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Abstract

In step-stress experiments, test units are successively exposed to higher usu-
ally increasing levels of stress to cause earlier failures and to shorten the
duration of the experiment. When parameters are associated with the stress
levels, one problem is to estimate the parameter corresponding to normal
operating conditions based on failure data obtained under higher stress lev-
els. For this purpose, a link function connecting parameters and stress levels
is usually assumed, the validity of which is often at the discretion of the
experimenter. In a general step-stress model based on multiple samples of
sequential order statistics, we provide exact statistical tests to decide whether
the assumption of some link function is adequate. The null hypothesis of a
proportional, linear, power or log-linear link function is considered in de-
tail, and associated inferential results are stated. In any case, except for the
linear link function, the test statistics derived are shown to have only one
distribution under the null hypothesis, which simplifies the computation of
(exact) critical values. Asymptotic results are addressed, and a power study
is performed for testing on a log-linear link function. Some improvements of
the tests in terms of power are discussed.

AMS (2000) subject classification. Primary 62N03, 62N05; Secondary 62F03.
Keywords and phrases. Accelerated life testing, step-stress model, link function,
sequential order statistics, maximum likelihood estimation, Hypothesis test.

1 Introduction

In accelerated life testing, step-stress models are applied to lifetime ex-
periments with highly reliable products, where under normal operating con-
ditions the number of observed failures is expected to be low; see Bagdon-
avičius and Nikulin (2001), Meeker and Escobar (1998) & Nelson (2004).
In a general step-stress experiment, n items are put on a lifetime test and
successively exposed to m ≥ 2 different (usually increasing) stress levels

Sankhyā : The Indian Journal of Statistics
2022, Volume 84-B, Part 1, pp. 106-129
c© 2021, The Author(s)

http://crossmark.crossref.org/dialog/?doi=10.1007/s13571-021-00250-5&domain=pdf


y1, . . . , ym. Starting the experiment under stress level y1, the stress on the
test items then changes at pre-fixed time points or after having observed
a pre-specified number of failures under each stress level. The experiment
ends at some specified time point (type-I censoring) or upon observing a
specified number of failures under stress level ym (type-II censoring). Based
on a statistical analysis of this failure time data, the aim is then to estimate
the lifetime distribution of the product under normal operating conditions.
For an overview on the topic focussing on exponential lifetime distributions,
we refer to Gouno and Balakrishnan (2001) & Balakrishnan (2009).

In a common parametric step-stress set-up, unknown distribution param-
eters θ0, θ1, . . . , θm are associated with (known) stress levels y0, y1, . . . , ym via
a link function

θk = Ψζ(yk) , k ∈ {0, 1, . . . ,m} .

Here, the parameter θ0 corresponds to stress level y0, which represents the
normal operating conditions. The function Ψζ , in turn, depends on an un-
known parameter (vector) ζ, which is referred to as link function parameter.
As two examples, ζ may be the vector of intercept and slope of a linear link
function or may consist of the parameters of a log-linear link function; see,
e.g., Bai et al. (1989), Alhadeed and Yang (2002), Wu et al. (2006), Srivas-
tava and Shukla (2008) & Wang and Yu (2009). To obtain an estimator of
θ0 = Ψζ(y0), one may then either replace θ1, . . . , θm and estimate ζ directly
or estimate θ1, . . . , θm and then fit the link function with respect to ζ. In
both cases, however, there is some prior belief in the assumed type of the
link function stating, for instance, a log-linear relationship of the θ’s and y’s.
Although link function assumptions are usually deduced from contextually
relevant physical principles as, e.g., the inverse power law or the Arrhenius
model, there also seem to be situations, where the theoretical knowledge
supporting a specific life-stress relation is rather insufficient. For some spe-
cific lifetime distributions, such as the Weibull or log-normal distribution,
(asymptotic) tests on a log-linear life-stress relationship can be found in
Nelson (2004) & Meeker and Escobar (1998), where the latter also contains
related graphical methods.

In Balakrishnan et al. (2012), a general step-stress model is proposed
and studied based on sequential order statistics (SOSs), which have been
introduced as an extension of common order statistics; see Kamps(1995a, b).
For arbitrary baseline distribution, maximum likelihood estimation of the
parameters associated with the stress levels turns out to be simple in this
model, and various estimators along with their properties are shown. In
Bedbur et al. (2015), the model is extended to the multi-sample case which
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also applies to differently designed experiments. Additional inferential re-
sults are provided including, for instance, univariate most powerful tests and
multivariate tests for hypotheses concerning the parameters. Moreover, max-
imum likelihood estimation of the parameters of a log-linear link function is
considered. Recently, confidence regions for the parameters associated with
the stress levels have been established in Bedbur and Kamps (2019), where
optimality properties are also obtained.

For the aforementioned general multi-sample step-stress model based on
SOSs, the present work provides statistical tests to check for the validity of
some link function assumption. On the one hand, these tests can be used to
confirm some link function type motivated by physical laws, say, in the sense
that there is no statistical evidence against the assumption. Moreover and
maybe more important, the tests may be applied to check for the adequacy
of some link function type in situations, where underlying physical principles
are too complex or not known at all. In any case, a data-based statistical
test may help to assess the accuracy of the model assumptions, to detect
significant deviations, and with it to prevent the use of unsuitable estimates
of θ0, the parameter corresponding to normal operating conditions.

The remainder of this article is organized as follows. In Section 2, the
model is introduced and some basic properties are reviewed. The test statis-
tics are proposed in Section 3 for general hypotheses, first, and some simple
representations are shown. In Sections 4 and 5, these test statistics are then
applied to check for the null hypothesis of a linear or log-linear link function,
respectively, and associated inferential properties are stated. In particular,
the test statistics are shown to have a single null distribution when testing
on a proportional, power, or log-linear link function, which eases the com-
putation of exact critical values. Under any null hypothesis, the asymptotic
distribution of the test statistics is obtained in Section 6. In case of testing
on a log-linear link function, which represents the most important case in
applications, a power study is carried out in Section 7. Testing under or-
der restrictions is briefly discussed in Section 8 giving the potential basis of
future work, and we conclude with Section 9.

2 SOSs as Step-Stress Model

SOSs based on distribution functions F1, . . . , Fn have been defined by
Kamps(1995a, b) to model the lifetimes of sequential k-out-of-n systems, in
which upon failure of some component the underlying component lifetime
distribution may change. In the common semi-parametric setting, SOSs

X
(1)
∗ , . . . , X

(n)
∗ are based on Fj = 1− (1−F )αj , 1 ≤ j ≤ n, where F denotes
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some absolutely continuous distribution function with corresponding density
function f and α1, . . . , αn are positive model parameters. In that case, the

joint density function of the first r ≤ n SOSs X
(1)
∗ , . . . , X

(r)
∗ is given by

fα(x) = exp

⎧
⎨

⎩

r∑

j=1

αjTj(x)− κ(α)

⎫
⎬

⎭

n!

(n− r)!

r∏

j=1

f(xj)

F (xj)

for x ∈ Xr = {(x1, . . . , xr) ∈ R
r : F−1(0+) < x1 < · · · < xr < F−1(1)} with

κ(α) = −
∑r

j=1 logαj , α = (α1, . . . , αr) ∈ (0,∞)r, and

Tj(x) = (n− j + 1) log
F (xj)

F (xj−1)
, x ∈ Xr , 1 ≤ j ≤ r ,

where F = 1−F and F (x0) ≡ 1 for a simple notation; see, e.g., Bedbur et al.
(2010). In a sequential (n−r+1)-out-of-n system, say, the hazard rate of any
working component after the (j−1)th component failure is then described by
αjf/F and thus proportional to the hazard rate of F , 1 ≤ j ≤ r. Common
order statistics based on F are included in the distribution-theoretical sense
by setting α1 = · · · = αn = 1. For an extensive account on the model
including distribution theory and inference, we refer to Cramer and Kamps
(2001).

Following the approach in Balakrishnan et al. (2012) & Bedbur et al.
(2015), we consider a general step-stress model based on s independent sam-
ples of SOSs, which is parametrized as follows. For a common known baseline
distribution function F and positive parameters θ1, . . . , θm with m ≥ 2, we
have in sample i ∈ {1, . . . , s}

– ni ≥ 1 test items,

– ri• ∈ {1, . . . , ni} failure times (xi1, . . . , xiri•) ∈ Xri• as realizations of

SOSs X
(1)
∗i , . . . , X

(ri•)
∗i based on F and parameters αρi,k−1+1 = · · · =

αρik = θk , for 1 ≤ k ≤ m with ρi,k−1 < ρik, where ρi0, ρi1, . . . , ρim are
integers with 0 = ρi0 ≤ ρi1 ≤ · · · ≤ ρim = ri•,

– rik = ρik − ρi,k−1 ∈ {0, 1, . . . , ri•} observations under stress level yk
with corresponding hazard rate θkf/F for k ∈ {1, . . . ,m}.

Over all samples, we have r•k =
∑s

i=1 rik observations under stress level
yk, 1 ≤ k ≤ m, and r•• =

∑m
k=1 r•k =

∑s
i=1 ri• observations in total.

Throughout, we assume that r•k ≥ 1, 1 ≤ k ≤ m, but rik = 0 is permitted
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for some i ∈ {1, . . . , s} and k ∈ {1, . . . ,m}. Note that we choose a differ-
ent parametrization than in Bedbur et al. (2015), which is suitable for the
purposes, here.

For i ∈ {1, . . . , s}, we define the statistics

Tij(xi) = (ni − j + 1) log
F (xij)

F (xi,j−1)
, 1 ≤ j ≤ ri• , F (xi0) ≡ 1 ,

and T̃ik(xi) =

ρik∑

j=ρi,k−1+1

Tij(xi), 1 ≤ k ≤ m,

as functions of xi = (xi1, . . . , xiri•) ∈ Xri•. The overall joint density function

of X̃ = (X
(j)
∗i )1≤i≤s,1≤j≤ri• is then given by

f̃θ(x̃) = exp

{
m∑

k=1

θkT̃•k(x̃)− κ̃(θ)

}
s∏

i=1

ni!

(ni − ri•)!

ri•∏

j=1

f(xij)

F (xij)
, (2.1)

for x̃ = (x1, . . . ,xs) ∈ X̃ = ×s
i=1Xri• with κ̃(θ) = −

∑m
k=1 r•k log θk for

θ = (θ1, . . . , θm) ∈ Θ = (0,∞)m, and

T̃•k(x̃) =
s∑

i=1

T̃ik(xi) , x̃ ∈ X̃ , 1 ≤ k ≤ m.

For θ ∈ Θ, let Pθ denote the distribution with density function f̃θ.
The set P = {Pθ : θ ∈ Θ} then forms a regular exponential family of
rank m for which T̃ • = (T̃•1, . . . , T̃•m)t is a minimal sufficient and complete
statistic, where superscript t means transposition. Moreover, T̃•1, . . . , T̃•m
are independent, and

−T̃•k ∼ Γ (r•k, 1/θk) , 1 ≤ k ≤ m, (2.2)

where Γ (b, a) denotes the gamma distribution with shape parameter b and
scale parameter a. For more details, see Bedbur et al. (2015).

3 Test Statistics

In the multi-sample general step-stress model introduced in Section 2, un-
known model parameters θ1, . . . , θm correspond to the (known) stress levels
y1, . . . , ym. Aiming at conclusions about the unknown parameter θ0 associ-
ated with stress level y0, which are the normal operating conditions, a link
function should be part of the model connecting stress levels and parameters.
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As a preliminary work for checking whether a particular type of link
function is appropriate, we consider the test problem

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ \Θ0 (3.1)

for an arbitrary parameter set Θ0 ⊂ Θ = (0,∞)m. To decide between the
hypotheses, the likelihood ratio test, the Rao score test, and the Wald test
are applied, which reject the null hypothesis for (too) large values of the
associated test statistics. As shown in Bedbur et al. (2015) (cf. Balakrish-
nan et al. 2012), the (unrestricted) maximum likelihood estimator (MLE)
θ̂ = (θ̂1, . . . , θ̂m) of θ has independent and inverse gamma distributed com-
ponents

θ̂k = − r•k/T̃•k , 1 ≤ k ≤ m. (3.2)

Immediately, we have the following important property.

Lemma 1. (θ̂1/θ1, . . . , θ̂m/θm) is a pivotal quantity, the distribution of
which does only depend on r•1, . . . , r•m.

Provided that the MLE θ̃ = (θ̃1, . . . , θ̃m) in Θ0 exists, the likelihood ratio
statistic Λ and the Rao score statistic R for test problem (3.1) are defined
as

Λ = 2 (log f̃θ̂ − log f̃θ̃) and R = St
θ̃
[I(θ̃)]−1 Sθ̃ ,

whereSθ =∇θ log f̃θ denotes the score statistic on X̃ and I(θ) =
∫
SθS

t
θ dPθ

the Fisher information matrix of P at θ ∈ Θ. By using formulas (2.1) and
(2.2), Sθ has components T̃•k + r•k/θk, 1 ≤ k ≤ m, and

I(θ) = Covθ(T̃ •) = diag

(
r•1
θ21

, . . . ,
r•m
θ2m

)

(3.3)

is a diagonal matrix with entries r•k/θ2k, 1 ≤ k ≤ m. Together with formulas
(2.1) and (3.2), we then arrive at the simple representations

Λ = 2
m∑

k=1

r•k

(
θ̃k

θ̂k
− log

θ̃k

θ̂k
− 1

)

and R =
m∑

k=1

r•k

(
θ̃k

θ̂k
− 1

)2

,

(3.4)
which depend on x̃ only through the ratios θ̃k/θ̂k, 1 ≤ k ≤ m; cf. Bedbur
et al. (2015). Hence, if the distribution of (θ̃1/θ1, . . . , θ̃m/θm) is free of θ
for every θ ∈ Θ0, Lemma 1 implies that Λ and R both have a single null
distribution, i.e., only one distribution under H0 regardless of the true value
of θ ∈ Θ0.

While the likelihood ratio test and the Rao score test both involve the
MLE of θ in Θ0, the Wald test only depends on the unrestricted MLE of θ.
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Let g : Θ → R
q, q ≤ m, be a continuously differentiable function with the

property that g(θ) = 0 if and only if (iff) θ ∈ Θ0. Moreover, let the Jacobian
matrix Dg(θ) ∈ R

q×m of g at θ be of full rank for every θ ∈ Θ. Then, the
Wald statistic W for test problem (3.1) based on g is defined by

W = g(θ̂)t [Ĩ(θ̂)]−1 g(θ̂) , where Ĩ(θ) = Dg(θ) [I(θ)]−1Dg(θ)
t .(3.5)

Note that varying g may lead to different test statistics. For computational
reasons, a simple form of g is often preferred.

Remark 1. In this work, Λ, R, and W are applied to test on the type of
the underlying link function connecting parameters and stress levels, which
yields a composite null hypothesis in test problem (3.1), each. However, the
tests also allow to check for a single link function by choosing the simple null
hypothesis

H0 : θk = Ψ0(yk) , 1 ≤ k ≤ m,

with some completely specified function Ψ0 as, e.g., Ψ0 = Ψζ0
with known

link function parameter ζ0. The corresponding test statistics are given by
formula (3.4) with θ̃ = (Ψ0(y1), . . . , Ψ0(ym)), where W = R for the canonical
choice g(θ) = θ−θ̃, θ ∈ Θ. For independent and identically distributed (iid)
samples of generalized order statistics and in a different parametrization,
these tests can also be found in Bedbur et al. (2014, 2016).

4 Linear Link Functions

Let the stress levels y1, . . . , ym be known positive numbers. Without loss
of generality, we assume that y1, . . . , ym are pairwise distinct, i.e., we have

0 < yi 
= yj , 1 ≤ i, j ≤ m, i 
= j . (4.1)

The case of arbitrary positive stress levels can then be traced back to the
above case by building in formula (2.1) sums of the statistics T̃•1, . . . , T̃•m and
numbers r•1, . . . , r•m, respectively, corresponding to identical θ’s to arrive at
a representation of the density function with m̃ < m distinct parameters.

In this section, we consider the situation that stress levels and parameters
might be connected via a proportional link function

θk = b yk , 1 ≤ k ≤ m, (4.2)

for some parameter b > 0, or via a linear link function

θk = a+ b yk , 1 ≤ k ≤ m, (4.3)
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for some parameters a, b ∈ R with a + byk > 0, 1 ≤ k ≤ m. Note that, for
m = 2, formula (4.3) is just a reparametrization of the parameters.

First, estimation of the link function parameters is discussed under the
assumption that formula (4.2) or (4.3) holds true. Then, we derive statistical
tests for checking whether the proportional or linear link function assumption
is appropriate.

4.1. Estimation Under Proportional or Linear Link Functions We start
by deriving estimators for the link function parameters when formula (4.2)
or (4.3) is assumed to be true. To ease notation, let the statistics U and V
be defined as

U =

m∑

k=1

T̃•k and V =

m∑

k=1

ykT̃•k .

Based on an iid sample of SOSs, estimators for b and (a, b) along with
their properties are provided in Balakrishnan et al. (2011), where the focus
is on load-sharing systems. The results are easily generalized and adopted
to the actual step-stress model.

Theorem 1. (a) Under the proportional link function in formula (4.2),

(i) V is sufficient and complete for b with −V ∼ Γ (r••, 1/b),

(ii) the unique MLE of b is given by b̂ = −r••/V ,

(iii) the uniformly minimum-variance unbiased estimator of b is given
by (r•• − 1)b̂/r••.

(b) Under the linear link function in formula (4.3) and for m ≥ 3,

(i) (U, V ) is minimal sufficient and complete for (a, b),

(ii) the unique MLE (â, b̂) of (a, b) is equal to (−r••/U, 0) if
∑m

k=1 r•kyk/V = r••/U and otherwise given by the only solution
of the equations

a =
r•• + bV

−U
and

m∑

k=1

r•k
r•• + b(V − ykU)

= 1 (4.4)

with respect to a, b ∈ R satisfying b 
= 0 and a + byk > 0,
1 ≤ k ≤ m.

Proof. (a) By inserting formula (4.2) in density function (2.1), we find
that P forms a regular one-parameter exponential family in b, from which
all statements are obvious.
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(b) Likewise, by inserting formula (4.3) in density function (2.1), P is
seen to form a regular two-parameter exponential family in a and b, which is
of rank 2, since the covariance matrix of (U, V ) is positive definite (which, in
turn, follows by application of the Cauchy-Schwarz inequality). From this,
all statements are directly obtained. In particular, the MLE (â, b̂) of (a, b)
uniquely exists and is the only solution of the likelihood equations

m∑

k=1

r•k
a+ byk

= −U and
m∑

k=1

r•kyk
a+ byk

= −V (4.5)

with respect to a, b ∈ R satisfying a + byk > 0, 1 ≤ k ≤ m. Obviously,
b̂ = 0 iff r••/U =

∑m
k=1 r•kyk/V , in the case of which (â, b̂) = (−r••/U, 0).

Otherwise, we may multiply the second equation in formula (4.5) by b, from
which the relation −bV = r•• + aU and Eq. (4.4) are obtained.

4.2. Testing on Proportional or Linear Link Functions To check whether
link function (4.2) or (4.3) is appropriate, we consider test problem (3.1) with
Θ0 specified as

ΘA
0 = {b (y1, . . . , ym) : b > 0} and (4.6)

ΘB
0 = {(a+ by1, . . . , a+ bym) : a, b ∈ R , a+ byk > 0 , 1 ≤ k ≤ m}. (4.7)

Then, θ̃
A

= b̂(y1, . . . , ym) with b̂ as in Theorem 1(a) and θ̃
B

= (â +
b̂y1, . . . , â+ b̂ym) with (â, b̂) as in Theorem 1(b) are the MLEs of θ in ΘA

0 and

ΘB
0 , respectively. Since θ̃

A
is available in explicit form, the likelihood ratio

statistic and the Rao score statistic are simple for checking the proportional
link function assumption.

Theorem 2. Let test problem (3.1) be given with Θ0 = ΘA
0 as defined in

formula (4.6). Then,

Λ = −2

m∑

k=1

r•k log

(
r••
r•k

ykT̃•k
V

)

and R = r••

⎡

⎣
m∑

k=1

r••
r•k

(
ykT̃•k
V

)2

− 1

⎤

⎦ ,

where, under the null hypothesis, (y1T̃•1/V, . . . , ymT̃•m/V ) has a Dirichlet
distribution with parameters r•1, . . . , r•m. In particular, Λ and R each have
a single null distribution, which only depends on r•1, . . . , r•m.

Proof. We have that

θ̃Ak
θ̂k

=
r••
r•k

ykT̃•k
V

, 1 ≤ k ≤ m,
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and inserting this expression in formula (3.4) leads to the stated representa-
tions for Λ and R. By formula (2.2), −y1T̃•1, . . . ,−ymT̃•m are independent,
where, under H0, −ykT̃•k ∼ Γ (r•k, 1/b) for 1 ≤ k ≤ m and some b > 0. Since
these random variables sum up to −V by definition, the proof is completed.

Simple expressions for Λ and R are also near at hand when testing on
the presence of a linear link function.

Lemma 2. Let test problem (3.1) be given with Θ0 = ΘB
0 as defined in

formula (4.7), and let m ≥ 3. Then,

Λ = −2
m∑

k=1

r•k log

(
−(â+ b̂yk)T̃•k

r•k

)

and R =
m∑

k=1

[(â+ b̂yk)T̃•k]2

r•k
−r•• .

Proof. The representations are directly obtained by using that −âU −
b̂V = r•• (see Eq. (4.4)).

As simulations show, the distributions of Λ and R in Lemma 2 vary
for different θ ∈ ΘB

0 , so that both test statistics do not have a single null
distribution in the present case. This gives rise to respective asymptotic
results, which are provided in a subsequent section.

Finally, we derive Wald statistics for testing the proportional and lin-
ear link function assumption. For this, we introduce the function gA =
(gA1 , . . . , g

A
m−1)

t on Θ with component functions

gAk (θ) = θk −
yk
ym

θm , 1 ≤ k ≤ m− 1 , (4.8)

and the function gB = (gB1 , . . . , g
B
m−2)

t on Θ with component functions

gBk (θ) = θk −
ym − yk

ym − ym−1
θm−1 −

yk − ym−1

ym − ym−1
θm (4.9)

for 1 ≤ k ≤ m− 2. Then, gA(θ) = 0 iff θ ∈ ΘA
0 , and gB(θ) = 0 iff θ ∈ ΘB

0 .
In the following, let Ik(θ) = diag(r•1/θ21, . . . , r•k/θ

2
k) be the quadratic

submatrix of I(θ) and Ik denote the unity matrix in R
k×k for 1 ≤ k ≤ m.

Theorem 3. Let test problem (3.1) be given with Θ0 = ΘA
0 as defined

in formula (4.6). Then, the Wald statistic based on gA defined by formula
(4.8) is given by

W =
m−1∑

i=1

m−1∑

j=1

(

θ̂i −
yi
ym

θ̂m

) (

θ̂j −
yj
ym

θ̂m

) (

δij
r•i

θ̂2i
− r•ir•jyiyj/(θ̂iθ̂j)2

∑m
k=1 r•k(yk/θ̂k)

2

)

and has a single null distribution, which only depends on r•1, . . . , r•m. Here,
δij is the Kronecker delta.
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Proof. Let z = (z1, . . . , zm−1)
t ∈ R

m−1 with zk = −yk/ym, 1 ≤ k ≤
m− 1. Then, by using formulas (3.3) and (3.5),

Ĩ(θ) = (Im−1|z) [I(θ)]−1 (Im−1|z)t

= [Im−1(θ)]
−1 + (θmz/

√
r•m) (θmz/

√
r•m)t .

Application of the Woodbury matrix identity (see, e.g., Rao (1973, p. 33))
yields

[Ĩ(θ)]−1 = Im−1(θ) − θ2m (Im−1(θ)z) (Im−1(θ)z)
t

r•m + θ2m ztIm−1(θ)z
. (4.10)

Inserting for z and replacing θ by θ̂ then leads to the representation of W .
Now, let θ ∈ ΘA

0 , which implies that ykθm = ymθk, 1 ≤ k ≤ m. Then, W
can be seen to depend on the data and θ only through (θ̂1/θ1, . . . , θ̂m/θm),
since

θ̂i − yiθ̂m/ym
θi

=
θ̂i
θi

− θ̂m
θm

, θiθj

(

δij
r•i

θ̂2i

)

= δij r•i

(
θ̂i
θi

)−2

,

and θiθj

(
r•ir•jyiyj/(θ̂iθ̂j)2
∑m

k=1 r•k(yk/θ̂k)
2

)

=
r•ir•j(θ̂i/θi)−2(θ̂j/θj)

−2

∑m
k=1 r•k(θ̂k/θk)

−2
.

By Lemma 1,W thus has a single null distribution, which is free of y1, . . . , ym.�
Summarizing, we find that in case of testing the proportional link function
assumption, Λ, R, and W all have single null distributions, the quantiles
of which are readily obtained by simulation and may then serve as (exact)
critical values of the test statistics subject to a desired confidence level. The
Wald statistic for testing the linear link function assumption is as follows.

Lemma 3. Let test problem (3.1) be given with Θ0 = ΘB
0 as defined in

formula (4.7), and let m ≥ 3. Then, the Wald statistic based on gB defined
by formula (4.9) is given by

W =

m−2∑

i=1

m−2∑

j=1

(θ̂i − ηiθ̂m−1 − ζiθ̂m)(θ̂j − ηj θ̂m−1 − ζj θ̂m)

×
(
δij

r•i

θ̂2i
− r•ir•j

θ̂2i θ̂
2
jΔ(θ̂;η, ζ)

m∑

k=1

r•k

θ̂2k
(η2

kζiζj + ζ2kηiηj − ηkζk(ηiζj + ζiηj))

)
,

where η = (η1, . . . , ηm) and ζ = (ζ1, . . . , ζm) with

ηk =
ym − yk

ym − ym−1
and ζk =

yk − ym−1

ym − ym−1
, 1 ≤ k ≤ m, (4.11)
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and Δ(θ;η, ζ) =

(
m∑

k=1

η2
kr•k
θ2k

)(
m∑

k=1

ζ2kr•k
θ2k

)
−

(
m∑

k=1

ηkζkr•k
θ2k

)2

. (4.12)

Proof. Let η1, . . . , ηm and ζ1, . . . , ζm be defined as in formula (4.11), and
let uk = −ηk and vk = −ζk for 1 ≤ k ≤ m. Note that um−1 = −1 = vm and
um = 0 = vm−1. Moreover, let ũ = (u1, . . . , um−2)

t and ṽ = (v1, . . . , vm−2)
t.

Then, by using formulas (3.3) and (3.5),

Ĩ(θ) = (Im−2|(ũ, ṽ)) [I(θ)]−1 (Im−2|(ũ, ṽ))t

= [Im−2(θ)]
−1 + U(θ)U(θ)t

with matrix U(θ) =
(
θm−1ũ/

√
r•m−1, θmṽ/

√
r•m

)
∈ R

(m−2)×2. Here, we
obtain from the Woodbury matrix identity that

[Ĩ(θ)]−1 = Im−2(θ) − Im−2(θ)M(θ)Im−2(θ) , (4.13)

where M(θ) = U(θ) [I2 +U(θ)t Im−2(θ)U(θ)]−1U(θ)t .

Since

I2 +U(θ)tIm−2(θ)U(θ) =

(
π1(θ) π2(θ)
π2(θ) π3(θ)

)

has entries π1(θ) =
m∑

k=1

u2k r•k θ
2
m−1

r•m−1 θ2k
, π3(θ) =

m∑

k=1

v2k r•k θ
2
m

r•m θ2k
,

π2(θ) =
m∑

k=1

uk vkr•k θm−1 θm√
r•m−1 r•m θ2k

,

and determinant
θ2m−1θ

2
m

r•m−1r•m
Δ(θ;u,v) ,

with u = (u1, . . . , um), v = (v1, . . . , vm), and Δ(θ;u,v) as in formula (4.12),
we have that

M(θ) =
r•m−1r•m

θ2m−1θ
2
mΔ(θ;u,v)

[
π3(θ)θ

2
m−1

r•m−1
ũũt

+
π1(θ)θ

2
m

r•m
ṽṽt − π2(θ)θm−1θm√

r•m−1r•m
(ũṽt + ṽũt)

]

=
1

Δ(θ;u,v)

m∑

k=1

r•k
θ2k

(
v2kũũ

t + u2kṽṽ
t −ukvk(ũṽ

t + ṽũt)
)

Using this representation in formula (4.13) then finally gives

[Ĩ(θ)]−1 =

[

δij
r•i
θ2i

− r•ir•j
θ2i θ

2
jΔ(θ;u,v)

m∑

k=1

r•k
θ2k

(u2kvivj
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+v2kuiuj − ukvk(uivj + viuj))
]

i,j
, (4.14)

from which the formula for W is obtained by inserting for u1, . . . , um, v1, . . . ,
vm and replacing θ by θ̂. �

As it is the case for the likelihood ratio and Rao score statistic shown in
Lemma 2, simulations indicate that the Wald statistic for testing the linear
link function assumption does not have a single null distribution. Asymptotic
results are therefore addressed in a following section.

5 Log-Linear Link Functions

We now consider the case that the relation between stress levels and
parameters might be described by a power link function

log θk = dyk , 1 ≤ k ≤ m, (5.1)

for some parameter d ∈ R, or by a log-linear link function

log θk = c+ d yk , 1 ≤ k ≤ m, (5.2)

for some parameters c, d ∈ R, where the stress levels y1, . . . , ym are assumed
to satisfy formula (4.1). Again, the case m = 2 in formula (5.2) is just a
bijective transformation of the parameters. As in Section 4, estimation of
the link function parameters is considered first. Then, statistical tests are
presented to check for the presence of a power or log-linear link function.

5.1. Estimation Under Power or Log-Linear Link Functions We start
by estimating the link function parameters under the assumption that for-
mula (5.1) or (5.2) is true. In a different parametrization, maximum likeli-
hood and best linear unbiased estimation of log-linear link function param-
eters is also considered in Bedbur et al. (2015).

Theorem 4. (a) Under the power link function in formula (5.1),

(i) T̃ • = (T̃•1, . . . , T̃•m)t is minimal sufficient for d,

(ii) the MLE d̂ of d uniquely exists and is the only solution of the
equation

m∑

k=1

yke
dyk T̃•k = −

m∑

k=1

r•kyk (5.3)

with respect to d ∈ R.

(b) Under the log-linear link function in formula (5.2) and for m ≥ 3,

(i) T̃ • = (T̃•1, . . . , T̃•m)t is minimal sufficient for (c, d),
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(ii) the MLE (ĉ, d̂) of (c, d) uniquely exists and is the only solution of
the equations

c = log

(

− r••
∑m

k=1 e
dyk T̃•k

)

(5.4)

and

∑m
k=1 yke

dyk T̃•k
∑m

k=1 e
dyk T̃•k

=

∑m
k=1 r•kyk
r••

(5.5)

with respect to (c, d) ∈ R
2.

Proof. In the following, let y(1), . . . , y(m) denote the (increasing) order
statistics of y1, . . . , ym, which satisfy 0 < y(1) < · · · < y(m) by formula (4.1).

(a) (i) When inserting representation (5.1) in density function (2.1), P
forms a (curved) exponential family in the mappings ξ1, . . . , ξm with ξk(d) =
edyk , d ∈ R, for 1 ≤ k ≤ m. Then, by Theorem 1.6.9 in Pfanzagl (1994),
it is sufficient to show that ξ1, . . . , ξm are affinely independent. For this, let
q0, q1, . . . , qm ∈ R with q0 +

∑m
k=1 qke

dy(k) = 0 for all d ∈ R. This yields
for d → −∞ that q0 = 0 and, thus,

∑m
k=1 qke

dy(k) = 0 or, equivalently,

q1 +
∑m

k=2 qke
d(y(k)−y(1)) = 0 for all d ∈ R. Now, for d → −∞, we find

that q1 = 0. Successively, it follows that q0 = q1 = · · · = qm = 0, so that
ξ1, . . . , ξm are affinely independent.
(ii) The log-likelihood function l(d) = log f̃(exp{dy1},...,exp{dym}), d ∈ R, with

f̃θ as in formula (2.1), is increasing-decreasing and strictly concave, since
l′′(d) =

∑m
k=1 y

2
ke

dyk T̃•k < 0, d ∈ R. Hence, the MLE of d is unique and
given by the only solution of the likelihood (5.3).

(b) (i) The statement can be shown by proceeding as in the proof of
(a) (i).
(ii) With l(c, d) = f̃(exp{c+dy1},...,exp{c+dym}), c, d ∈ R, the likelihood equa-
tions are given by

m∑

k=1

ec+dyk T̃•k = −r•• and

m∑

k=1

yke
c+dyk T̃•k = −

m∑

k=1

r•kyk ,

from which Eqs. (5.4) and (5.5) are directly obtained. Since for i ∈ {1,m}
∑m

k=1 yke
dyk T̃•k

∑m
k=1 e

dyk T̃•k
=

∑m
k=1 yke

d(yk−y(i))T̃•k
∑m

k=1 e
d(yk−y(i))T̃•k

,

it follows that the left-hand side of Eq. (5.5) converges to y(1) for d → −∞
and to y(m) for d → ∞. The inequality y(1) <

∑m
k=1 r•kyk/r•• < y(m) then

ensures the existence of at least one solution of the likelihood equations.
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Moreover, the Hessian matrix of l turns out to be negative definite by using
the Cauchy-Schwarz inequality. Hence, l is strictly concave, and the unique
MLE of (c, d) is given by the only solution of Eqs. (5.4) and (5.5).

5.2. Testing on Power or Log-Linear Link Functions To check for the
presence of link function (5.1) or (5.2), we consider test problem (3.1) with
Θ0 given by

ΘC
0 = {(edy1 , . . . , edym) : d ∈ R} , (5.6)

and ΘD
0 = {(ec+dy1 , . . . , ec+dym) : c, d ∈ R} . (5.7)

Then, θ̃
C
= (exp{d̂y1}, . . . , exp{d̂ym}) with d̂ as in Theorem 4(a) and θ̃

D
=

(exp{ĉ+d̂y1}, . . . , exp{ĉ+d̂ym}) with (ĉ, d̂) as in Theorem 4(b) are the MLEs
of θ in ΘC

0 and ΘD
0 , respectively.

First, we establish the likelihood ratio and the Rao score statistics and
then derive Wald statistics for testing a power or log-linear link function
assumption, all of which turn out to have a single null distribution.

Theorem 5. Let test problem (3.1) be given with Θ0 = ΘC
0 as defined in

formula (5.6). Then,

Λ = 2
m∑

k=1

(
Yk − r•k log

Yk

r•k

)
− 2r•• and R =

m∑

k=1

(
Y 2
k

r•k
− 2Yk

)
+ r•• (5.8)

both have a single null distribution, where Yk = −ed̂yk T̃•k, 1 ≤ k ≤ m, with
d̂ as in Theorem 4(a).

Proof. The representations of the test statistics are obvious from
θ̃Ck /θ̂k = Yk/r•k, 1 ≤ k ≤ m. Now, let the null hypothesis be true, i.e., let
θk = edyk , 1 ≤ k ≤ m, for some d ∈ R. In that we take the unique solution
d̂ of Eq. (5.3) as a function of T̃ •, Theorem 4(a) yields that

−
m∑

k=1

r•kyk =
m∑

k=1

yke
d̂(T̃ •)yk T̃•k =

m∑

k=1

yke
(d̂(T̃ •)−d)ykZk

with quantities Zk = edyk T̃•k, 1 ≤ k ≤ m. By formula (2.2), Z1, . . . , Zm are
independent with −Zk ∼ Γ (r•k, 1), 1 ≤ k ≤ m. Necessarily, d̂(T̃ •) − d =

d̂(Z), where Z = (Z1, . . . , Zm), and, as a consequence, Yk = −ed̂(Z)ykZk,
1 ≤ k ≤ m. Λ and R thus depend on the data and d only through Z, the
distribution of which is free of d. Hence, both have a single null distribution.

In contrast to the linear link function case, Λ and R have single null
distributions when testing a log-linear link function assumption.
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Theorem 6. Let test problem (3.1) be given with Θ0 = ΘD
0 as defined

in formula (5.7), and let m ≥ 3. Then, Λ and R are given by formula (5.8)

with Yk = −eĉ+d̂yk T̃•k, 1 ≤ k ≤ m, and (ĉ, d̂) as in Theorem 4(b). Moreover,
both test statistics have a single null distribution.

Proof. The representations for Λ and R remain the same as in Theorem
5, since, again, θ̃Dk /θ̂k = Yk/r•k, 1 ≤ k ≤ m. Now, let θk = ec+dyk , 1 ≤ k ≤
m, for some c, d ∈ R. We proceed similarly as in the proof of Theorem 5.
First, we obtain from formula (5.5) that

∑m
k=1 yke

(d̂(T̃ •)−d)yk Z̃k
∑m

k=1 e
(d̂(T̃ •)−d)yk Z̃k

=

∑m
k=1 r•kyk
r••

with quantities Z̃k = ec+dyk T̃•k, 1 ≤ k ≤ m. By using formula (2.2),
Z̃1, . . . , Z̃m are independent with −Z̃k ∼ Γ (r•k, 1), 1 ≤ k ≤ m. With the
notation Z̃ = (Z̃1, . . . , Z̃m), necessarily, d̂(T̃ •) − d = d̂(Z̃), i.e., the unique
solution of Eq. (5.5) with T̃•k replaced by Z̃k, 1 ≤ k ≤ m. Then, by using
Eq. (5.4),

ĉ(T̃ •)− c = log

(

− r••
∑m

k=1 e
d̂(Z̃)yk Z̃k

)

= ĉ(Z̃) ,

and, consequently, Yk = −eĉ(Z̃)+d̂(Z̃)yk Z̃k, 1 ≤ k ≤ m. Hence, Λ and R
depend on the data and (c, d) only through Z̃, the distribution of which is
free of (c, d). Both thus have a single null distribution.

For the derivation of the Wald statistics for testing a power or log-linear
link function assumption, we define the mapping gC = (gC1 , . . . , g

C
m−1)

t on Θ
with component functions

gCk (θ) = θk − θyk/ymm , 1 ≤ k ≤ m− 1 , (5.9)

and the mapping gD = (gD1 , . . . , gDm−2)
t on Θ with component functions

gDk (θ) = θk − θ
(ym−yk)/(ym−ym−1)
m−1 θ(yk−ym−1)/(ym−ym−1)

m (5.10)

for 1 ≤ k ≤ m− 2. Then, gC(θ) = 0 iff θ ∈ ΘC
0 , and gD(θ) = 0 iff θ ∈ ΘD

0 .

Theorem 7. Let test problem (3.1) be given with Θ0 = ΘC
0 as defined

in formula (5.6). Then, the Wald statistic based on gC defined by formula
(5.9) is given by

W =
m−1∑

i=1

m−1∑

j=1

(
θ̂i − θ̂yi/ymm

) (
θ̂j − θ̂

yj/ym
m

)
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×
(

δij
r•i

θ̂2i
− r•ir•jyiyj θ̂

(yi+yj)/ym
m /(θ̂iθ̂j)

2

∑m
k=1 r•k(ykθ̂

yk/ym
m /θ̂k)2

)

and has a single null distribution.

Proof. The representation of W is directly obtained by setting zk =

−ykθ
yk/ym−1
m /ym, 1 ≤ k ≤ m − 1, in the proof of Theorem 3 and then

using formula (4.10). Moreover, for θ ∈ ΘC
0 , we have that θ̂

yk/ym
m /θk =

(θ̂m/θm)yk/ym , 1 ≤ k ≤ m. In that case, by proceeding along the lines in
the proof of Theorem 3, W can be seen to depend on the data and θ only
through (θ̂1/θ1, . . . , θ̂m/θm), and, by using Lemma 1, it thus has a single null
distribution.

Theorem 8. Let test problem (3.1) be given with Θ0 = ΘD
0 as defined in

formula (5.7), and let m ≥ 3. Then, the Wald statistic based on gD defined
by formula (5.10) is given by

W =

m−2∑

i=1

m−2∑

j=1

(θ̂i − θ̂ηim−1θ̂
ζi
m) (θ̂j − θ̂

ηj
m−1θ̂

ζj
m )

(
δij

r•i

θ̂2i
−

r•ir•j θ̂
ηi+ηj
m−1 θ̂

ζi+ζj
m

θ̂2i θ̂
2
jΔ(θ̂; η̃(θ̂), ζ̃(θ̂))

×
m∑

k=1

r•kθ̂
2ηk
m−1θ̂

2ζk
m

θ̂2k
(η2

kζiζj + ζ2kηiηj − ηkζk(ηiζj + ζiηj))

)

with η1, . . . , ηm and ζ1, . . . , ζm as in formula (4.11) and Δ as in formula
(4.12), and η̃(θ) = (η̃1(θ), . . . , η̃m(θ)) and ζ̃(θ) = (ζ̃1(θ), . . . , ζ̃m(θ)) have

components η̃k(θ) = ηkθ
ηk
m−1θ

ζk
m and ζ̃k(θ) = ζkθ

ηk
m−1θ

ζk
m for 1 ≤ k ≤ m.

Moreover, W has a single null distribution.

Proof. To derive the formula for W set uk = −ηkθ
ηk−1
m−1 θ

ζk
m and vk =

−ζkθ
ηk
m−1θ

ζk−1
m , 1 ≤ k ≤ m, in the proof of Lemma 3, which satisfy um−1 =

−1 = vm and um = 0 = vm−1, too. Thus, we arrive at formula (4.14), again,
and, by using that Δ(θ;ut,vt) = Δ(θ; η̃(θ), ζ̃(θ))/(θm−1θm)2, the stated
representation is found. Now, for θ ∈ ΘD

0 ,

θ̂ηkm−1θ̂
ζk
m

θk
=

(
θ̂m−1

θm−1

)ηk
(
θ̂m
θm

)ζk

, 1 ≤ k ≤ m,

and, by following similar arguments as in the proof of Theorem 3, W can be
seen to depend on the data and θ only through (θ̂1/θ1, . . . , θ̂m/θm). Thus,
by application of Lemma 1, W has a single null distribution.

To sum up the findings, Λ, R, and W all have single null distributions
when testing on a power or log-linear link function, and (exact) critical
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values subject to a desired confidence level are therefore easily obtained by
simulation.

6 Asymptotic Results

In this section, we address some asymptotic properties of the derived es-
timators and tests, respectively. In particular, the asymptotic distribution of
Λ, R, and W under the null hypothesis of a linear link function is presented,
in the case of which exact critical values are not available (see Section 4.2).

In what follows, let
d→ denote convergence in distribution, and let

Nk(μ,Σ) be the k-dimensional normal distribution with mean vector μ and
covariance matrix Σ.

Theorem 9. Let r•k/r•• → τk > 0 for r•• → ∞ and 1 ≤ k ≤ m, where
∑m

k=1 τk = 1. Then, for r•• → ∞ and

(a) under link function (4.2),
√
r••(b̂− b)

d−→ N1(0, b
2) for b > 0.

(b) under link function (4.3),
√
r••

(
(â, b̂)− (a, b)

)t d−→ N2(0,Σ
−1
B (a, b))

with ΣB(a, b) =

( ∑m
k=1

τk
(a+byk)

2

∑m
k=1

τkyk
(a+byk)

2

∑m
k=1

τkyk
(a+byk)

2

∑m
k=1

τky
2
k

(a+byk)
2

)
for (a, b)∈ ΘB

0 .

(c) under link function (5.1),
√
r••(d̂ − d)

d−→ N1

(
0, 1/

∑m
k=1 τky

2
k

)
for

d ∈ R.

(d) under link function (5.2),
√
r••

(
(ĉ, d̂)− (c, d)

)t d−→ N2(0,Σ
−1
D )

with ΣD =

(
1

∑m
k=1 τkyk∑m

k=1 τkyk
∑m

k=1 τky
2
k

)

for (c, d) ∈ R
2.

In particular, all estimators are consistent.

Proof. It is well-known that the statistics Tij , 1 ≤ j ≤ ri•, 1 ≤ i ≤ s,
are jointly independent, where −Tij , ρi,k−1 + 1 ≤ j ≤ ρik, 1 ≤ i ≤ s, are
identically exponentially distributed with mean 1/θk for 1 ≤ k ≤ m; see,
e.g., Balakrishnan et al. (2012). Hence, the sample situation is distribution
theoretically equivalent to having m independent samples, where in sample
k, 1 ≤ k ≤ m, we have r•k iid random variables following an exponential
distribution with density function fk(x) = θke

−θkx, x > 0. Now, by assuming
a link function connecting the parameters θ1, . . . , θm, the m distributions
have the link function parameter ζ, say, in common. Denoting the MLE of
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ζ by ζ̂, application of Theorem 1(iv) in Bradley and Gart (1962) then yields
that, for r•• → ∞,

√
r••(ζ̂ − ζ) has a multivariate normal distribution with

mean zero and covariance matrix [
∑m

k=1 τk Ik(ζ)]
−1, where Ik(ζ) denotes

the Fisher information matrix of distribution k at ζ for 1 ≤ k ≤ m. For
every link function considered here and upon inserting the corresponding
representation for θk in density function fk, Ik(ζ) can be obtained as the
mean of the Hessian matrix of − log fk(X) with respect to ζ, where X ∼ fk.
By doing so, we arrive at the stated asymptotic distributions, which imply
consistency of the estimators by Slutsky’s theorem.

Some findings related to Theorem 9 should be highlighted. First note
that, in case of a proportional link function, the asymptotic null distribution
does not depend on the stress levels y1, . . . , ym. On the other hand, when
dealing with a power or log-linear link function, the asymptotic null distri-
bution is free of the link function parameters. Such results may be used
for experimental design, as we demonstrate in case of a power link function
with the focus on interval estimation for d. Denoting by up the p-quantile
of N1(0, 1), an equal-tail confidence interval for d of approximate confidence
level 1− p is given by

⎡

⎣d̂− u1−p/2

√∑m
k=1 τky

2
k

r••
, d̂+ u1−p/2

√∑m
k=1 τky

2
k

r••

⎤

⎦

with non-random length

L = 2u1−p/2

√∑m
k=1 τky

2
k

r••
≤ 2u1−p/2

max{y1, . . . , ym}√
r••

.

Moreover, the approximation

L ≈ 2u1−p/2

√∑m
k=1 r•ky

2
k

r••

is obtained when estimating τk by r•k/r••, 1 ≤ k ≤ m (as it will usually be
done in practice). Hence, the stress levels y1, . . . , ym and the corresponding
numbers r•1, . . . , r•m of observed failures, which are specified in advance,
may be chosen in such a way that the confidence interval meets a required
accuracy. Finally, asymptotic tests on the previous link functions are ad-
dressed.

Theorem 10. Let the assumptions of Theorem 9 be given. Then, for
test problem (3.1) and r•• → ∞, the asymptotic distribution of Λ, R, and W
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under the null hypothesis is each a χ2(m−1)-distribution for Θ0 ∈ {ΘA
0 , Θ

C
0 },

and it is a χ2(m− 2)-distribution for Θ0 ∈ {ΘB
0 , Θ

D
0 } provided that m ≥ 3.

Here, χ2(k) denotes the chi-square distribution with k degrees of freedom.

Proof. For the likelihood ratio statistic, the asymptotic null distribution
can be obtained from Bradley and Gart (1962, Section 2.4). Since Λ, R, and
W are asymptotically equivalent (see, e.g., Serfling 1980), all statements are
already shown.

7 Power Study

For the important case of a log-linear link function assumption, we per-
form a power study and compare the tests derived. A step-stress experi-
ment with m = 5 increasing stress levels is considered, which are given by
(y1, . . . , y5) = (0.5, 1, 1.5, 2, 2.5). The corresponding numbers of observations
are chosen as

I. (r•1, . . . , r•5) = (6, 11, 13, 19, 24) ,

and II. (r•1, . . . , r•5) = (10, 23, 34, 58, 76) .

The aim is to check for the null hypothesis H0 : θ ∈ ΘD
0 with ΘD

0 as in
formula (5.7), which states a log-linear link function between the parameters
and the stress levels. Hereto, the likelihood ratio test, the Rao score test,
and the Wald test are applied, whose test statistics are given in Theorems 6
and 8. For any test statistic, the exact critical value is chosen subject to a
confidence level of 5%. We examine the power of each test at the alternatives
lying in

Θ1 = {(a+ by1, . . . , a+ by5) : a ∈ R, b > 0, a+ by1 > 0} ,

which correspond to all linear link functions with positive slopes. Simulations
show that the power of each test at some θ ∈ Θ1 depends on (a, b) only
through the ratio a/b. For sample situations I and II, the power of all tests
is depicted in Fig. 1 as a function of a/b (> −y1). The likelihood ratio test
and the Rao score test are found to have a similar power performance and
are superior to the Wald test. For all tests, the power decreases when a/b
increases, and it tends to 1 for a/b ↘ −y1 and to the confidence level of 5%
for a/b → ∞, which allows for some interesting interpretations. For fixed
a > 0, the power of all tests is getting worse if b ↘ 0, i.e., if the linear link
function becomes more and more a constant line. On the other hand, for
fixed b > 0, we always find a linear link function with that slope having
power arbitrarily close to 1 (no matter how small b is). Note that the power
at every proportional link function is the value at a/b = 0.
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Figure 1: Power of the likelihood ratio test (solid line), the Rao score test
(dashed line), and the Wald test (dotted line) with exact confidence level 5%
in sample situations I (left) and II (right) as function of a/b (obtained by
generating 5× 105 realizations of each test statistic for every value of a/b)

By using χ2
0.95(3) = 7.814728 as critical value for each test statistic (see

Theorem 10), the actual confidence levels of the likelihood ratio test, the
Rao score test, and the Wald test are 5.36%, 4.24%, and 8.87% in sample
situation I and 5.16%, 4.58%, and 5.46% in sample situation II. This finding
indicates that the Rao score test is conservative, whereas the other tests are
not. Moreover, the convergence of actual to nominal confidence level is slow
in case of the Wald test (compared to the other tests).

8 Testing Under Order Restrictions

If the stress levels are strictly increasing, i.e., 0 < y1 < · · · < ym, one may
take this additional information into account to improve the performance of
statistical procedures; cf. Balakrishnan et al. (2009). Estimation and testing
are then carried out under the simple order restriction θ1 ≤ · · · ≤ θm, which
implies the same order for the hazard rates corresponding to the stress levels
(see Section 2). In that case, the general test problem is

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ̌ \Θ0
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with Θ0 ⊂ Θ̌ = {θ ∈ (0,∞)m : θ1 ≤ · · · ≤ θm}. The MLE θ̌ = (θ̌1, . . . , θ̌m)
in Θ̌ is given by

θ̌k = min
k≤q≤m

max
1≤p≤k

−
∑q

i=p r•i
∑q

i=p T̃•i
, 1 ≤ k ≤ m, (8.1)

and takes over the role of the unrestricted MLE θ̂; cf. Bedbur et al. (2015).
To test on a proportional, linear, power, or log-linear link function, Θ0 has
to be chosen as

Θ̌A
0 = {b(y1, . . . , ym) : b > 0} (= ΘA

0 ) ,

Θ̌B
0 = {(a+ by1, . . . , a+ bym) : b ≥ 0, a+ by1 > 0} ,

Θ̌C
0 = {(edy1 , . . . , edym) : d ≥ 0} ,

Θ̌D
0 = {(ec+dy1 , . . . , ec+dym) : c ∈ R, d ≥ 0} .

In case of a proportional link function, we obtain from formula (8.1) that,
under H0, the distribution of θ̌k/θk and, thus, that of θ̃Ak /θ̌k are free of b
for 1 ≤ k ≤ m. Hence, Λ, R, and W , which are given by formula (3.4) and
Theorem 3 with θ̂ being replaced by θ̌, have again a single null distribution
each, by following the same arguments as before.

For the other link functions, deriving a test under order restrictions is
mathematically more challenging. As it is the case for the omnibus tests
on a linear link function, the distribution of θ̌k/θk under H0 is expected to
depend on (a, b). Moreover, when checking for a power or log-linear link
function assumption, it might not be free of d. Beyond that, the restricted
MLEs may not be continuously distributed. For instance, in the context of
a power link function, the MLE in Θ̌C

0 uniquely exists and has positive point
mass

Pθ(ď = 0) = Pθ

(
m∑

k=1

ykT̃•k < −
m∑

k=1

r•kyk

)

, θ ∈ Θ̌ ,

at (1, . . . , 1), where ď denotes the MLE of d ≥ 0 (see Eq. (5.3)). Nevertheless,
if analytically manageable, these tests seem to be worth working out as they
will naturally be superior to the omnibus procedures in terms of power.

9 Conclusion

In step-stress experiments, where test units are exposed to higher stress
levels to cause earlier failures, some additional assumption such as a link
function connecting parameters and stress levels is usually required to in-
fer on the lifetime distribution under normal operating conditions. In a
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multi-sample general step-stress model based on sequential order statistics,
we provide exact and asymptotic statistical tests which allow to check for
the adequacy of the assumed link function being, for instance, of propor-
tional or log-linear type. Since most of the test statistics derived have a
single null distribution, critical values can be obtained by standard Monte-
Carlo simulation, which makes the application of the tests particularly easy.
The proposed tests may serve as basis for subsequent inference for the link
function parameters rendering it only statistically meaningful.
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