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Abstract

For square contingency tables with ordered categories, the marginal homo-
geneity model is represented by various expressions, and some extensions
of the marginal homogeneity model were proposed. Herein we consider the
marginal continuation-ratio to examine a new expression of the marginal ho-
mogeneity model. We also propose an extension of the marginal homogeneity
model using the ratio of marginal continuation-ratios; namely, the marginal
continuation odds ratio. The proposed model can be interpreted in various
ways. Additionally, we propose a generalization of it, and decompose the
marginal homogeneity model using the generalized model. Furthermore, we
extend the models and decompositions into multi-way contingency tables.
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1 Introduction

Consider an R × R square contingency table with the same row and
column ordinal classifications. Let X and Y denote the row and column
variables, respectively, and let Pr(X = i, Y = j) = pij for i = 1, . . . , R; j =
1, . . . , R. The marginal homogeneity (MH) model is defined by

pi· = p·i for i = 1, . . . , R, (1.1)
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where pi· =
∑R

t=1pit and p·i =
∑R

s=1psi. See e.g., Stuart (1955) and Bishop
et al. (1975, p.294). This indicates that the row marginal distribution is
identical to the column marginal distribution.

Using the marginal cumulative probability, this model can be expressed
as

FX
i = F Y

i for i = 1, . . . , R− 1, (1.2)

where FX
i =

∑i
s=1ps· = Pr(X ≤ i) and F Y

i =
∑i

t=1p·t = Pr(Y ≤ i). The
MH model can also be expressed as

G1(i) = G2(i) for i = 1, . . . , R− 1, (1.3)

where G1(i) =
∑i

s=1

∑R
t=i+1pst = Pr(X ≤ i, Y > i) and G2(i) =

∑R
s=i+1

∑i
t=1

pst = Pr(X > i, Y ≤ i) (see e.g., Tomizawa 1993; Tahata and Tomizawa
2008). Furthermore, Tahata et al. (2006) expressed the MH model using
marginal ridits (see e.g., Bross 1958; Fleiss et al. 2003, pp.198-205; Agresti
2010, p.10). Moreover, the MH model can be expressed with other formulas
(see e.g., Iki et al. 2010; Altun and Aktaş 2018).

When the MH model does not fit for the data, we are interested in ap-
plying a model with weaker restrictions. One example is an extension based
on expression (1.1) proposed by Miyamoto et al. (2006) for a square con-
tingency table with nominal classifications. For a square contingency table
with ordinal classifications, the marginal cumulative logistic (ML) model is
defined by

log

(
FX
i

1− FX
i

)

= log

(
F Y
i

1− F Y
i

)

+Δ for i = 1, . . . , R− 1. (1.4)

See e.g., McCullagh (1977), Agresti (2010, p.241), and Kurakami et al.
(2013). Saigusa et al. (2018) proposed the marginal cumulative comple-
mentary log-log (MCL) model, defined by

log
(
− log

(
1− FX

i

))
= log

(
− log

(
1− F Y

i

))
+Δ for i = 1, . . . , R−1. (1.5)

The ML (MCL) model indicates that one marginal distribution is a location
shift of another marginal distribution on a logistic (complementary log-log)
scale. Each special case of the ML and MCL model obtained by setting
Δ = 0 is the MH model. These models are extensions of the MH model based
on expression (1.2). Furthermore, Tahata and Tomizawa (2008) proposed
extensions of the MH model based on expressions (1.3).
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Herein we examine a new expression of the MHmodel using the continuation-
ratio (see e.g., Fienberg 1980, pp.110-111; Agresti 2010, p.45). The MH
model can be expressed as

cXi = cYi for i = 1, . . . , R− 1, (1.6)

where
cXi =

pi·
1− FX

i

, cYi =
p·i

1− F Y
i

.

This states that the row marginal continuation-ratio is identical to the col-
umn marginal continuation-ratio. Note that there are various research fo-
cusing on the continuation-ratio (see e.g., Thompson 1977; McCullagh 1980;
Läärä and Matthews 1985; Tutz 1991; Greenland 1994). As an example,
Thompson (1977) used the continuation-ratio in modeling discrete survival
time data. When the lengths of time intervals approach zero, his model
converges to the Cox proportional hazards model.

For the square contingency table analysis, much research on the marginal
homogeneity have been studied. However, research on the framework of the
continuation-ratio, which is an important concept in categorical analysis, are
not enough. As an example, the ML model cannot be interpreted under the
continuation-ratio. The purpose of this study is to provide a new insight
for the square contingency table analysis by studying the continuation-ratio.
This paper can also further understand the previous research by considering
the properties of the continuation-ratio. The plan of the paper is as follows.
Section 2 extends the MH model based on expression (1.6). Section 3 de-
composes the MH model. Section 4 extends the model into multi-way tables.
Section 5 gives a test for the goodness-of-fit for the models. Section 6 pro-
vides some examples, and Section 7 discusses this paper in the context of
related works.

2 Models

2.1. The Marginal Continuation Odds Ratio Model The ratio of marginal
continuation-ratios is

ψi =
cXi
cYi

=
pi·/

(
1− FX

i

)

p·i/
(
1− F Y

i

) =
Pr(X = i)/Pr(X > i)

Pr(Y = i)/Pr(Y > i)
,

for i = 1, . . . , R − 1. We refer to the ratio of marginal continuation-ratios
as the marginal continuation odds ratio. Note that this is different from the
continuation odds ratio (Agresti 2010, p.24), and the quasi-symmetry model
based on the continuation odds ratio was presented by Kateri et al. (2017).
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We propose a new model defined by

logψi = Δ for i = 1, . . . , R− 1, (2.1)

where the parameter Δ is unspecified. This model indicates that the ratios
of marginal continuation-ratios are equal to exp (Δ). A special case of this
model obtained by setting Δ = 0 is the MH model. We shall refer to model
(2.1) as the marginal continuation odds ratio (MCOR) model.

Let
ωX
i =

pi·
1− FX

i−1

= Pr(X = i | X ≥ i),

and
ωY
i =

p·i
1− F Y

i−1

= Pr(Y = i | Y ≥ i),

for i = 1, . . . , R − 1 with FX
0 = F Y

0 = 0. For models based on these con-
ditional probabilities, see e.g., Läärä and Matthews (1985) and McCullagh
and Nelder (1983, pp.102-104). Then the marginal continuation odds ratio
is also expressed as

ψi =
ωX
i

(
1− ωY

i

)

ωY
i

(
1− ωX

i

) for i = 1, . . . , R− 1,

since

cXi =
ωX
i

1− ωX
i

,

and

cYi =
ωY
i

1− ωY
i

.

Then the MCOR model can be expressed as

log

(
ωX
i

1− ωX
i

)

= log

(
ωY
i

1− ωY
i

)

+Δ for i = 1, . . . , R− 1. (2.2)

Under this model, Δ > 0 is equivalent to {ωX
i > ωY

i }.
The MCOR model can also be expressed as

ωX
i =

exp (θi +Δ)

1 + exp (θi +Δ)
for i = 1, . . . , R− 1,

where θi = log
(
ωY
i /

(
1− ωY

i

))
. Therefore, the MCOR model indicates that

the conditional probability ωX
i is a location shift of the conditional proba-

bility ωY
i on a logistic scale. Thus, the MCOR model can also be called a

marginal continuation-ratio logit model.
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Interpretation of the proposed model will be described using the following
examples. Consider the comparison of therapeutic effects when two drugs are
administered to the same patient. The treatment effect is an ordinal score
with R stages (larger scores indicate more severe symptoms). So, we obtain
an R × R contingency table with the same row and column classifications
(row variable is drug A; column variable is drug B). We are now interested
in the odds that an observation will fall in score category i, instead of score
category i+ 1 or above for any i. From Eq. (2.1), under the MCOR model,
the parameter Δ indicates the odds ratio between drug A and B; if the Δ
is zero, the MH model holds, i.e., there is no difference between drug A and
B; if the Δ is positive, the odds ratio is exp (Δ) times higher, i.e., drug A
is more therapeutic effect than drug B. We can also interpret the MCOR
model in two ways. From Eq. (2.2), on condition that an observation will
fall in score category i or above, the odds that the observation falls in score
category i instead of not i, are exp (Δ) times higher for drug A than for
drug B. Moreover, we can see that the conditional probability for drug A is
a location shift of that for drug B on a logistic scale.

Note that model (1.4) can be transformed into model (2.2) by replacing
the marginal cumulative probability with the corresponding marginal condi-
tional probability. However, the meanings of these models completely differ,
and the likelihood ratio chi-squared statistics for testing the goodness-of-fit
of these models do not coincide.

2.2. The Generalized Marginal Continuation-ratio Model Model (2.2)
is an extension of the MH model using the logit transformation. Hence,
model (2.2) may be based on the idea of model (1.4). If we focus on the idea
of model (1.5), a distinct extension can be derived using the complementary
log-log transformation. Therefore, using a strictly increasing function such
as a logit or a complementary log-log function, we propose a generalization
of the MCOR model by

h−1
(
ωX
i

)
= h−1

(
ωY
i

)
+Δ for i = 1, . . . , R− 1, (2.3)

where the parameter Δ is unspecified and h(·) is a twice-differentiable and
strictly increasing function with lim

x→−∞
h(x) = 0 and lim

x→∞
h(x) = 1. We shall

refer to model (2.3) as the generalized marginal continuation-ratio (GMC)
model. A special case of this model obtained by setting Δ = 0 is the MH
model.

By setting h−1
(
ωY
i

)
= θi, the GMC model can be expressed as

ωX
i = h (θi +Δ) for i = 1, . . . , R− 1.
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Let

g(x) =
h(x)

1− h(x)
.

Note that g(·) is a strictly increasing function that gives lim
x→−∞

g(x) = 0,

lim
x→∞

g(x) = ∞, and g(·) > 0. The GMC model can also be expressed as

ωX
i

1− ωX
i

=
h (θi +Δ)

1− h (θi +Δ)
= g (θi +Δ) for i = 1, . . . , R− 1.

Furthermore, since
ωX
i

1− ωX
i

=
pi·

1− FX
i

,

the GMC model can be expressed as

pi·
1− FX

i

= g (θi +Δ) for i = 1, . . . , R− 1.

Especially, when h−1(x) = log (x/ (1− x)), i.e., g(x) = exp(x), the GMC
model is equivalent to the MCOR model.

2.3. Properties In this section, we focus on the complementary log-log
and probit transformation as the major transformations for the GMC model.

2.3.1. The Marginal Continuation-ratio Complementary Log-log Model.
When h−1(x) = log(− log(1− x)), the GMC model is expressed as

log
(
− log

(
1− ωX

i

))
= log

(
− log

(
1− ωY

i

))
+Δ for i = 1, . . . , R−1. (2.4)

We shall refer to model (2.4) as the marginal continuation-ratio complemen-
tary log-log (MCC) model.

Läärä and Matthews (1985) noted that the complementary log-log trans-
formation for the conditional probabilities is equivalent to the one using the
same transformation but with the cumulative probabilities. This leads to
the following property.

Property 1. The MCC model is equivalent to the MCL model.

We give the proof of Property 1 below: The conditional probabilities ωX
i

can be expressed as

ωX
i =

pi·
1− FX

i−1

= 1− 1− FX
i

1− FX
i−1

,

then

1− ωX
i =

1− FX
i

1− FX
i−1

,
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for i = 1, . . . , R− 1. Therefore, the MCC model is expressed as

log
(
1− FX

i

)
− log

(
1− FX

i−1

)
= exp(Δ)

[
log

(
1− F Y

i

)
− log

(
1− F Y

i−1

)]
,

for i = 1, . . . , R− 1. When i = 1, we see

log
(
1− FX

1

)
= exp(Δ) log

(
1− F Y

1

)
.

When i = 2, we see

log
(
1− FX

2

)
− log

(
1− FX

1

)
= exp(Δ)

[
log

(
1− F Y

2

)
− log

(
1− F Y

1

)]
,

thus,
log

(
1− FX

2

)
= exp(Δ) log

(
1− F Y

2

)
.

Hence, in a similar manner we see that the MCC model is expressed as

log
(
1− FX

i

)
= exp(Δ) log

(
1− F Y

i

)
for i = 1, . . . , R− 1.

This expression represents the MCL model.
From above, the parameter Δ in the MCC model can reflect the degree of

inhomogeneity not only between {ωX
i } and {ωY

i } but also between {FX
i } and

{F Y
i }. Hence, the MCC model also states that one marginal distribution is

a location shift of another marginal distribution on a complementary log-log
scale.

2.3.2. The Marginal Continuation-ratio Probit Model. Using the probit
transformation, the GMC model is expressed as

Φ−1
(
ωX
i

)
= Φ−1

(
ωY
i

)
+Δ for i = 1, . . . , R− 1, (2.5)

where Φ(·) is the cumulative distribution function of the standard normal
distribution. We refer to model (2.5) as the marginal continuation-ratio
probit (MCP) model.

3. Decompositions of the Marginal Homogeneity Model

Consider the marginal mean equality (ME) model defined by

E(X) = E(Y ),

i.e.,
R∑

i=1

ipi· =
R∑

i=1

ip·i.

Note that the MH model implies the ME model.
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We obtain the following lemmas and theorem.

Lemma 1. The GMC model can also be expressed as

pi· =
g (θi +Δ)

∏i
s=1 (1 + g (θs +Δ))

, p·i =
g (θi)

∏i
s=1 (1 + g (θs))

,

for i = 1, . . . , R− 1, and

pR· =
1

∏R−1
s=1 (1 + g (θs +Δ))

, p·R =
1

∏R−1
s=1 (1 + g (θs))

.

Proof. The GMC model is expressed as

pi·
1− FX

i

= g (θi +Δ) for i = 1, . . . , R− 1.

When i = 1,
p1·

1− FX
1

= g (θ1 +Δ) ,

namely

p1· =
g (θ1 +Δ)

1 + g (θ1 +Δ)
.

When i = 2,
p2·

1− (p1· + p2·)
= g (θ2 +Δ) .

Namely

(1 + g (θ2 +Δ)) p2· = g (θ2 +Δ) (1− p1·)

= g (θ2 +Δ)

(

1− g (θ1 +Δ)

1 + g (θ1 +Δ)

)

=
g (θ2 +Δ)

1 + g (θ1 +Δ)
.

Thus

p2· =
g (θ2 +Δ)

∏2
s=1 (1 + g (θs +Δ))

.

When i = 3,
p3·

1− (p1· + p2· + p3·)
= g (θ3 +Δ) .

Marginal Continuation odds Ratio Model... S311



Namely

(1 + g (θ3 +Δ)) p3·

= g (θ3 +Δ) (1− p1· − p2·)

= g (θ3 +Δ)

(

1− g (θ1 +Δ)

1 + g (θ1 +Δ)
− g (θ2 +Δ)

∏2
s=1 (1 + g (θs +Δ))

)

=
g (θ3 +Δ)

∏2
s=1 (1 + g (θs +Δ))

.

Thus

p3· =
g (θ3 +Δ)

∏3
s=1 (1 + g (θs +Δ))

.

By a similar manner, we obtain

pi· =
g (θi +Δ)

∏i
s=1 (1 + g (θs +Δ))

,

for i = 1, . . . , R− 1. Moreover, we obtain

pR· = 1−
R−1∑

i=1

pi·

= 1− g (θ1 +Δ)

1 + g (θ1 +Δ)
−

R−1∑

i=2

g (θi +Δ)
∏i

s=1 (1 + g (θs +Δ))

=
1

1 + g (θ1 +Δ)
− g (θ2 +Δ)

∏2
s=1 (1 + g (θs +Δ))

−
R−1∑

i=3

g (θi +Δ)
∏i

s=1 (1 + g (θs +Δ))
.

Since

1
∏k−1

s=1 (1 + g (θs +Δ))
− g (θk +Δ)

∏k
s=1 (1 + g (θs +Δ))

=
1

∏k
s=1 (1 + g (θs +Δ))

,

for k = 2, . . . , R− 1, we see

pR· =
1

∏R−1
s=1 (1 + g (θs +Δ))

.

In a similar manner, we obtain

p·i =
g (θi)

∏i
s=1 (1 + g (θs))

,
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for i = 1, . . . , R− 1, and

p·R =
1

∏R−1
s=1 (1 + g (θs))

.

Lemma 2. Under the GMC model, we have

E(X) = 1+
R−1∑

i=1

1
∏i

s=1 (1 + g (θs +Δ))
, E(Y ) = 1+

R−1∑

i=1

1
∏i

s=1 (1 + g (θs))
.

Proof. Assume that the GMC model holds. From Lemma 1 we see

E(X) =
R∑

i=1

ipi·

=
R−2∑

i=1

i
g (θi +Δ)

∏i
s=1 (1 + g (θs +Δ))

+

[

(R− 1)
g (θR−1 +Δ)

∏R−1
s=1 (1 + g (θs +Δ))

+R
1

∏R−1
s=1 (1 + g (θs +Δ))

]

=
R−2∑

i=1

i
g (θi +Δ)

∏i
s=1 (1 + g (θs +Δ))

+

[

(R− 1)
1

∏R−2
s=1 (1 + g (θs +Δ))

+
1

∏R−1
s=1 (1 + g (θs +Δ))

]

=

R−3∑

i=1

i
g (θi +Δ)

∏i
s=1 (1 + g (θs +Δ))

+

[

(R− 2)
g (θR−2 +Δ)

∏R−2
s=1 (1 + g (θs +Δ))

+(R−1)
1

∏R−2
s=1 (1+g (θs+Δ))

]

+
1

∏R−1
s=1 (1 + g (θs +Δ))

.

Since

(k − 1)
g (θk−1 +Δ)

∏k−1
s=1 (1 + g (θs +Δ))

+ k
1

∏k−1
s=1 (1 + g (θs +Δ))

= (k − 1)
1

∏k−2
s=1 (1 + g (θs +Δ))

+
1

∏k−1
s=1 (1 + g (θs +Δ))

,
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where
∏0

s=1 (1 + g (θs +Δ)) = 1 for k = 2, . . . , R, we obtain

E(X) = 1 +
R−1∑

i=1

1
∏i

s=1 (1 + g (θs +Δ))
.

In a similar manner, we obtain

E(Y ) = 1 +
R−1∑

i=1

1
∏i

s=1 (1 + g (θs))
.

Theorem 1. The MH model holds if and only if both the GMC and ME
models hold.

Proof. If the MH model holds, then the GMC and ME models hold.
Assuming that the GMC and ME models hold, we shall show that the MH
model holds.

Since the ME model holds,

E(X)− E(Y ) =
R−1∑

i=1

[∏i
s=1 (1 + g (θs))

]
−
[∏i

s=1 (1 + g (θs +Δ))
]

[∏i
s=1 (1 + g (θs +Δ))

] [∏i
s=1 (1 + g (θs))

] = 0,

from Lemmas 1 and 2. When Δ > 0, E(X) − E(Y ) < 0. When Δ < 0,
E(X) − E(Y ) > 0. Therefore, Δ = 0. Consequently, the MH model holds.
The proof is complete.

We can also describe the following decompositions of the MH model.

Corollary 1. The MH model holds if and only if both the MCOR and ME
models hold.

Corollary 2. The MH model holds if and only if both the MCC and ME
models hold.

Corollary 3. The MH model holds if and only if both the MCP and ME
models hold.

4. Extension into Multi-way Tables

We extend the models and decompositions in Sections 2 and 3 into multi-
way contingency tables.

Note that we must consider extensions into multi-way tables not only
theoretical aspects but also practical aspects since they are known to be
sparse. Although application issues will be future research, we give theoret-
ical extensions respecting the historical value of previous research.
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4.1. Models Consider an RT table (T ≥ 2) with ordered categories.
Let Xt denote the t-th random variable for t = 1, . . . , T , and let Pr(X1 =
i1, . . . , XT = iT ) = pi1...iT for it = 1, . . . , R. The MHT model can be ex-
pressed as

p
(1)
i = p

(2)
i = · · · = p

(T )
i for i = 1, . . . , R,

where p
(t)
i = Pr(Xt = i). See e.g., Bhapkar and Darroch (1990) and Agresti

(2013, p.439).

Let ω
(t)
i = Pr(Xt = i | Xt ≥ i) for i = 1, . . . , R − 1; t = 1, . . . , T . Then

we propose a model defined by

h−1
(
ω
(k)
i

)
= h−1

(
ω
(1)
i

)
+Δk for i = 1, . . . , R− 1; k = 2, . . . , T, (4.1)

where the parameters Δk are unspecified. A special case of this model ob-
tained by setting Δ2 = · · · = ΔT = 0 is the MHT model. We refer to model
(4.1) as the GMCT model. Under the GMCT model, Δk > 0 (k = 2, . . . , T )

is equivalent to ω
(k)
i > ω

(1)
i for i = 1, . . . , R − 1. Therefore, the parameters

Δk in the GMCT model reflect the degree of inhomogeneity between {ω(k)
i }

and {ω(1)
i }. Incidentally, by setting h−1

(
ω
(1)
i

)
= θi, the GMCT model can

be expressed as

ω
(t)
i = h (θi +Δt) for i = 1, . . . , R− 1; t = 1, . . . , T,

where Δ1 = 0. Hence, under the GMCT model, the conditional probability

ω
(k)
i is a location shift of the conditional probability ω

(1)
i in terms of the

above equation for k = 2, . . . , T .
Especially, when h−1(x) = log (x/ (1− x)), the GMCT model is ex-

pressed as

log

(
ω
(k)
i

1− ω
(k)
i

)

= log

(
ω
(1)
i

1− ω
(1)
i

)

+Δk, (4.2)

for i = 1, . . . , R − 1; k = 2, . . . , T . We shall refer to model (4.2) as the
MCORT model. Note that

ω
(t)
i

1− ω
(t)
i

=
p
(t)
i

1− F
(t)
i

for i = 1, . . . , R− 1; t = 1, . . . , T,

where F
(t)
i =

∑i
s=1 p

(t)
s = Pr(Xt ≤ i). Using the marginal continuation odds

ratio, the MCORT model can also be expressed as

logψ
(k)
i = Δk for i = 1, . . . , R− 1; k = 2, . . . , T,
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where

ψ
(k)
i =

ω
(k)
i

(
1− ω

(1)
i

)

ω
(1)
i

(
1− ω

(k)
i

) =
p
(k)
i

(
1− F

(1)
i

)

p
(1)
i

(
1− F

(k)
i

) .

Using the complementary log-log transformation, the GMCT model is
expressed as

log
(
− log

(
1− ω

(k)
i

))
= log

(
− log

(
1− ω

(1)
i

))
+Δk, (4.3)

for i = 1, . . . , R − 1; k = 2, . . . , T . We shall refer to model (4.3) as the
MCCT model.

Using the probit transformation, the GMCT model is expressed as

Φ−1
(
ω
(k)
i

)
= Φ−1

(
ω
(1)
i

)
+Δk for i = 1, . . . , R− 1; k = 2, . . . , T, (4.4)

where Φ(·) is the cumulative distribution function of the standard normal
distribution. We refer to model (4.4) as the MCPT model.

4.2. Decompositions of the Marginal Homogeneity Model Consider the
MET model defined by

E(X1) = · · · = E(XT ),

i.e.,
R∑

i=1

ip
(1)
i = · · · =

R∑

i=1

ip
(T )
i .

Note that the MHT model implies the MET model.
We obtain the following theorem.

Theorem 2. For the RT table, the MHT model holds if and only if both the
GMCT and MET models hold.

The proof is omitted because it is obtained in a similar manner as the
proof of Theorem 1. We also obtain the following corollaries.

Corollary 4. For the RT table, the MHT model holds if and only if both the
MCORT and MET models hold.

Corollary 5. For the RT table, the MHT model holds if and only if both the
MCCT and MET models hold.

Corollary 6. For the RT table, the MHT model holds if and only if both the
MCPT and MET models hold.
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5 Goodness-of-fit Test

Let ni1...iT denote the observed frequency in the (i1, . . . , iT ) cell of the
RT table with n =

∑
· · ·

∑
ni1...iT , and let mi1...iT denote the corresponding

expected frequency. Assume that {ni1...iT } has a multinomial distribution.
The maximum likelihood estimates (MLEs) of the expected frequencies un-
der each model can be obtained using the Newton-Raphson method to solve
the likelihood equations.

The likelihood ratio chi-squared statistic to test the goodness-of-fit of
model M is given by

G2(M) = 2
R∑

i1=1

· · ·
R∑

iT=1

ni1...iT log

(
ni1...iT

m̂i1...iT

)

,

where m̂i1...iT is the MLEs of mi1...iT under the model. The numbers of
degrees of freedom (df) of statistics for testing the goodness-of-fit of the
MH, GMC, and ME models are (T − 1)(R− 1), (T − 1)(R− 2), and T − 1,
respectively. Consider two nested models, say M1 and M2, such that if
model M1 holds, then model M2 holds. To test the goodness-of-fit of model
M1 assuming that model M2 holds, the conditional likelihood ratio statistic
is given by G2(M1 | M2) = G2(M1) − G2(M2). The number of df for the
conditional test is the difference between the numbers of df for models M1

and M2.

6 Examples

6.1. Example 1 We focus on the contingency table grouping the time
scale into ordered categories such as the sleep-onset time. As an example,
we used the research data of Marqueze et al. (2015a, b), which was found
in the Dryad Digital Repository. We created a square contingency table by
grouping the sleep-onset time scale between work days and days-off (Table 1).
We used the pair sleep-onset time data of work days and days-off from the
original data set, and combined two variables at once. Incidentally, the
variable names of the dataset are “Bedtimew” and “Bedtimef”. Then we
calculated the first quartile and the third quartile from the combined data
to create a square contingency table using these quartiles as the cut points.
Namely, we classified the continuous bedtime at three levels: (1) below the
first quartile, (2) the first quartile or more but less than the third quartile,
and (3) the third quartile or more.

We shall analyze the data in Table 1 using Corollary 1. The MCOR
model fits these data well since G2(MCOR) = 0.73 with 1 df. However, the
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Table 1: Marqueze’s data expressing the bedtime for work days and days-
off using three levels: (1) below the first quartile, (2) the first quartile or
more but less than the third quartile, and (3) the third quartile or more
(Marqueze et al. 2015a, b). Parenthesized values are the MLEs of the
expected frequencies under the MCOR model
Work days Days-off

(1) (2) (3) Totals

(1) 292 143 9 444
(293.74) (137.70) (8.92) (440.36)

(2) 22 566 283 871
(23.03) (566.13) (291.79) (880.95)

(3) 26 157 180 363
(26.22) (151.55) (178.92) (356.69)

Totals 340 866 472 1678
(342.99) (855.38) (479.63) (1678)

Source: http://doi.org/10.5061/dryad.73f69

MH and ME models do not fit these data well since G2(MH) = 68.86 with
2 df and G2(ME) = 58.48 with 1 df.

We shall consider the hypothesis that the MH model holds under the
assumption that the MCOR model holds; namely, the hypothesis that Δ =
0 holds. Since G2(MH|MCOR) = G2(MH) − G2(MCOR) = 68.13 with
1 df, we reject this hypothesis at the 0.05 level. This shows Δ �= 0 in
the MCOR model. Therefore, the MCOR model is preferable to the MH
model for the data in Table 1. Under the MCOR model, the MLEs of

exp (Δ) are exp
(
Δ̂
)
= 1.38. Noting that ωX

1 /
(
1− ωX

1

)
= p1·/ (p2· + p3·) ,

ωX
2 /

(
1− ωX

2

)
= p2·/p3· , ωY

1 /
(
1− ωY

1

)
= p·1/ (p·2 + p·3) , and ωY

2 /
(
1− ωY

2

)
=

p·2/p·3 , we see under the MCOR model that (i) the odds that the sleep-onset
time is (1) below the first quartile, instead of (2) or (3), i.e., the first quartile

or more, is estimated to be exp
(
Δ̂
)
= 1.38 times higher for work days than

for days-off, and (ii) the odds that it is (2) the first quartile or more but less
than the third quartile, instead of (3) the third quartile or more is estimated
to be 1.38 times higher for work days than for days-off.

Section 7 discusses the interpretation of this results from the viewpoint
of time scales.

6.2. Example 2 Consider the data in Table 2, which is obtained from
the Meteorological Agency in Japan (Tahata et al., 2008). These are ob-
tained from the daily atmospheric temperatures at Hiroshima, Tokyo, and
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Table 2: Daily atmospheric temperatures at Hiroshima, Tokyo, and Sapporo
in Japan in 2003, using three levels: (1) low, (2) normal, and (3) high (Tahata
et al., 2008). Parenthesized values are the MLEs of the expected frequencies
under the MCORT model
Hiroshima Tokyo Sapporo

(1) (2) (3)

(1) (1) 37 13 3
(37.06) (13.51) (3.00)

(1) (2) 21 17 5
(21.88) (18.41) (5.21)

(1) (3) 4 4 5
(4.05) (4.20) (5.06)

(2) (1) 19 15 5
(17.69) (14.45) (4.65)

(2) (2) 20 29 8
(19.32) (29.02) (7.72)

(2) (3) 20 20 12
(18.79) (19.45) (11.27)

(3) (1) 2 8 4
(1.97) (8.19) (3.95)

(3) (2) 8 15 14
(8.21) (15.99) (14.37)

(3) (3) 7 21 29
(6.98) (21.71) (28.90)

Sapporo in Japan in 2003 using three levels: (1) low, (2) normal, and (3)

high. VariablesX1, X2, andX3 mean the temperatures at Hiroshima, Tokyo,
and Sapporo, respectively.

We shall analyze the data in Table 2 using Corollary 4. The MCORT

model fits these data well since G2(MCORT ) = 0.61 with 2 df, whereas the

MHT and MET models do not fit these data well since G2(MHT ) = 16.80
with 4 df and G2(MET ) = 16.39 with 2 df.

We shall consider the hypothesis that the MHT model holds under the
assumption that the MCORT model holds; namely, the hypothesis that Δ2 =
Δ3 = 0 holds. Since G2(MHT |MCORT ) = G2(MHT )−G2(MCORT ) = 16.19
with 2 df, we reject this hypothesis at the 0.05 level. Therefore the MCORT

model is preferable to the MHT model for these data.
We see from Corollary 4 that the poor fit of the MHT model is caused

by the poor fit of the MET model rather than the MCORT model. That
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is, the mean temperatures at Hiroshima, Tokyo, and Sapporo differ. Un-

der the MCORT model, the MLEs of {exp (Δk)} are exp
(
Δ̂2

)
= 0.90 and

exp
(
Δ̂3

)
= 1.33. Noting that ω

(t)
1 /

(
1− ω

(t)
1

)
= p

(t)
1 /

(
p
(t)
2 + p

(t)
3

)
and

ω
(t)
2 /

(
1− ω

(t)
2

)
= p

(t)
2 /p

(t)
3 , we see under the MCORT model that the odds

that the temperature is (1) Low instead of (2) Normal or (3) High is es-

timated to be exp
(
Δ̂2

)
= 0.90 times higher in Tokyo than in Hiroshima,

and the odds that it is (2) Normal instead of (3) High is estimated to be

0.90 times higher in Tokyo than in Hiroshima. Also we see that the odds
that it is (1) Low instead of (2) Normal or (3) High is estimated to be

exp
(
Δ̂3

)
= 1.33 times higher in Sapporo than in Hiroshima, and the odds

that it is (2) Normal instead of (3) High is estimated to be 1.33 times higher
in Sapporo than in Hiroshima.

7 Discussion

7.1. Comparison Between Models Analyzing the data in Tables 1 and
2, the goodness-of-fits of the MCORT , MCCT , and MCPT models are re-

markably different (see Table 3). The MCORT and MCPT models fit both

the data in Tables 1 and 2 very well. However, the MCCT model fits the data

in Table 2 well, although it does not fit the data in Table 1 well. From above,

considering special cases of the GMCT model, the conditional probabilities

of the MCORT and MCPT models have a symmetric appearance. However,

that of the MCCT model is asymmetric, log(− log(1−x)) approaches 0 fairly
slowly but approaches 1 quite sharply.

The MCORT and MCCT models may be useful because the parameter
exp (Δk) of the MCORT model can be interpreted as the marginal continua-

tion odds ratio and the parameter Δk of the MCCT model can be considered

Table 3: Likelihood ratio statistic G2 for models applied to the data in
Tables 1 and 2

Table 1 Table 2

Models df G2 df G2

MHT 2 68.86∗ 4 16.80∗

MCORT 1 0.73 2 0.61
MCCT 1 5.17∗ 2 0.93
MCPT 1 0.50 2 0.60
MET 1 58.48∗ 2 16.39∗

Note: ∗ means significant at the 0.05 level
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as a location shift between the marginal distributions. On the other hand,

some models such as the MCPT model make it difficult to interpret the
parameter Δk. Therefore, the GMCT model may provide various strictly

increasing functions to find the most applicable model to the data but the
interpretation of Δk may be difficult. Hence, it is important that an analyst
decides what kind of model to employ for data analysis.

7.2. Treating Conditional Probabilities as Discrete Time Hazards Due

to the different viewpoints, the conditional probability ω
(t)
i = Pr(Xt = i |

Xt ≥ i) may be considered as discrete time hazards. That is, it is the
conditional probability of experiencing an event in the period i under the
condition that has not experienced the event before the period i. Namely, if
Xt represents a categorized survival time, the conditional probability repre-
sents the probability of survival to time level i given survival at least that
long, which is the hazard rate. Hence, the MCORT model can describe
hazards functions for grouped survival data, and a certain model using the
complementary log-log transformation is also useful for such data. When we
consider the MCCT model, we can also consider the ratio of survival func-

tions. For discretely measured survival, let S
(t)
i = 1−F

(t)
i−1 = Pr(Xt ≥ i) for

i = 1, . . . , R − 1; t = 1, . . . , T (Agresti 2010, p.128). Namely, S
(t)
i denotes

the discrete survival function of Xt. The conditional probabilities ω
(t)
i can

be expressed as

ω
(t)
i =

p
(t)
i

1− F
(t)
i−1

= 1− 1− F
(t)
i

1− F
(t)
i−1

= 1−
S
(t)
i+1

S
(t)
i

,

for i = 1, . . . , R − 1; t = 1, . . . , T . Thus, the GMCT model can also be
expressed as

h−1

(

1−
S
(k)
i+1

S
(k)
i

)

= h−1

(

1−
S
(1)
i+1

S
(1)
i

)

+Δk,

for i = 1, . . . , R− 1; k = 2, . . . , T .
Consider the data in Table 1. Under the MCOR model, we can treat not

only the marginal continuation odds ratio but also the discrete time hazards.

The marginal continuation odds ratio is estimated to be exp
(
Δ̂
)

= 1.38

(see Example 1). Furthermore, the hazard of work days is estimated to be
Δ̂ = 0.32 location shift of that of days-off on a logistic scale. Hence, the
sleep-onset time for work days tends to be earlier than that for days-off at a
constant hazard on a logistic scale.
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When an analyst treats the contingency table by grouping the time scale
such as studies of survival, the proposed models and decompositions may be
useful from the viewpoint of discrete time hazards.

Acknowledgements. The authors would like to thank the editor and
anonymous referees for the meaningful comments.

Open Access. This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the arti-
cle’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

agresti, a. (2010). Analysis of Ordinal Categorical Data, 2nd edn. Wiley, Hoboken.

agresti, a. (2013). Categorical Data Analysis, 3rd edn. Wiley, Hoboken.
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