
sampled at high frequency. We present various concepts for measuring the
roughness of a path and discuss how they may be used to design estimators
from high-frequency observations.

2.1 p-th Variation and Roughness Index of a Path Consider a sequence
of partitions π = (πn)n≥1 of [0, T ] where

πn =
(
0 = tn0 < tn1 < · · · < tnN(πn) = T

)
(2)

represents observation times ‘at frequency n’. We denote N(πn) to be the
number of intervals in the partition πn. Denote respectively by |πn| =
supi=1,··· ,N(πn) |tni − tni−1|, and πn = infi=1,··· ,N(πn) |tni − tni−1|, the size of the
largest and the smallest interval of πn. In this paper, we will always assume

|πn| = sup
i=1,··· ,N(πn)

|tni − tni−1| n→∞→ 0.

The concept of p-th variation along a sequence of partitions π = (πn)n≥1

with 0 = tn0 < ... < tnk < ... < tnN(πn) = T is defined following Cont and
Perkowski (2019):
Definition 1 (p-th variation along a sequence of partitions) x∈C0([0, T ], R)
has finite p-th variation along the sequence of partitions π = (πn, n ≥ 1) if
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there exists a continuous increasing function [x](p)
π : [0, T ] → R+ such that

∀t ∈ [0, T ],
∑

[tnj ,tnj+1]∈πn:
tnj ≤t

∣∣x(tnj+1) − x(tnj )
∣∣p n→∞−→ [x](p)

π (t). (3)

We call [x](p)
π the p-th variation of x along the sequence of partitions π. We

denote V p
π ([0, T ], R) the set of all continuous paths with finite p-th variation

along π.

We may formalize the concept of roughness using the notion of variation
index and roughness index:
Definition 2 (Variation index). The variation index of a path x along a
partition sequence π is defined as the smallest p ≥ 1 for which x has finite
p-th variation along π:

pπ(x) = inf {p ≥ 1 : x ∈ V p
π ([0, T ], R)} .

Definition 3 (Roughness index). The roughness index of a path x (along π)
is defined as

Hπ(x) =
1

pπ(x)
.

When the underlying sequence of partitions is clear, we will omit π and
denote these indices as p(x) and H(x). A similar roughness index was intro-
duced by Han and Schied (2022).

For a (real-valued) stochastic process X : [0, T ] × Ω → R the roughness
index pπ(X(., ω)) of each sample path X(., ω) may be different in principle.
Nevertheless there are many important classes of stochastic processes which
have an almost-sure roughness index. For example, the roughness index of
fractional Brownian motion (fBM) matches with the corresponding Hurst
parameter/ Hölder exponent:
Example 1 Brownian motion B has variation index pπ(B) = 2 and rough-
ness index Hπ(B) = 1

2 along any refining partition sequence π or any parti-
tion π with |πn| log n → 0 (Dudley 1973).

Fractional Brownian motion BH has variation index pT(BH) = 1
H and

roughness index HT = H along the dyadic partition sequence T.
In general, the existence of a variation index is not obvious. For further
details see (Cont and Das 2024, Han and Schied 2022).
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2.2 Normalized p-th Variation It is not easy to use p-th variation
directly on empirical data for estimating roughness based on discrete obser-
vations, as this involves checking convergence to an unknown limit. We intro-
duce a normalized version of p-th variation which has better asymptotic
properties (Cont and Das 2024):
Definition 4 (Normalized p-th variation along a sequence of partitions)
Let π be a sequence of partitions of [0, T ] with mesh |πn| → 0 and
πn =

(
0 = tn1 < tn2 < · · · < tnN(πn) = T

)
. x ∈ V p

π ([0, T ], R) is said to have
normalized p-th variation along π if there exists a continuous function
w(x, p, π) : [0, T ] → R such that:

∀t ∈ [0, T ],
∑

πn∩[0,t]

∣∣x (
tni+1

) − x (tni )
∣∣p

[x](p)
π (tni+1) − [x](p)

π (tni )
× (

tni+1 − tni
) n→∞−−−→ w(x, p, π)(t).

(4)

We denote Np
π([0, T ], R) the class of all continuous functions for which the

normalized p-th variation2 exists.
The terminology is justified by the following result from (Cont and Das
2024) which shows that, for a large class of functions with p−th variation,
the normalized p-th variation exists and is linear:
Theorem 2.1 Let x ∈ V p

π ([0, T ], R) for some p > 1 where π be a sequence
of partitions of [0, T ] with vanishing mesh |πn| → 0. Furthermore, if the p-th
variation is absolutely continuous then:

x ∈ Np
π([0, T ], R) and ∀t ∈ [0, T ], w(x, p, π)(t) = t.

The following result shows that normalized p-th variation is a ‘sharp’ statis-
tic: if a function has finite p-th variation along a sequence of partitions π
then for all q �= p the normalized p-th variation is either infinite or zero.
Theorem 2.2 Let π be a sequence of partitions of [0, T ] with mesh |πn| → 0.
Let x ∈ V p

π ([0, T ], R) with [x](p)
π ∈ (0, ∞) for some p > 1.

(i) For all t ∈ (0, T ] and for all q > p; w(x, q, π)(t) = ∞.

(ii) For all t ∈ [0, T ] and for all q < p; w(x, q, π)(t) = 0

In particular, Brownian motion almost surely has linear normalized quadratic
variation.

2 For p = 2 we will call this quantity as ‘normalized quadratic variation’.
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Example 2 (Normalized quadratic variation for Brownian motion) Let B be
a Wiener process on a probability space (Ω, F , P), and (πn)n≥1 be a sequence
of partitions of [0, T ] with |πn| log n → 0. Then for all t ∈ (0, T ]:

P (w(B, 2, π)(t) = t) = 1.

Remark 1 In the above example, instead of taking any partition sequence
with |πn| log n → 0, we can also take any sequence of refining partitions. The
proof is then different and uses the martingale convergence theorem.

Example 3 (Stochastic integrals) Let X(t) =
∫ t
0 σ(u)dBu where σ is an

adapted process with
∫ T
0 σ2(u)du < ∞. Then, for any refining partition

sequence π with vanishing mesh and for all t ∈ (0, T ],

P (w(X, 2, π)(t) = t) = 1.

Remark 2 In the statement of Example 3, we can replace the assumption
of refining partitions with partitions satisfying |πn| log(n) → 0.

The following example follows from (Viitasaari, 2019, Proposition 4.1):
Example 4 (Normalized p-th variation for fractional Brownian motion) Let
BH be a fractional Brownian motion with Hurst index H, on a probability
space (ω, F , P). BH has normalized p-th variation along the dyadic partition
T = (Tn)n≥1 for p = 1/H almost-surely:

P

(
w

(
BH ,

1
H

, T

)
(t) = t

)
= 1 ∀t ∈ (0, T ].

2.3 Estimating Roughness from Discrete Observations Given observa-
tions on a refining time partition πL, we define the ‘normalized p-th variation
statistic’ which is the discrete counterpart of the normalized p-th variation:

W (L, K, π, p, t, X) :=
∑

πK∩[0,t]

∣

∣X(tK
i+1) − X(tK

i )
∣

∣

p

∑

πL∩[tKi ,tKi+1]

∣

∣X(tL
j+1) − X(tL

j )
∣

∣

p ×
(

tK
i+1 − tK

i

)

. (5)

The definition of the statistic (5) involves two frequencies: a ‘block’ size K
and a sample size L 
 K. As the partition is refining, πK is a subpartition
of πL. The denominator is estimated by grouping the sample of size L into
K many groups, where each group contains L

K consecutive data points.
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The statistic (5) converges to the normalized p-th variation (4) as the
sample size L and block size increase:

lim
K→∞

lim
L→∞

W (L, K, π, p, t, x) = w(x, p, π)(t).

It is thus natural to define roughness estimators for a discretely sampled
signal in terms of (5).

The variation index estimator p̂L,K(X) associated with the signal sam-
pled on πL is then obtained by computing W (L, K, π, p, t, X) for different
values of p and solving the following equation for pπ

L,K(X):

W (L, K, π, pπ
L,K(X), T, X) = T. (6)

One can either fix a window length T or solve (6) in a least squares sense
across several values of T . An estimator for the roughness index is subse-
quently defined as:

Ĥπ
L,K(X) =

1
pπ

L,K(X)
. (7)

Figure 1: Normalized p-variation statistic for fractional Brownian motion
as a function of Hurst parameter H ∈ {0.1, 0.3, 0.5, 0.8}. Blue vertical line
represents ĤL,K with L = 300 × 300, K = 300). The horizontal dotted line
represents the true value H
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We will denote the roughness estimator (7) as ĤL,K when the underlying
dataset ands the corresponding partition sequence are clear. Asymptotic
properties of these estimators under high-frequency sampling are studied in
Cont and Das (2024).

2.4 Finite Sample Behaviour of the Roughness Estimator We will now
study the finite sample behaviour of the roughness estimator Ĥπ

L,K(X) using
high-frequency simulations of fractional Brownian motions. In the simula-
tion examples unless mentioned otherwise we will use a uniform partition
sequence of [0, 1] with:

πn =
(

0 <
1
n

<
2
n

< · · · < 1
)

.

To assess the finite sample accuracy of the estimator we compare the
roughness index estimator Ĥπ

L,K with the underlying Hurst exponent H ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. For every simulated path we compute cor-

Figure 2: Histogram for estimated roughness index ĤL,K with L = 300 ×
300, K = 300 generated from 5000 independent simulations of fractional
Brownian motion with Hurst parameter H ∈ {0.1, 0.3, 0.5, 0.8}
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responding statistics W (L = 300 × 300, K = 300, π, q, t = 1, X = BH) for
different values of q, in order to estimate ĤL,K . In Fig. 1, the black line repre-
sents the value of log

(
W (L = 300× 300, K = 300, π, q = p, t = 1, X = BH)

)
plotted against roughness index 1/p in log-scale. The blue horizontal line rep-
resents the estimated roughness index ĤL,K whereas the dotted horizontal
line represents the Hurst parameter. The blue horizontal line is computed by
taking the intersection of the vertical line at 0 and black line Fig. 2 shows the
histograms of roughness estimator Ĥπ

L,K generated from 5000 independent
paths. We observe that for datasets with length, L = 300×300 our roughness
estimator ĤL=300×300,K=300 has satisfactory accuracy. Table 1 provides sum-
mary statistics for roughness index Ĥ of 5000 simulated fractional Brownian
motions.

Table 2 provides the variance, bias and mean square error (MSE) from
5000 independent estimated roughness index ĤL,K with L = 300×300, K =
300 for corresponding fractional Brownian motion.

Figure 3 represents a similar plot for simulated fractional Brownian
motion with Hurst parameter H = 0.1. In Fig. 3, in left, similar to Fig. 1,
log(W (L = 2000 × 2000, K = 2000, π, p, t = 1, X = BH)) is plotted against
H = 1/p and the right plot represents the histograms of the estimator
ĤL=2000×2000,K=2000 for 3000 independent simulations. The summary statis-
tics for this estimator is provided in Table 3.

To compute the estimator ĤL,K we have different possible choices of
K � L. Figure 4 shows how the estimator Ĥπ

L,K varies with K for fractional
Brownian motion with Hurst parameter H = 0.1. The black line represents
the ĤL,K plotted against different values of K whereas the blue vertical line
represents the value for L = 300 × 300, K = 300. We observe that when we

Table 1: Summary statistics for estimated roughness index ĤL,K for frac-
tional Brownian motion BH with L = 300 × 300, K = 300
H Min. Lower quartile Median Mean Upper quartile Max.
0.1 0.0427 0.0918 0.1009 0.1018 0.1118 0.1627
0.2 0.1627 0.1936 0.2009 0.2001 0.2064 0.2391
0.3 0.2700 0.2936 0.2991 0.2995 0.3045 0.3282
0.4 0.3755 0.3936 0.3991 0.3991 0.4045 0.4245
0.5 0.4736 0.4936 0.4991 0.4989 0.5045 0.5264
0.6 0.5682 0.5936 0.5973 0.5982 0.6027 0.6282
0.7 0.6627 0.6900 0.6955 0.6955 0.7009 0.7282
0.8 0.7500 0.7809 0.7882 0.7900 0.7973 0.8682
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Table 2: Variance, MSE and bias for ĤL,K calculated from 5000 independent
sample paths for fractional Brownian motion BH with L = 300 × 300, K =
300
H Variance Bias MSE
0.1 0.0002 0.0018 3.3124 × 10−06

0.2 0.0001 8.0727 × 10−05 6.5169 × 10−09

0.3 6.5883 × 10−05 −0.0005 2.1665 × 10−07

0.4 5.4964 × 10−05 −0.0009 7.2528 × 10−07

0.5 4.8770 × 10−05 −0.0011 1.2220 × 10−06

0.6 5.3925 × 10−05 −0.0018 3.3137 × 10−06

0.7 7.7617 × 10−05 −0.0045 2.0325 × 10−05

0.8 0.0002 −0.0100 0.0001

vary K in the neighbourhood K ≈ √
L the estimator performs well and is

not very sensitive to the choice of K in this range.
In summary, we observe that for realistic sample sizes and frequencies

encountered in high-frequency financial data, the estimator is quite accurate
and not sensitive to the block size K in the range K ≈ √

L.

3 Spot Volatility and Realized Volatility

Unlike asset prices which may be observed and sampled directly from market
data, (spot) volatility is not directly observable and as a consequence must
be estimated from prices. The estimation methods frequently used are based
on the concept of realized volatility (Andersen et al. 2003, Barndorff-Nielsen
and Shephard 2002). Let us consider price dynamics given by a stochastic
volatility model driven by a Brownian motion B:

dSt = σtStdBt + μtStdt (8)

Table 3: Summary statistics for estimated roughness index ĤL,K for frac-
tional Brownian motion BH with H = 0.1, L = 2000 × 2000, K = 2000
Hurst Min. Lower Median Mean Upper Max.
index H quartile quartile
0.1 0.086 0.096 0.099 0.099 0.103 0.117
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Figure 3: Simulation results for fractional Brownian motion with H = 0.1.
Left: The log of normalized p-th variation statistic is plotted against H =
1/p in black. The blue vertical line represents the estimated roughness index
ĤL,K (with L = 2000 × 2000, K = 2000). Dotted line: true value H =
0.1. Right: Histogram of estimated roughness index ĤL,K generated by
simulating n = 3000 independent fractional Brownian paths with Hurst
parameter H = 0.1

Figure 4: Estimated roughness index ĤL=300×300,K as a function of block
size K for a fractional Brownian motion with Hurst parameter H = 0.1
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where σt represents the instantaneous or ‘spot’ volatility. In general, σt is
represented as a random process itself driven by either (another) Brownian
motion (Lewis 2000) or a fractional process (Comte and Renault 1998).

In practice the price St is observed on a (non-uniform) time grid

πn =
(
0 = tn0 < tn1 < · · · < tnN(πn) = T

)
(9)

where n represents a ‘sampling frequency’. In order to study high-frequency
asymptotics of roughness estimators, we assume the mesh |πn| → 0 as n
increases. An example to keep in mind is the dyadic partition sequence: πn =(
tni = iT

2n , i = 0, · · · , 2n
)

but none of the results below requires a uniform grid.
The spot volatility process σt may then be recovered from the quadratic

variation of the log-price X = log S along this particular grid:

σ2
t =

d

dt
[log S]π(t) (10)

where the quadratic variation [log S]π of the log-price

[log S]π(t) = lim
n→∞

∑
πn∩[0,t]

(
log

S(tni+1)
S(tni )

)2

= lim
n→∞ RVt(πn)2

is computed as a high-frequency limit of the realized variance (Andersen
et al. 2003, Barndorff-Nielsen and Shephard 2002) along the sampling grid
πn, defined as

RVt(πn)2 =
∑

πn∩[0,t]

(
log

S(tni+1)
S(tni )

)2

=
∑

πn∩[0,t]

(
X(tni+1) − X(tni )

)2
. (11)

Realized volatility is defined as the square root of the realized variance.
Definition 5 (Realized volatility). The realized volatility of a price process
S over [t, t + Δ] sampled along the observation grid πn is defined as:

RVt,t+Δ(πn) =
√ ∑

πn∩[t,t+Δ]

(
X(tni+1) − X(tni )

)2 =
√

[X]πn(t + Δ) − [X]πn(t)

(12)

where X = log S.
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If the price St follows a stochastic volatility model (8) with instan-
taneous volatility σt then realized variance converges to the quadratic
variation of log S (also called ‘integrated variance’) as sampling frequency
increases (Barndorff-Nielsen and Shephard 2002, Jacod and Protter 2012):

RVt(π
n)2

P→
n→∞ IVt :=

∫ t

0

σ2
udu, RVt,t+Δ(πn)

P→
n→∞

√
IVt,t+Δ =

√∫ t+Δ

t

σ2
udu. (13)

Along a single price path observed at high-frequency, we can compute the
realized variance (12) and the realized volatility RVt,t+Δ(πn) in (13) may be
used as a practical indicator of volatility:

RVt,t+Δ(πn) �
√

Δ σt.

Several empirical studies have attempted to estimate the roughness of
‘realized volatility’ signals using high-frequency data, i.e. Andersen et al.
(2003), Barndorff-Nielsen and Shephard (2002), Cont and Mancini (2011),
Jacod and Protter (2012), Podolskij and Vetter (2009). A well-known refer-
ence is the study of Gatheral et al. (2018) where the authors estimate the
roughness index of S&P500 realized volatility by performing the following
logarithmic regression:

m(q, Δ) :=
1
n

[log RV ](q)
πn =

1
n

n∑
t=1

| log(RVt+Δ) − log(RVt)|q ≈ CqΔξq . (14)

The coefficients ξq are observed to behave linearly in q:

ξq ≈ q ĤR.

Regression of ξq on q yields an estimate ĤR of Hurst/Hölder index, for
which Gatheral et al. (2018) report the value ĤR = 0.13. Based on these
observations, they propose a fractional SDE for (spot) volatility:

d log σ2
t = μtdt + ηdBH

t .

As we see from equation (14), the method used in Gatheral et al. (2018)
actually uses p-th variation of the log(RV ) to calculate the roughness of the
underlying volatility process. Figure 5 is a replication of the log-regression
model described above to estimate the roughness index of the volatility of
5-min S&P 500. However, in an interesting simulation study using paths
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Figure 5: Left: A reproduction of the log-regression method introduced
by Gatheral et al. (2018) using SPX 5-minute realized volatility from the
Oxford-Man Institute’s Realized Library. Right: Regression of ξq vs q: the
estimated slope/ roughness index is ĤR = 0.135

simulated from a Brownian OU volatility process, Rogers (2019) showed that
the scaling behavior claimed as evidence for ‘rough volatility’ is also observed
in a Brownian OU model over a range of time scales. He also showed that
estimators of the roughness index based on log-regression of empirical p-th
variation have poor accuracy.

Similar evidence for the lack of accuracy of such estimators based on
log-regression of p-th variation is shown by Fukasawa et al. (2022).

4 Numerical Experiments

We now compare various roughness estimators for instantaneous volatility
σt with those obtained from realized volatility RVt,t+Δ(πn) using price tra-
jectories simulated from stochastic volatility models with varying degrees of
“roughness”.

4.1 Stochastic Volatility Diffusion Models Let us first consider the
following stochastic volatility where volatility is simply (the modulus of) a
Brownian motion:
Example 5

dSt = σtStdBt, with σt = σ0|Wt|, (15)
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where B, W are independent Brownian motions.
Figure 6 represents a path of the instantaneous volatility σt and the realized
volatility RVt(πL) computed as in equation (12) by taking 300 consecutive
data-points, which corresponds to a 5-minute moving window. The center
plot of Fig. 6 represents the estimation error, which is defined as the dif-
ference of instantaneous and realized volatility. The ACF of the estimation
error shows a strongly time-dependent pattern which rules out IID behaviour
and indicates a complex dependence structure. The right plot of Fig. 6 rep-
resents the log-estimation error plot, which is defined as the difference of
log-instantaneous and log-realized volatility.

The estimated roughness index of instantaneous and realized volatil-
ity are observed to be very different. In the left graph of Fig. 7 we plot
log(W (K = 500, L = 500 × 500, π, p, t = 1, X = RV )) against H = 1/p for
the realized volatility. On the other hand, the right graph is for instan-
taneous volatility. The estimated roughness index for realized volatility
(ĤL=500×500,K=500(RV ) ≈ 0.27) is significantly smaller than the roughness
index of the instantaneous volatility (ĤL=500×500,K=500(σ) ≈ 0.49) suggest-

Figure 6: Simulations based on Brownian stochastic volatility model (15):
dSt = StσtdBt, σt = |Wt|, where B and W are independent Brownian
motions. Left: Spot volatility σt (red) vs realized volatility RVt (black).
Center: Estimation error RVt − σt. Right: Log-estimation error log RVt −
log σt
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Figure 7: Left: Estimated roughness index ĤL,K � 0.27 (via normalized
p-variation statistic with L = 500 × 500, K = 500), for realized volatility
derived from a Brownian diffusion model (15). Right: Estimated roughness
index ĤL,K � 0.49 for spot volatility along the same price path

ing rougher behaviour of realized volatility. As in our simulation study we
do not have any measurement errors, this roughness behaviour purely comes
from estimation error. In some studies it is assumed that the estimation error
or the log-estimation error is I.I.D. (see for example Fukasawa et al. (2022)).
But as one can see from this diffusion example, both the estimation error
and the log-estimation error is far from I.I.D. Hence the assumptions put
forth for example in Fukasawa et al. (2022), is not very realistic for general
diffusion models.

The solid black lines in Figs. 8 and 9 respectively represent the esti-
mated roughness index ĤL=300×300,K plotted against different values of K
for the realized and instantaneous volatility (Model 15). The blue vertical
line represents for K = 500, L = 500×500. From the figures, we can observe
that irrespective of the choice of K for the finite sample dataset of length
L = 500×500, the realized volatility is significantly rougher than the instan-
taneous volatility.

We now compare our roughness estimator with the log-regression method
suggested in Gatheral et al. (2018) for the Model (15). It turns out that even
with the log-regression model, similar ‘rougher’ realized volatility is observed
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Figure 8: The solid black line represents the estimated roughness index
ĤL,K via normalized p-th variation statistic W (L = 500 × 500, K, π, q, t =
1, X = RV ) plotted against different values of K for the realized volatility
shown in Fig. 6. The blue vertical line represents L = 500 × 500, K = 500
whereas the blue horizontal line represents Ĥ = 0.273

even if the instantaneous volatility has Brownian diffusive behaviour. Fig-
ures 10 and 11 show that the realized volatility has a significant smaller
roughness index than the instantaneous volatility even with respect to the
log regression method. In this example it is clear that the roughness observed

Figure 9: The solid black line represents the estimated roughness index
ĤL,K via normalized p-th variation statistic W (L = 500 × 500, K, π, q, t =
1, X = IV ) plotted against different values of K for the instantaneous volatil-
ity shown in Fig. 6. The blue vertical line represents L = 500×500, K = 500
whereas the blue horizontal line represents true Hurst parameter H = 0.5
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in realized volatility is attributable to the discretization error (‘estimation
error’) and not the roughness of the spot volatility process, which is Brownian.

Next we consider a more realistic mean-reverting volatility model in
which the volatility follows a Brownian Ornstein–Uhlenbeck process:
Example 6 (OU-SV model)

dSt = StσtdBt, σt = σ0e
Yt , dYt = −γYtdt + θdB′

t (16)

where (B, W ) is a two-dimensional Brownian motions.
In the simulations shown below, we use σ0 = 1, Y0 = 0 and γ = θ = 1 and
we take B, W independent. The left plot of Fig. 12 represents the realized
volatility (respectively spot volatility) of the price process in black (respec-
tively red). The center plot in Fig. 12 represents the corresponding estimation
error, defined as the difference between the realized and the spot volatility.
We observe that the estimation error has a complex dependence structure,
and is certainly not IID. But, in contrast to Example 5, here the estimation
error for the log-volatility, shown in Fig. 12 right, is closer to IID (this is
supported by the theoretical developments in Fukasawa et al. (2022)).

Figure 10: Left: Scaling analysis of instantaneous volatility of a simulated
Brownian stochastic volatility model (Example 5) using the log-regression
method used in Gatheral et al. (2018). Right: Regression coefficients ξq as
a function of q. The estimated roughness index is via log-regression method
ĤR = 0.499
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Figure 11: Left: Scaling analysis of realized volatility of a simulated Brow-
nian stochastic volatility model (Example 5) using the log-regression method
used in Gatheral et al. (2018). Right: Regression coefficients ξq as a function
of q. The estimated roughness index via log-regression method is ĤR = 0.34

Figure 12: Left:Realized volatility (in black) vs instantaneous volatility
(red) for the OU stochastic volatility model (16). Center: Volatility estima-
tion error RVt−σt. Right: Estimation error for log-volatility log RVt− log σt
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Figure 13: Distribution of the estimator ĤL,K for (L = 300×300, K = 300)
across 2500 independent simulations for the OU-SV model (16) with H = 0.5
for spot volatility. Left: Estimated roughness for realized volatility: mean
is ≈ 0.13. Right: Estimated roughness for spot volatility: mean is ≈ 0.55

Now we compare the distribution of the estimator ĤL,K with (L =
300 × 300, K = 300) for realized and instantaneous volatility across 2500
independent paths drawn from (16). The left plot in Fig. 13 is the distribu-
tion of estimated roughness index ĤL,K for the realized volatility while the
right plot is for spot volatility. Table 4 provides summary statistics for the

Table 4: Summary statistics of estimated roughness index ĤL,K , L = 300 ×
300, K = 300 for realized volatility and instantaneous volatility across 2500
independent sample paths from the diffusion model (16)

Realized volatility Instantaneous volatility
Min. 0.087 0.528
5% quantile 0.121 0.540
25% quantile 0.128 0.552
Median 0.136 0.556
Mean 0.137 0.557
75% quantile 0.148 0.563
95% quantile 0.158 0.569
Max. 0.181 0.581
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roughness estimator ĤL,K with L = 300 × 300, K = 300 across 2500 inde-
pendent sample paths for realized volatility and instantaneous volatility,
respectively. As one can observe there is an upward bias in the estimator for
spot volatility and a strong negative bias for the roughness index based on
realized volatility.

4.2 Fractional Stochastic Volatility Model In both previous examples,
instantaneous volatility follows a diffusive behaviour driven by Brownian
motion with H = 1

2 , yet the realized volatility exhibits “rough” behaviour
with an estimated roughness index significantly smaller than 0.5. We now
consider the more general case of a fractional stochastic volatility model (1):

Example 7 (Fractional OU stochastic volatility model (Comte and Renault
1998))

dSt = σtStdBt, σt = σ0e
Yt ; dYt = −γYtdt + θdBH

t , (17)

where γ = θ = σ0 = 1, B is a Brownian motion and BH a fractional
Brownian motion with H ∈ (0, 1).
In this model the spot volatility σt may have any roughness index H ∈
(0, 1). We explore how the roughness index of realized volatility relates to
the roughness index H of spot volatility.

We compute the realized volatility RVt(πL) as in (12) by taking 300
consecutive price data points, which corresponds to a 5-minute moving
window. Further, we compare the estimated roughness index ĤL,K (with,
L = 300 × 300, K = 300) of instantaneous and realized volatility in the
following table.

H Instantaneous volatility Realized volatility

0.10 0.130 0.190
0.20 0.215 0.250
0.30 0.310 0.258
0.40 0.413 0.207
0.50 0.507 0.130
0.60 0.601 0.087
0.70 0.678 0.061
0.80 0.756 0.052

Figure 14 shows sample paths for the price, realized volatility and the
spot volatility for different values of H = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8}. We observe that for smaller H, the instantaneous volatility is rougher
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Figure 14: Left: Simulated price paths for fractional OU stochastic volatil-
ity model (17) for H={0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8} Center: Realized
volatility. Right: Spot volatility
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Figure 15: Estimated roughness index ĤL,K for realized volatility (red) and
spot volatility (blue) for a high-frequency sample from the fractional-OU
stochastic volatility model (17). X-axis: H. Y-axis: estimator ĤL,K , L =
300 × 300, K = 300

than realized volatility but as we increase H the realized volatility shows
significantly rougher behaviour than the instantaneous volatility.

Figure 15 shows the estimated roughness index ĤL,K(RV ) and ĤL,K(σ)
respectively in red and blue. Though the roughness index of instantaneous
volatility (represented in blue line) gives an accurate estimate of H, the
roughness index for realized volatility is always below 0.3, regardless of
whether H < 0.5 or H > 0.5! In particular, when the instantaneous volatility
is smoother than Brownian motion (corresponding to H ≥ 0.5) the estimated
roughness index of realized volatility turns out to be an extremely poor esti-
mate for H, giving qualitatively incorrect information about the roughness of
volatility. In this regime, using roughness esimators based on realized volatil-
ity would lead us to incorrectly infer that (spot) volatility is rough (H < 0.5)
whereas in fact the opposite is true (H > 0.5)!

Figure 17 shows the distribution of the estimator ĤL,K for spot volatil-
ity and realized volatility in the case H = 0.55, across 500 sample paths.
Although H > 0.5, realized volatility exhibits an apparent rough behavior
with an empirical value ĤL,K in the range [0.02, 0.06].

This behavior is generically observed across the whole range 0 < H <
1. Figure 16 shows the corresponding estimators ĤL,K(RV ) and ĤL,K(σ)
for 100 independent simulated price paths from (17). The bold black lines
represent the mean across 100 independent simulations whereas the dotted
lines represent the corresponding 25% and 75% confidence intervals. For
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Figure 16: Estimated roughness index ĤL,K for realized volatility (red) and
spot volatility (blue) for a high-frequency sample from the fractional-OU
stochastic volatility model (17), for 100 independent price paths

Figure 17: Histogram of the estimator ĤL,K for (L = 300 × 300, K = 300)
across 500 sample paths from the Comte-Renault fractional OU-SV model
(1) with H = 0.55. Left: Estimated roughness for realized volatility: mean
is ≈ 0.05. Right: Estimated roughness for instantaneous volatility: mean
is ≈ 0.55
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Figure 18: Left: Price of AAPL 04/Jan/2016 - 11/May/2016 (90 days).
Right: From normalized p-th variation estimator the estimated roughness
index ĤL,K (with L = 1400 × 1400, K = 1400) for AAPL stock price data is
approx 0.5

the price process (17), no matter what the value of the Hurst exponent for
instantaneous volatility, the roughness index of realized volatility ĤL,K(RV )
is always estimated in the range [0.05, 0.3] (Fig. 16).

These examples illustrate our point: one cannot conclude from the
(apparent) rough behavior of realized volatility that (spot) ‘volatility is
rough’ i.e. reject the null hypothesis H = 1/2. Indeed, realized volatility
exhibits ‘rough’ behaviour with ĤL,K(RV ) < 0.5 or ĤR < 0.5, even when
H > 0.5.

5 Application to High-Frequency Financial Data

Having extensively explored the performance of our roughness estimator
ĤL,K based on the normalized p-th variation statistic for spot and realized
volatility on simulated price paths, we now apply it to high-frequency finan-
cial time series.

5.1 AAPL Figure 18 (left) shows the second-by-second record of
AAPL stock price. The right graph of Fig. 18 plots log(W (L = 1900 ×
1900, K = 1900, π, p, t = 1, X)) against Hurst parameter H = 1/p for
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‘AAPL’ price. The plot suggests estimated roughness index for Apple second-
by-second price path is 0.48.

Figure 19(left) represents 1-minute realized volatility of ‘AAPL’ in 2016.
The right graph of Fig. 19 plots log(W (L = 310 × 310, K = 310, π, p, t =
1, X = RV )) against Hurst exponent H = 1/p for the 1-min AAPL realized
volatility. Fixing the value of L = 310 × 310, if we deviate the value of
block frequency K a little, then the estimated roughness index for 1-min
realized volatility varies between 0.08 to 0.22. This is consistent with the
results of Gatheral et al. (2018) regarding realized volatility. But as our
simulation study suggests, the roughness index of realized volatility may be
very different from that of spot volatility which is the quantity modelled in
continuous-time stochastic volatility models.

5.2 SP500 Several studies on rough volatility, including the original
study Gatheral et al. (2018), are based on the Oxford-Man Institute Real-
ized Volatility dataset 3. Figure 20 represents the plot of 5-minute realized
volatility of SP500. The right graph of Fig. 20 plots log(W (L = 70×70, K =
70, π, p, t = 1, X = RV )) against Hurst parameter H = 1/p for the 5-min
Oxford-Man institute realized volatility data. Fixing the value of L = 70×70,
if we vary the value of K, the estimated roughness index ĤL,K of realized
volatility varies between 0.05 to 0.25. This finding is consistent with the
values observed in Gatheral et al. (2018).

Overall, the picture that emerges from SP500 and AAPL data is quite
similar to the one observed in simulations of diffusion-type stochastic volatil-
ity models discussed in Section 4.1. As observed in Section 2.4, these obser-
vations are fully compatible with a diffusion-type stochastic volatility model
such as (16). This suggests one cannot reject the null hypothesis H(σ) = 1/2
based on the observation that realized volatility exhibits ‘rough’ behaviour
with ĤL,K(RV ) < 1

2 or ĤR < 1/2, even though these estimators (including
the log-regression estimator used by Gatheral et al. (2018)) exhibit values
as low as 0.1.

Comparing with the distribution of ĤL,K under the OU stochastic volatil-
ity model (16), shown in Fig. 13, and the quantiles reported in Table 2, we
observe that the empirical values of ĤR and ĤL,K(RV ) are in fact close to
the mean of ĤL,K(RV ) under the null hypothesis (16). In other words, one
cannot reject the OU stochastic volatility model based on these values.

3 https://realized.oxford-man.ox.ac.uk/data
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Figure 19: Left: Plot of 1-min realized volatility of ‘AAPL’ (year 2016).
Right: Estimated roughness index ĤL,K (with L = 310 × 310, K = 310)
for the 1-min realized volatility for ‘AAPL’ is in the interval [.08, 0.22])

Figure 20: Left: S&P500 5-min realized volatility. Right: Estimated
roughness index (via p-th variation statistics) of S&P500 realized volatil-
ity ĤL,K ∈ [.05 − .25] with L = 70 × 70, K = 70
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6 Rough Volatility ... or Estimation Error?

Given the large literature on ‘rough volatility’ in quantitative finance, it
is somewhat surprising that the initial claim Gatheral et al. (2018) that
one needs to model the spot volatility process using a ‘rough’ fractional
noise with Hurst exponent H < 1/2 has not been examined more closely.
Especially given that several follow-up studies (Fukasawa et al. 2022, Rogers
2019) point to the fact that the observations in Gatheral et al. (2018) may
well be compatible with a Brownian diffusion model for volatility.

Our detailed examples illustrate that, for stochastic-volatility diffusion
models driven by Brownian motion as described in Examples 5 and 6, the
realized volatility has a roughness index ĤL,K ≈ 0.3 so exhibits an ‘apparent
roughness’ which instantaneous volatility does not have, both in terms of
normalized p-th variation statistics and also in terms of the log-regression
method used by Gatheral et al. (2018). Clearly in these simulation examples
this is entirely due to the discretization error or ‘estimation error’.

These results suggest that one cannot hastily conclude that the rough-
ness observed in realized volatility is an indicator of similar behaviour in
spot volatility, as implicitly assumed in the ‘rough volatility’ literature. The
observations in high-frequency financial data are in fact compatible with a
stochastic volatility model driven by Brownian motion. So the origin of this
apparent roughness in realized volatility may very well lie in estimation error
rather than the noise process driving spot volatility.

As shown in Example 7, the rough behaviour of realized volatility does
not lead us to reject the hypothesis that the underlying spot volatility may
be modeled with a Brownian diffusion model or even a smoother model with
long-range dependence and H > 1/2. We are thus drawn to concur with
Rogers (2019) that “the notion that volatility is rough, that is, governed by
a fractional Brownian motion (with H < 1/2), is not an incontrovertible
established fact; simpler models explain the observations just as well.”

More precisely, we have shown that the low empirical values observed
for the roughness index of realized volatility are entirely compatible
with diffusion-type stochastic volatility models such as the (well-studied)
Ornstein-Uhlenbeck model (16). This observation, together with “Occam’s
razor”, pleads for the use of diffusion-based stochastic volatility models which
seem compatible with the empirical evidence but are far more tractable.
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