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Abstract
The paper deals with a robust, projection-type measure of effect size when
comparing J > 1 dependent groups. The measure of effect size is scale invari-
ant and does not assume or require that the underlying multivariate distri-
bution is elliptically contoured. By design the measure of effect size is equal
to zero when the corresponding measures of location are equal. A simple
method is suggested for testing the hypothesis that this effect size is zero.
The method is readily extended to comparing K-variate distributions asso-
ciated with two independent groups. One of the main goal is to report sim-
ulation results on how well the method performs in terms of controlling the
Type I error probability. The method, when comparing independent groups,
is used to reveal new insights into the connection between depression and
cortisol levels.

AMS (2000) subject classification. C12; C18; I31.
Keywords and phrases. Robust methods, Effect size, Heteroscedasticity, Pro-
jection distance, ANOVA, Cortisol, Depression.

1 Introduction

Consider J dependent groups and let θj denote some measure of location
associated with the jth group. Of course, a common goal is to test

H0 : θ1 = · · · = θJ . (1)

The classic approach to testing this hypothesis is based in part on the vari-
ation of the J measures of location. That is, it is based on an estimate of a
particular measure of effect size:

Λ =
∑

(θj − θ̄)2, (2)

where θ̄ =
∑

θj/J . The standard approach to testing (1) is to determine
whether the estimate of Λ is sufficiently large to justify rejecting the null
hypothesis.
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Recent years have seen an increased interest in measures of effect size
that reflect differences among measures of location in conjunction with some
measure of dispersion. When comparing three or more independent groups,
there are now a variety of scale invariant measures of effect size that might
be used. That is, they are scale free; multiplying the data by some constant
c, c �= 0, does not alter their value. Included are robust, heteroscedastic
measures of effect size that take into account differences among some measure
of location in conjunction with some robust measure of dispersion (e.g.,
Wilcox, 2022).

A minor goal here is to suggest a robust, scale invariant measure of effect
size for characterizing the extent dependent groups differ. The basic idea
is to measure the distance of an estimate of the null vector from an esti-
mate of (θ1, . . . , θJ), the center of the data cloud. Perhaps the most obvious
approach is to use Mahalanobis distance, but there are two concerns with
this approach. First, it is not robust (e.g., Rousseeuw and Leroy, 1987). That
is, even a small shift in a distribution can alter its value tremendously. In
particular, a relatively large distance assuming normality can be rendered
arbitrarily small by even a small shift toward a heavy-tailed distribution
where outliers are likely to occur. A known strategy for dealing with this
issue is to replace the mean and covariance matrix with some robust ana-
log. There are a variety of possibilities (e.g., Wilcox, 2022). However, there
is a second concern: robust analogs of Mahalanobis distance are reasonable
provided the unknown multivariate distribution is elliptically contoured. A
goal here is to avoid this restriction. This is done via the notion of projec-
tion distance (e.g., Wilcox, 2022, section 6.2.5), which takes into account the
overall structure of the data cloud.

By design, the measure of effect size considered here, Ξ, is equal to zero
when (1) is true. There are two main goals. The first is to report simulation
results on how well a method for testing

H0 : Ξ = 0 (3)

performs in terms of controlling the Type I error probability. Because the
method for testing (3) is sensitive to different features of the data compared
to a conventional method for testing (1), there are situations where the power
of the proposed method can be substantially higher, as will be illustrated.
Not surprisingly, there are situations where the conventional method for (1)
has higher power than the proposed method.
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Now consider two independent groups where for each group there are K
measures for each participant. Let Ξ� (� = 1, 2) denote Ξ for the �th group.
The method for testing (3) is readily extended to testing

H0 : Ξ1 = Ξ2. (4)

The second goal is to report simulations on how well the proposed method
performs when testing (4). As will be evident, testing (4) can detect differ-
ences between groups that are missed when comparing the marginal mea-
sures of location instead.

There are numerous robust location estimators that might be used when
dealing with dependent random variables (e.g., Wilcox, 2022). The focus
here is on a 20% trimmed mean associated with the marginal distributions
with the understanding that arguments can be made for using a variety of
alternative estimators. For notational convenience, consider a single random
sample X1, . . . , Xn and let X(1) ≤ . . . ≤ X(n) denote the values written in
ascending order. Let γ denote the amount of trimming, 0 ≤ γ < 0.5. Let
g = [γn], where [γn] is the value of γn rounded down to the nearest integer.
The sample trimmed mean is computed by removing the g largest and g
smallest observations and averaging the values that remain. More formally,
the sample trimmed mean is

X̄t =
X(g+1) + · · · + X(n−g)

n − 2g
. (5)

Here, γ = 0.2 is used because it performs nearly as well as the sample mean
under normality while guarding against low efficiency when dealing with
heavy-tailed distributions where outliers are likely to occur.

The paper is organized as follows. Section 2 describes the details of Ξ.
Section 3 describes a simple method for testing (3) as well as (4). Section 4
reports simulation results on how well the method controls the Type I error
probability. The power of the proposed method for testing (3) is compared
to a standard method for testing (1). The proposed methods are illustrated
in Section 5.

2 The Proposed Method

First consider the issue of measuring effect size based in part on the marginal
trimmed means but with the additional goal of taking into account the overall
dispersion and structure of the data cloud. Let µ̂t = (X̄t1, . . . , X̄tJ), where
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X̄tj is the sample trimmed mean based on the jth marginal distribution. Let
µ̃t = (X̄G, . . . , X̄G) denote the estimate of the measures of location when
(1) is true, where X̄G =

∑
X̄tj/J . As previously noted, the basic idea is to

use an estimate of a projection-type distance of the null vector, µ̃t from an
estimate of the center of the data cloud, µ̂t. Projection distance has a close
connection to the Donoho and Gasko (1992) approach to defining the notion
of halfspace depth derived by Tukey (1975).

For notational convenience, let Yi = (Xi1, . . . , XiJ) , i = 1, . . . , n and
Yn+1 = µ̃t. An outline of the projection distance estimator is as follows. For
each i (i = 1, . . . , n + 1), project the data onto the line between µ̂t and Yi.
For each projection compute a standardize distance between µ̂t and Yn+1.
The maximum of these n+1 distances is the projection distance between µ̂t

and Yn+1, which is taken to be Ξ̂, the estimate of the effect size, Ξ.
The computational details are as follows. For any i, i = 1, . . . , n + 1, let

Ui = Yi − µ̂t,

Bi = UiU′
i (6)

and for any j (j = 1, . . . , n + 1) let

Wij =
∑

UikUjk,

Tij =
Wij

Bi
(Ui1, . . . , UiJ) (7)

and

Gij = ‖Tij‖,

where ‖Tij‖ is the Euclidean norm. Now let

gij =
Gij

q2 − q1
, (8)

where q1 and q2 are estimates of the lower and upper quartiles, respectively,
based on the values Gi1, . . . , Gi,n+1. Here, the quartiles are estimated with
the ideal fourths estimator (Frigge et al., 1989). The projection distance of
Yn+1 is max gi,n+1, the maximum being taken over i = 1, . . . , n + 1 and is
taken to be Ξ̂.
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3 Methods M and C

This section describes a method for testing (3) and (4). It is noted that
when working with a robust estimator, a percentile bootstrap method often
performs relatively well when testing hypotheses and computing confidence
intervals (e.g., Wilcox, 2022). But this approach was rather unsatisfactory.
When testing (4), even when both sample sizes are equal to 200, the actual
level was well below the nominal 0.05. An alternative approach was found
to be more satisfactory in simulations.

3.1 Method M Method M, aimed at testing (3), is similar in spirit
to Student’s t-test and the ANOVA F test: determine the null distribution
under normality and investigate the impact of non-normality on the actual
level of the test statistic. More precisely, momentarily assume multivariate
normality with a mean 0 and covariance matrix equal to the identity matrix.
Next, estimate the null distribution via a simulation. That is, given n and J ,
generate n vectors of observations from a J-variate normal distribution and
compute an estimate of Ξ, Ξ̂∗. Repeat this B times yielding Ξ̂∗

1 , . . . , Ξ̂∗
B.

Here, B = 2000 is used. Let Ξ̂∗
(1) ≤ · · · ≤ Ξ̂∗

(B) denote Ξ̂∗
1 , . . . , Ξ̂∗

B written in

ascending order. The null hypothesis is rejected at the α level if Ξ̂ is greater
than or equal to the 1 − α quantile of the estimated null distribution. Here,
the 1 − α quantile of the null distribution is simply taken to be Ξ̂∗

(c), where
c = (1 − α)B rounded to the nearest integer. A p-value for testing (3) is

∑ 1
B

I(Ξ̂ ≥ Ξ̂∗
b ), (9)

where the indicator function I(Ξ̂ ≥ Ξ̂∗
b ) = 1 if Ξ̂ ≥ Ξ̂∗

b , otherwise I(Ξ̂ ≥
Ξ̂∗

b ) = 0. This will be called method M henceforth.
3.2 Method C As for testing (4), method C mimics method M. That

is, for each group, momentarily assume multivariate normality with a mean
0 and covariance matrix equal to the identity matrix and use a simulation to
estimate the null distribution of D = Ξ̂1 − Ξ̂2. That is, generate n1 vectors
of values for the first group, n2 vectors for the second group, compute the
estimated difference yielding D∗, and repeat this process B times yielding
D∗

1, . . . , D
∗
B. Let D∗

(1) ≤ · · · ≤ D∗
(B) denote the D∗

1, . . . , D
∗
B values written

in ascending order. Let � = αB/2, rounded to the nearest integer and let
u = (1 − α/2)B rounded to the nearest integer. Now reject at the α level if
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D ≤ D(�) or if D ≥ D(u). Let

P =
1
B

∑
I(D < D∗

b ) (10)

A p-value is
2 min{P, 1 − P}. (11)

4 Simulation Results

Simulations were used to assess the ability of methods M and C to control
the probability of a Type I error when dealing with non-normal distributions
as well as situations where the the correlations among the random variables
differ from zero. All of the simulation results are based on 2000 replications.
The marginal distributions were taken to have one of four g-and-h distribu-
tions (Hoaglin, 1985) that contains the standard normal distribution as a
special case. If Z has a standard normal distribution, then by definition

V =

{
exp(gZ)−1

g exp(hZ2/2), if g > 0
Zexp(hZ2/2), if g = 0

has a g-and-h distribution where g and h are parameters that determine the
first four moments. The four distributions used here were the standard nor-
mal (g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0),
an asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and
an asymmetric distribution with heavy tails (g = h = 0.2). Table 1 shows the
skewness (κ1) and kurtosis (κ2) for each distribution. Additional properties
of the g-and-h distribution are summarized by Hoaglin (1985). Data were
generated from a multivariate normal distribution with a common Pearson’s
correlation, ρ, equal to zero or 0.5. Then the marginal distributions were
transformed to a g-and-h distribution. This transformation alters slightly
the value of Pearsons’s correlation, but the R function rngh in the R pack-
age WRS adjusts for this. The sample sizes were taken to be n = 25, 50, 100
and 200

Table 2 shows the estimated Type I error probability when J = 4 and
when testing at the 0.05 level. To add perspective, results are reported on
a method for testing (1), based on a 20% trimmed mean, which is labeled
method RMT. The computational details are summarized in Wilcox (2022,
section 8.1.1), but for brevity they are not described. The results for n = 100
provided no new insights so they are not reported.
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Although the seriousness of a Type I error depends on the situation,
Bradley (1978) suggests that as a general guide, when testing at the 0.05
level, the actual level should be between 0.025 and 0.075. RMT satisfies
Bradley’s criterion. The largest estimates for methods M and RMT are 0.058
and 0.053, respectively. As for method M, when dealing with a relatively
heavy-tailed distribution, the estimates drop below 0.025 for n = 25 and
50. The lowest estimate was 0.016. For n = 200, the estimates indicate that
M satisfies Bradley’s criterion except for ρ = 0.5, g = 0 and h = 0.2, the
estimate being 0.022.

Table 3 shows the results when J = 6. Again, both methods perform well
in terms of avoiding Type I errors well above the nominal level. The main
difficulty is that for method M, estimates drop below 0.025, the lowest being
0.014. As in Table 3, it is heavy-tailed distributions that cause problems,
especially when the variables have a relatively high correlation.

Table 4 compares the power of method M and RMT when n = 50. This
was done by generating the data as done in Table 2, and then transform-
ing the first marginal distribution to σXi1 + δ1 (i = 1, . . . , n). The second
marginal distribution was transformed to Xi2+δ2. As might be expected, the
difference in power can be quite large because the two methods are sensitive
to different features of the data. The main point is that there are situations
where each method offers a distinct advantage over the other. That is, in
practical terms, given the goal maximizing power, the choice can make a
substantial difference with the optimal choice depending on the unknown
nature of the distributions.

Finally, Tables 5 and 6 report results on the ability of method C to
control the Type I error probability. Now there are situations where the
estimates exceed 0.06, the largest estimate being 0.069. For equal sample
sizes, the lowest estimate is 0.015, which occurred when n = 25, ρ = 0.5
and g = h = 0.2. For unequal sample sizes, there is only one estimate less
than 0.025, namely 0.022, which occurred for n1 = 25, n2 = 50, ρ = 0.5 and
g = h = 0.2.

Table 1: Some properties of the g-and-h distribution
g h κ1 κ2

0.0 0.0 0.5 3.0
0.0 0.2 0.5 21.46
0.2 0.0 0.61 3.68
0.2 0.2 2.81 155.98
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Table 2: Estimated Type I errors using methods M and RMT, J = 4
n ρ g h M RMT
25 0.0 0.0 0.0 0.050 0.037
25 0.0 0.0 0.2 0.032 0.047
25 0.0 0.2 0.0 0.055 0.042
25 0.0 0.2 0.2 0.039 0.045
25 0.5 0.0 0.0 0.033 0.046
25 0.5 0.0 0.2 0.019 0.036
25 0.5 0.2 0.0 0.031 0.038
25 0.5 0.2 0.2 0.016 0.039

50 0.0 0.0 0.0 0.050 0.053
50 0.0 0.0 0.2 0.034 0.048
50 0.0 0.2 0.0 0.058 0.046
50 0.0 0.2 0.2 0.041 0.040
50 0.5 0.0 0.0 0.036 0.044
50 0.5 0.0 0.2 0.023 0.041
50 0.5 0.2 0.0 0.041 0.049
50 0.5 0.2 0.2 0.019 0.037

200 0.0 0.0 0.0 0.050 0.051
200 0.0 0.0 0.2 0.032 0.052
200 0.0 0.2 0.0 0.055 0.044
200 0.0 0.2 0.2 0.031 0.044
200 0.5 0.0 0.0 0.046 0.051
200 0.5 0.0 0.2 0.022 0.045
200 0.5 0.2 0.0 0.052 0.046
200 0.5 0.2 0.2 0.025 0.043

5 An Illustration

The methods are illustrated with data from the Well Elderly 2 study (Clark
et al., 2011) where the general goal was to assess the efficacy of an inter-
vention strategy aimed at improving the physical and emotional health of
older adults. The focus here is on cortisol levels measured at four different
times: upon awakening, 30-45 minutes after awakening, just before lunch
and just before dinner. Past studies indicate that cortisol has a connection
with psychosocial factors (Kirschbaum et al. 1995; Chida and Steptoe, 2009)
including depression and anxiety disorders (e.g., Stetler and Miller, 2005;
Bhattacharyya et al., 2008). These studies have focused on the cortisol awak-
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ening response (CAR), which is just the difference between a participant’s
cortisol level upon awakening and measured again 30-45 minutes later.

It is briefly noted that both methods M and RMT reject at the 0.05 level
indicating that the cortisol levels differ over time. What is more interesting
are results based on method C when comparing two groups based on a
measure of depressive symptoms. The first group consisted of participants
with a score greater than 15, which generally is taken to indicate someone
with minor depressive symptoms or worse. The sample size is 61. The second
group consisted of the participants with a score less than or equal to 15 and
the sample size is 114.

First focus on the first three cortisol measures. Viewing the data in the
context of a between-by-within ANOVA design, the between group main
effect yielded a p-value equal to 0.214 based on a Welch-type analog for
trimmed means, which is described in Wilcox (2022, section 8.6). For each
of the three measures taken, the two groups did not differ significantly at
the 0.05 level based on a method for comparing 20% trimmed means derived

Table 3: Estimated Type I errors using methods M and RMT, J = 6
n ρ g h M RMT
20 0.0 0.0 0.0 0.050 0.040
20 0.0 0.0 0.2 0.036 0.045
20 0.0 0.2 0.0 0.059 0.046
20 0.0 0.2 0.2 0.043 0.046
20 0.5 0.0 0.0 0.027 0.037
20 0.5 0.0 0.2 0.015 0.030
20 0.5 0.2 0.0 0.039 0.037
20 0.5 0.2 0.2 0.017 0.031

200 0.0 0.0 0.0 0.050 0.057
200 0.0 0.0 0.2 0.017 0.050
200 0.0 0.2 0.0 0.054 0.046
200 0.0 0.2 0.2 0.029 0.045
200 0.5 0.0 0.0 0.051 0.051
200 0.5 0.0 0.2 0.014 0.049
200 0.5 0.2 0.0 0.049 0.048
200 0.5 0.2 0.2 0.021 0.054
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Table 4: Estimated power using methods M and RMT, J = 4, n = 50
ρ g h M RMT
σ = 1, δ1 = 0.5, δ2 = 0

0.0 0.0 0.0 0.519 0.625
0.0 0.0 0.2 0.382 0.564
0.0 0.20 0.0 0.526 0.619
0.0 0.20 0.2 0.386 0.559
0.5 0.0 0.0 0.774 0.894
0.5 0.0 0.2 0.614 0.843
0.5 0.2 0.0 0.777 0.890
0.5 0.2 0.2 0.620 0.828
σ = 3, δ1 = 1, δ2 = 0.2

0.0 0.0 0.0 0.931 0.656
0.0 0.0 0.2 0.810 0.564
0.0 0.2 0.0 0.929 0.643
0.0 0.2 0.2 0.820 0.538
0.5 0.0 0.0 0.989 0.864
0.5 0.0 0.2 0.950 0.767
0.5 0.2 0.0 0.986 0.849
0.5 0.2 0.2 0.946 0.752

by Yuen (1974). The corresponding p-values are 0.124, 0.299 and 0.740.
Comparing the groups based on CAR, again the groups did not differ sig-
nificantly; the p-value is 0.464. That is, past studies suggest that these two
groups would differ based on CAR, but this was not verified here. However,
based on method C, again using the first three cortisol measures, the p-value
is less than 0.001. The estimated effect sizes are 2.01 for the depressive group
and 1.23 for the non-depressive group. The ratio of these two estimates is
1.6. Repeating the analysis using all four cortisol measures, now the p-value
based on method C is 0.022.

Method C was applied again for a separate group where measures were
taken after intervention. Now the sample sizes for the depressed and not
depressed groups are 65 and 169, respectively. Comparing the depressed
group to the not depressed group based on the first three cortisol measures,
the p-value is 0.048. But using all four measures the p-value is 0.574.
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Table 5: Estimated Type I errors using method C, equal sample sizes, K = 4
n ρ g h C
25 0.0 0.0 0.0 0.051
25 0.5 0.0 0.0 0.052
25 0.0 0.0 0.2 0.021
25 0.5 0.0 0.2 0.025
25 0.0 0.2 0.0 0.047
25 0.5 0.2 0.0 0.047
25 0.0 0.2 0.2 0.031
25 0.5 0.2 0.2 0.015

50 0.0 0.0 0.0 0.050
50. 0.5 0.0 0.0 0.062
50 0.0 0.0 0.2 0.021
50 0.5 0.0 0.2 0.028
50 0.0 0.2 0.0 0.039
50 0.5 0.2 0.0 0.028
50 0.0 0.2 0.2 0.021
50 0.5 0.2 0.2 0.027

200 0.0 0.0 0.0 0.055
200 0.5 0.0 0.0 0.051
200 0.0 0.0 0.2 0.031
200 0.5 0.0 0.2 0.022
200 0.0 0.2 0.0 0.049
200 0.5 0.2 0.0 0.053
200 0.0 0.2 0.2 0.020
200 0.5 0.2 0.2 0.029

6 Concluding Remarks

All indications are that methods M and C avoid Type I errors well above
the nominal level. The main difficulty occurs when dealing with distribu-
tions that are skewed and relatively heavy tailed: there are situations where
the actual level was estimated to be below 0.025 when testing at the 0.05
level.

There are many possible variations of methods M and C. For exam-
ple, replace the 20% trimmed mean with the median or perhaps a robust
M-estimator. There are also numerous affine equivariant estimators that
effectively deal with outliers in a manner that takes into account the
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Table 6: Estimated Type I errors using method C, unequal sample sizes,
K = 4
ρ g h C
n1 = 25, n2 = 50

0.0 0.0 0.0 0.064
0.5 0.0 0.0 0.050
0.0 0.0 0.2 0.030
0.5 0.0 0.2 0.028
0.0 0.2 0.0 0.061
0.5 0.2 0.0 0.064
0.0 0.2 0.2 0.026
0.5 0.2 0.2 0.022
n1 = 25, n2 = 100

0.0 0.0 0.0 0.060
0.5 0.0 0.0 0.056
0.0 0.0 0.2 0.025
0.5 0.0 0.2 0.038
0.0 0.2 0.0 0.051
0.5 0.2 0.0 0.069
0.0 0.2 0.2 0.029
0.5 0.2 0.2 0.031

overall structure of the data cloud (e.g., Wilcox, 2022, section 6.3.13).
And there are alternative ways of computing the depth of a point in
a data cloud. The practical advantages of these variations remain to be
determined.

It is not being suggested that inferential methods based on measures
of location should be replaced by methods that compare scale invariant
measures of effect size. The idea is that different methods provide differ-
ent perspectives and that multiple perspectives can provide a more nuanced
understanding of data. The illustration based on method C demonstrates
this point.

Finally, R functions for applying methods M and C are stored in the file
Rallfun-v40, which can be downloaded from https://osf.io/nvd59/quickfiles.
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The R function rmES.pro applies method M and bwESP.GLOB.B applies
method C.

Funding Open access funding provided by SCELC, Statewide California Electronic
Library Consortium.

Availability of data and material Publicly available at https://dornsife.usc.edu/cf/labs/
wilcox/wilcox-faculty-display.cfm.

Code Availability Stored at https://osf.io/nvd59/quickfiles.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

Bhattacharyya, M. R. & Molloy, G. J., Steptoe, A., (2008). Depression is associated with
flatter cortisol rhythms in patients with coronary artery disease. Journal of Psychoso-
matic Research, 65, 107–113. https://doi.org/10.1016/j.jpsychores.2008.03.012

Bradley, J. V. (1978) Robustness? British Journal of Mathematical and Statistical Psy-
chology, 31, 144–152.

Chida, Y. & Steptoe, A., (2009). Cortisol awakening response and psychosocial factors: A
systematic review and meta-analysis. Biological Psychology, 80, 265–278

Clark, F., Jackson, J., Carlson, M., Chou, C.-P., Cherry, B. J., Jordan-Marsh M., Knight,
B. G., Mandel, D., Blanchard, J., Granger, D. A., Wilcox, R. R., Lai, M. Y., White,
B., Hay, J., Lam, C., Marterella, A. & Azen, S. P. (2011). Effectiveness of a lifestyle
intervention in promoting the well-being of independently living older people: results
of the Well Elderly 2 Randomised Controlled Trial. Journal of Epidemiology and
Community Health, 66, 782–790. https://doi.org/10.1136/jech.2009.099754.

Donoho, D. L. & Gasko, M. (1992). Breakdown properties of the location estimates based
on halfspace depth and projected outlyingness. Annals of Statistics, 20, 1803–1827.

Frigge, M., Hoaglin, D. C. & Iglewicz, B. (1989). Some implementations of the Boxplot.
American Statistician, 43, 50–54.

Hoaglin, D. C. (1985). Summarizing shape numerically: The g-and-h distributions. In D.
Hoaglin, F. Mosteller and J. Tukey (Eds.) Exploring data tables, trends, and shapes.
(pp. 461–515). New York: Wiley.

Kirschbaum, C., Prussner, J. C., Stone, A. A., Federenko, I., Gabb, J., Lintz, D., Schommer,
N., Hellhammer, D.H. (1995). Persistent high cortisol responses to repeated psycholog-
ical stress in a subpopulation of healthy men. Psychosomatic Medicine. 57, 468–474.
https://doi.org/10.1097/00006842-199509000-00009

Pruessner, J. C., Hellhammer, D. H., & Kirschbaum, C. (1999). Burnout, perceived stress,
and cortisol responses to awakening. Psychosomatic Medicine, 61, 197–204. https://
doi.org/10.1097/00006842-199903000-00012

342

https://dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-display.cfm
https://dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-display.cfm
https://osf.io/nvd59/quickfiles
https://doi.org/10.1016/j.jpsychores.2008.03.012
https://doi.org/10.1136/jech.2009.099754
https://doi.org/10.1097/00006842-199509000-00009
https://doi.org/10.1097/00006842-199903000-00012
https://doi.org/10.1097/00006842-199903000-00012


Within Groups Designs: Inferences Based on A Robust

Rousseeuw, P. J. & Leroy, A. M. (1987). Robust Regression & Outlier Detection. New
York: Wiley.

Stetler, C. & Miller, G. (2005). Blunted cortisol response to awakening in mild to moderate
depression: Regulatory influences of sleep patterns and social contacts. Journal of
Abnormal Psychology, 114, 697–705.

Tukey, J. W. (1975). Mathematics and the picturing of data. Proceedings of the Interna-
tional Congress of Mathematicians, 2, 523–531.

Wilcox, R. R. (2022). Introduction to Robust Estimation and Hypothesis Testing. 5th Ed.
San Diego, CA: Academic Press.

Yuen, K. K. (1974). The two sample trimmed t for unequal population variances.
Biometrika, 61, 165–170. https://doi.org/10.2307/2334299

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Rand R. Wilcox
Department of Psychology,
University of Southern California,
Los Angeles CA 90089, USA

E-mail: rwilcox@usc.edu

Paper received: 3 June 2021; accepted 1 August 2023.

343

https://doi.org/10.2307/2334299

	Within Groups Designs: Inferences Based on A Robust Nonparametric Measure of Effect Size
	1 Introduction
	2 The Proposed Method
	3 Methods M and C
	4 Simulation Results
	5 An Illustration
	6 Concluding Remarks


