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Abstract

When individuals in a community develop an infectious disease, it may
quickly spread through personal contacts. Modeling the progression of such
a disease is equivalent to modeling a branching process in which an infected
person may infect others in a small time interval. It is also possible for some
immigrants to enter the community with the disease and thus contribute to
an increase in the number of infections. There exist various modeling ap-
proaches for dealing with this type of infectious disease data collected over
a long period of time. However, there are certain infectious diseases which
require very quick remedy by health professionals to prevent it from spread-
ing further due to the dangerous nature of the disease. Such interventions
require an understanding of the pattern of the disease in a short period of
time. As a result, the spread of such infectious diseases only occur over a
short period of time. The modeling of this type of infections that last only
for a short period of time across several communities or countries is not,
however, adequately discussed in the literature. In this paper, we develop a
branching process with immigration to model this type of infectious disease
data collected over a short period of time and provide consistent estimates
of the parameters involved in the proposed model. We note that the model
and inferences exploited in this paper are also applicable to infectious dis-
ease data obtained over a long period of time. We discuss a generalization
of the proposed model under the assumption that the data may be affected
by unobservable random community effects.

AMS (2000) subject classification. Primary 62M09; Secondary 62P10.
Keywords and phrases. Branching process, binomial distribution, general-
ized quasi likelihood estimation, immigration, method of moments, Poisson
distribution.

1 Introduction

Modeling the spread of infectious diseases is an important epidemiolog-
ical issue. Since the pioneering work of Kermack and Mckendrick (1927)
several mathematical models have been developed for the number of infec-
tives at time t starting at an initial time t = 0. We refer to a recent book
edited by Ma and Li (2009) and the references therein for some widely used
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epidemiological models. See also the epidemic models discussed by Anders-
son and Britton (2000), Diekmann and Heesterbeek (2000), and Daley and
Gani (1999), among others. For example, consider the so-called Kermack
and Mckendrick SIS (susceptible-infectives-susceptible) (Ma and Li, 2009,
§1.4.2, eqn. (1.22)) dynamic model

y(t) = y(0)P (t) +

∫ t

0
β̃S(u)y(u)P (t− u)du, (1.1)

where y(t) is the total number of infectives at time t, y(0)P (t) is the number
of infectives who were infected at time t = 0 and have not been recovered
until time t, P (t − u) is the probability that the individuals who were in-
fectives at time t = u have not been recovered after the time period t − u,
and β̃S(u)y(u) is the number of secondary infections during the time period
[u, u+ du].

Note that the aforementioned models for infectious diseases were devel-
oped mainly to deal with infectious disease time series data obtained over a
long period of time. For example, one may refer to the weekly mortality data
(Choi and Thacker, 1981a, b) for pneumonia and influenza, pooled over 121
cities throughout the United States and covering the 15-year period from
1962 to 1979. In this example, there are 121 communities where mortality
data were collected at 52 × 15 = 780 time points. Models have also been
developed to deal with infectious disease data collected in the form of a time
series of moderate length from a single community. One such example is the
data from the October/November 1967 epidemic of respiratory disease in
Tristan da Cunha (Shibli et al., 1971), which contains number of infections
and number of susceptibles over a period of 16 time points. This type of
data can be analyzed by using models similar to the model given in (1.1).

In this paper, we revisit the infectious disease problems modeled by (1.1)
and provide an alternative modeling based on a recently developed dynamic
model for repeated count data (Sutradhar, 2011, Chapter 6). Note that in
the proposed model, we consider that an individual once infected may infect
none or a few individuals following a binomial probability distribution where
no record of recovery is available. We also note that even though our alter-
native model can handle infectious disease time series data of long duration
that can be analyzed by models similar to that of (1.1), our main objective
is to develop models for infectious diseases collected from a large number of
independent communities, but over a small period of time. For an example
of an infectious disease of this type, one may refer to the Severe Acute Res-
piratory Syndrome (SARS) epidemic of 2003 which lasted for only a short
duration, such as T = 5, 6, or 7 weeks, involving many communities across
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Asia and secondary cases in large cities in different countries. The modeling
of this type of infections that last only for a short period of time across
several countries is not, however, adequately discussed in the literature. We
remark that our proposed model would be suitable to deal with such longi-
tudinal data. We also note that the inferential techniques we are proposing
to develop in this paper based on data for small number of time points is
also appropriate for dealing with time series type data obtained over a long
period. In this special case, one will simply set the number of communities
to one. In fact, it is important to examine whether the inference works for
a small number of time points, since it would naturally work better if more
time points are considered.

Suppose that K independent communities are at risk of an infectious
disease. Also, suppose that at the initial time point, t = 1, yi1 individuals
in the ith (i = 1, . . . ,K) community developed the disease. It is reasonable
to assume that yi1 follows the Poisson distribution with mean parameter
μi1 = exp(x′

i1β). That is,

yi1 ∼ Poi(μi1 = exp(x′
i1β)),

where xi1 = (xi11, xi12, . . . , xi1u, . . . , xi1)
′ is a p-dimensional covariate vector

representing p demographic and/or socioeconomic characteristics of the ith
community such as its age (new or old), population density (low or high),
apparent economic status (poor, middle class, or wealthy). In the restricted
case, where each of the yi1 individuals are thought to have infected none or
only one individual within a given time interval, one may model the next
infected count at time t = 2 as

yi2 =

yi1∑
j=1

bj(ρ) + di2,

where bj(ρ) is a binary variable such that Pr[bj(ρ) = 1] = ρ and Pr[bj(ρ) =
0] = 1 − ρ. Here, di2 is considered an immigration variable which follows a
suitable Poisson distribution, and di2 and yi1 are independent. In general,
for t = 1, 2, . . . , T , one may write,

yit =

yi,t−1∑
j=1

bj(ρ) + dit. (1.2)

Beginning with Sutradhar (2003, §4) (see also McKenzie, 1988), this
model (1.2) has been used for modeling count data over time which follow
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an autoregressive, of order 1, type Poisson process. When yi,t−1 is con-
sidered as an offspring variable at time t − 1 and dit is the immigration
variable, the model (1.2) represents a branching process with immigration.
In a time series context, that is for K = 1 and large T , this model was
recently considered by Sutradhar, Oyet, and Gadag (2010) as a special case
of a negative binomial branching process with immigration. In the present
set up, the binary outcome based model (1.2) is not appropriate. This is
because, each of the infected individuals yi,t−1 at time t−1 may infect none,
one, or more than one individuals. Suppose that each of the yi,t−1 patients
can infect up to nt individuals. Then, these yi,t−1 individuals will infect a
total of

∑yi,t−1

j=1 Bj(nt, ρ) individuals, where as opposed to (1.2), Bj(nt, ρ) is
a binomial variable with parameters nt and ρ such that nt = 1 yields the
model (1.2). That is,

Pr[Bj(nt, ρ) = cj ] =

(
nt

cj

)
ρcj (1− ρ)nt−cj ,

for cj = 0, 1, . . . , nt.
The proposed binomial variable based extended model is discussed in

Section 2. A method for consistent estimation of the parameters, namely β
and ρ, is also given in Section 2. In Section 3, we provide a further general-
ization under the assumption that apart from community related covariates
xit, the infected counts may also be influenced by an unobservable commu-
nity effect. Let γi represent this latent effect for the ith community. Under

the assumption that γi
iid∼ N(0, σ2

γ), in Section 3, we develop an estimation
method that provides consistent estimates for the parameters β, ρ, and σ2

γ .

2 Proposed fixed model for counts over time

Because an infected individual may infect more than one individual in a
given time interval, and also because there may be other infected individuals
arriving from other communities, we shall model the number of infected
persons at time t (t = 2, 3, . . . , T ) as

yit =

yi,t−1∑
j=1

Bj(nt, ρ) + dit, (2.1)

which accommodates (1.2) with nt = 1. In (2.1) we make the following
assumptions:

Assumption 1. yi1 ∼ Poi(μi1 = exp(x′
i1β)).
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Assumption 2. dit ∼ Poi(μit − ρntμi,t−1), for t = 2, . . . , T with μit =
exp(x′

itβ), for all t = 1, . . . , T .

Assumption 3. dit and yi,t−1 are independent for t = 2, . . . , T .

Note that the model (2.1) has some similarities with the Kermack and
Mckendrick (1927) SIS model given in (1.1). In (2.1), yi1 is the initial num-
ber of infectives in the ith community at initial time t = 1, which is the
same as y(0) in (1.1). The dynamic summation in (2.1) is similar to the
integral in (1.1). The number of secondary infectives in (2.1) is dit, whereas
β̃S(u)y(u) is the number of secondary infectives in (1.1), and so on.

Now turning to the statistical properties of the model (2.1), it is clear,
from Assumption 1 above, that E(Yi1) = μi1. Then, by successive expecta-
tion, it follows that for t = 2, . . . , T ,

E(Yit) =E
yi1

E
yi2

· · · E
yi,t−1

E(Yit|yi,t−1) = μit = exp(x′
itβ). (2.2)

Hence, E(Yit) = μit for all t = 1, 2, . . . , T . Next, for t = 2, . . . , T one may
obtain a recursive relationship for the variance of yit in terms of the variance
of yi,t−1. To be specific, by using the model (2.1), one writes

var(Yit) = E[var(Yit|yi,t−1)] + var[E(Yit|yi,t−1)]

= E[Yi,t−1ntρ(1− ρ) + μit − ρntμi,t−1]

+ var[Yi,t−1ntρ+ μit − ρntμi,t−1].

By (2.2), it then follows that for t = 2, . . . , T ,

var(Yit) = ntρ(1− ρ)μi,t−1 + μit − ρntμi,t−1 + n2
tρ

2var(Yi,t−1)

= μit − ntρ
2μi,t−1 + n2

tρ
2var(Yi,t−1),

= σi,tt, say, (2.3)

with var(Yi1) = μi1 = exp(x′
i1β) by Assumption 1. After some algebra, we

obtain the following formulas for variances, for all t = 1, 2, . . . , T as

σi,tt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μi1, t = 1
μi2 + ρ2n2(n2 − 1)μi1 t = 2

μit + ρ2nt(nt − 1)μi,t−1 +
∑t−2

l=1 t = 3, . . . , T,

×
[
ρ2(l+1)nt−l(nt−l − 1)

(∏l−1
j=0 n

2
t−j

)
μi,t−(l+1)

]
,

(2.4)
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with n1 = 1. Similarly, for lag k = 1, . . . , t− 1, because

E(YitYi,t−k) = E[Yi,t−k E
yi,t−k+1

E
yi,t−k+2

· · · E
yi,t−1

E{Yit|yi,t−1}],

one obtains the covariance between yit and yi,t−k as

cov(Yit, Yi,t−k) = σit,t−k =

(
k−1∏
l=0

nt−l

)
ρkσi,t−k,t−k, (2.5)

where σi,tt is given by (2.3). It then follows that the lag k correlation be-
tween the infected counts yit at time t and yi,t−k at time t − k, has the
formula

corr(Yit, Yi,t−k) =

(
k−1∏
l=0

nt−l

)
ρk
√

σi,t−k,t−k

σi,tt
. (2.6)

Note that when nt = 1, for all t = 1, 2, . . . , T , the variance of yit in (2.4) and
the correlation between yit and yi,t−k given in (2.6) reduce to

σi,tt = μit and corr(Yit, Yi,t−k) = ρk
√

μi,t−k

μit

respectively, which are the same expressions for the binary sum (binomial
thinning) based count data model considered by Sutradhar (2010, eqns.
(15)–(16), p. 178). Thus, the present binomial sum based count data
model (2.1) is an important generalization of the binary sum based count
data model discussed by Sutradhar (2010, eqn. (14), p. 178). It is also
clear that unlike the existing binomial thinning based count data mod-
els, the present model is suitable for modeling the spread of infectious
diseases.

3 GQL estimation of the parameters of the infectious disease
model (2.1)

3.1. Estimation of β. Recall from (2.2) that the expectation of the
infectious counts yit in the ith community at time t has the formula E(Yit) =
μit = exp(x′

itβ) which is a function of β. Let μi = (μi1, μi2, . . . , μit, . . . , μiT )
′

be the T-dimensional expectation vector of yi = (yi1, yi2, . . . , yit, . . . , yiT )
′.

Following Sutradhar (2010, eqn. (46)), one may then obtain a consistent and
efficient estimate of β by solving the so-called generalized quasi-likelihood
(GQL) estimating equation

K∑
i=1

∂μ′
i

∂β
Σ−1
i (β, ρ)(yi − μi) = 0, (3.1)
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with

Σ−1
i (β, ρ) = cov(Yi) = A

1/2
i Ci(ρ)A

1/2
i

where Ai = diag[σi1, . . . , σit, . . . , σiT ] and Ci is the T ×T correlation matrix
defined as

Ci =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρi12 ρi13 · · · · · · ρi1T
1 ρi23 · · · · · · ρi2T

· · · · · · · · · · · ·
· · · · · · · · ·

1 ρi,T−1,T

1

⎞
⎟⎟⎟⎟⎟⎟⎠

with ρi,t−k,t =
(∏k−1

l=0 nt−l

)
ρk
√

σi,t−k,t−k

σi,tt
by (2.6) for t = 2, . . . , T , and

k = 1, . . . , t − 1. The GQL estimating equation (3.1) may be solved it-
eratively by using the Newton–Raphson iterative equation

β̂(r + 1) = β̂(r) +

⎧⎨
⎩
[

K∑
i=1

∂μ′
i

∂β
Σ−1
i (β, ρ)

∂μi

∂β

]−1

×
K∑
i=1

∂μ′
i

∂β
Σ−1
i (β, ρ)(yi − μi)

}

β=β̂(r)

, (3.2)

where β̂(r) is the value of β at the rth iteration.
3.2. Estimation of the correlation index parameter ρ. Let Sitt and Sit,t+1

be the standardized sample variance and the standardized lag 1 sample au-
tocovariance defined as

Sitt =
K∑
i=1

T∑
t=1

(
yit − μit

σit

)2

/KT

Sit,t+1 =
K∑
i=1

T−1∑
t=1

(
yit − μit

σit

) (
yi,t+1 − μi,t+1

σi,t+1

)/
K(T − 1).

Since

E(Sitt) = 1

E(Sit,t+1) = ρ
K∑
i=1

T−1∑
t=1

nt+1

(
σit

σi,t+1

)/
K(T − 1),



326 A.J. Oyet and B.C. Sutradhar

one may use the method of moments to obtain a consistent estimator of ρ
given by

ρ̂ =

(
Sit,t+1

Sitt

)[ K∑
i=1

T−1∑
t=1

nt+1

(
σit

σi,t+1

)/
K(T − 1)

]−1

. (3.3)

3.3. Forecasting. Once the parameters of the infectious disease model
(2.1) have been estimated, one-step ahead forecasts can be obtained for the
purpose of planning and control. In this section, we will derive the one-step
ahead forecasting function and the variance of the forecast error.

From the model (2.1), it is clear that the conditional mean of Yit given
yi,t−1 is given by

E(Yit|yi,t−1) = μit + ρnt(yi,t−1 − μi,t−1). (3.4)

If we define the l-step ahead forecasting function of yi,t+l as yi,t(l) = ŷi,t+l =
E(Yi,t+l|yi.t+l−1), then, from (3.4) the one-step ahead forecasting function
can be written as

yit(1) = μi,t+1 + ρnt+1(yit − μit), (3.5)

where yit = yit(0) with forecast error

eit(1) = yi,t+1 − yit(1) = (yi,t+1 − μit(1))− ρnt(yit − μit). (3.6)

Using the fact that E[eit(1)|yit] = 0 and that V (Yi,t+1|yit) = μi,t+1 −
ρnt+1μit + yitnt+1ρ(1 − ρ), one can easily verify that the variance of the
one-step ahead forecast error is

V [eit(1)] = μit(1)− ρ2nt(1)μit. (3.7)

In Section 3.4, we will examine the performance of the GQL estima-
tion approach [(3.2) and (3.3)] discussed in Sections 3.1 and 3.2 through a
simulation study. We will also examine the performance of the forecasting
function (3.5).

3.4. A simulation study.
3.4.1. Estimation performance of β and ρ. We begin our simulation

study by generating data from (2.1) for various combinations of parameter
values and simulation design. The parameter values used in the simulation
were T = 5, K = 100, β′ ≡ (0.5, 1), (1, 1), and n′ = (n1, n2, n3, n4, n5) ≡
(1, 2, 2, 2, 2), (1, 2, 2, 3, 2), (1, 2, 3, 4, 2), (1, 2, 2, 2, 3), (1, 2, 2, 3, 3), (1, 2, 3, 4, 3).
We have used a time dependent covariate vector xit in order to study the
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nonstationary case. The components of the covariate vector x′
it = (xit1, xit2)

were generated as follows:

xit1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, t = 1, 2; i = 1, 2, . . . , K2
1, t = 3, 4, 5; i = 1, 2, . . . , K2
0, t = 1; i = K

2 + 1, . . . ,K

0.5, t = 2, 3; i = K
2 + 1, . . . ,K

1, t = 4, 5; i = K
2 + 1, . . . ,K

(3.8)

and

xit2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
T , t = 1, 2, 3, 4, 5; i = 1, 2, . . . , K4
−1, t = 1; i = K

4 + 1, . . . , 3K4
0, t = 2, 3; i = K

4 + 1, . . . , 3K4
0.5, t = 4, 5; i = K

4 + 1, . . . , 3K4
(0.5 + (t− 1)0.5)/T, t = 1, . . . , 5; i = 3K

4 + 1, . . . ,K.

(3.9)

Note that even though we have chosen two covariates hypothetically, they
however reflect the time dependent economic (xit1) and cleanliness (xit2)
conditions of the K communities. For example, the covariate for economic
conditions of the communities xit1 indicates that half of the communities
had low income conditions (xit1 = −1) at t = 1, 2 and subsequently at
t = 3, 4 and 5, their economic condition improved (xit1 = 1). The rest of
the communities also increasingly did better (xit1 = 0, 0.5 and 1.0) as time
progressed. A similar pattern of improvement in the cleanliness conditions
can be observed for the first and fourth quarter of the communities over time
and the middle half of the communities also showed improved cleanliness
conditions with regard to change in time. The roles of these covariates
are highlighted through Figure 1(a), (b) and (c) for time dependent mean,
variance, and correlation.

Since the mean of the Poisson random variable dit given by E(dit) =
μit − ρntμi,t−1, must be positive, the values of ρ in our simulation were
chosen to satisfy the condition ρ < min {μit/ntμi,t−1, 1}. As a result of the
condition on ρ, the data generation process began with the computation
of the covariate vector xit, i = 1, . . . ,K, t = 1, . . . , T which we then used
to evaluate the mean of yit, μit = exp(x′

itβ) for a fixed value of β, say
for instance β′ = (0.5, 1). Next, we used the values of μit to compute the
upper bound for ρ, given by ρ∗ = μit

ntμi,t−1
. We then choose ρ = ρ∗ − 0.1 or

ρ = ρ∗ − 0.2 as the true value of ρ for the simulation. Once a value of ρ
has been chosen, we generated yi1 and dit’s from a Poisson distribution with
means μi1 and μit−ρntμi,t−1 respectively. The remainder of the observations,
namely, yi2, yi3, yi4, yi5 were then generated from (2.1) for i = 1, 2, . . . , 100.
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Using only the first four observations, yi1, yi2, yi3, yi4, i = 1, 2, . . . , 100,
the GQL estimate of β and the method of moment estimate of ρ were iter-
atively computed from equations (3.2) and (3.3) respectively. This process
was repeated 1,000 times for various combinations of n1 = 1, nt, t = 2, 3, 4, 5,
β, and ρ. The average of the estimated β, ρ, and their standard errors sβ̂
and sρ over 1,000 simulations are reported in Table 1. The results in Table 1,
show that the GQL method performed well in estimating the parameters of
the infectious disease model (2.1). For instance, when β′ = (0.5, 1), ρ = 0.3,
and n2 = n3 = n4 = 2 and n5 = 3, the GQL estimate of β was (0.501, 0.998)
and the MM estimate of ρ was 0.292 with standard errors (0.055,0.62) and
0.045 respectively.

3.4.2. Forecasting performance. For the purpose of examining the per-
formance of the model (2.1) in forecasting future infections, we used the

Table 1: GQL estimate of β and method of moments estimate of ρ and their
standard errors obtained from 1,000 simulations.
n β ρ Parameter estimates

β̂ sβ̂ ρ̂ sρ̂
nt = 2, (.5,1) .300 (.502,.990) (.073,.131) .299 .041
t = 2, .., 5 .500 (.500,.992) (.061,.122) .498 .045

(1,1) .300 (1.002,.999) (.075,.132) .298 .048
.500 (.999,.996) (.068,.115) .502 .049

n2 = n3 = 2 (.5,1) .307 (.500,.999) (.072,.129) .308 .042
n4 = 3 .407 (.499,.997) (.067,.124) .407 .041
n5 = 2 (1,1) .307 (.999,.996) (.074,.126) .306 .043
n2 = n5 = 2 (.5,1) .205 (.497,1.001) (.074,.135) .205 .031
n3 = 3 .305 (.497,.1.001) (.064,.128) .307 .035
n4 = 4 (1,1) .205 (.998,1.002) (.073,.124) .204 .033

.305 (.996,.1.005) (.069,.122) .304 .039
n2 = n3 = 2 (.5,1) .300 (.499,.998) (.072,.137) .299 .042
n4 = 2 .500 (.496,1.006) (.063,.119) .499 .045
n5 = 3 (1,1) .300 (.997,.997) (.071,.129) .301 .045
n2 = n3 = 2 (.5,1) .307 (.498,1.001) (.070,.133) .305 .039
n4 = n5 = 3 (1,1) .307 (.999,.998) (.068,.122) .307 .044
n3 = n5 = 3 (.5,1) .205 (.496,.998) (.069,.129) .204 .032
n2 = 2 .305 (.500,.993) (.065,.131) .305 .036
n4 = 4 (1,1) .205 (.994,1.004) (.070,.126) .205 .034

.305 (.999,.999) (.066,.114) .307 .040
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parameter estimates obtained from using only the first four observations, in
Section 3.4.1, and the forecasting function in (3.5) to compute a one-step
ahead forecast of the fifth observation, yi5, i = 1, 2, . . . , 100. We also com-
puted the sum of squares of the forecast error (3.6) as well as the variance
of the forecast error (3.7). These calculations were repeated 1,000 times
for a fixed combination of parameter values. The average sum of squares
of the forecast errors and the average variance of the forecast errors, de-
noted by ASS[eit(1)] and AV[eit(1)] respectively are reported in Table 2.
From the results in Table 2, we see that the average sum of squares of the
forecast errors closely estimates the average variance of the forecast errors
irrespective of the combination of parameter values. This is an indication
of the satisfactory performance of the estimation of the parameters of the
model.

In practice, given the data yit, one may incorrectly assume that ρ = 0
and then estimate only the regression parameter β. Results not reported

Table 2: Average sum of squared forecast errors and average variance of
forecast errors.
n β ρ ASS[eit(1)] AV[eit(1)] ASS0[eit(1)]

nt = 2, (.5,1) .300 2.704 2.623 3.860
t = 2, .., 5 .500 1.762 1.705 6.397

(1,1) .300 4.430 4.353 6.283
.500 2.919 2.777 9.885

n2 = n3 = 2 (.5,1) .307 2.667 2.607 4.204
n4 = 3 .407 2.268 2.193 5.919
n5 = 2 (1,1) .307 4.411 4.291 6.796
n2 = n5 = 2 (.5,1) .205 3.003 2.911 3.676
n3 = 3 .305 2.682 2.608 4.894
n4 = 4 (1,1) .205 4.886 4.804 5.900

.305 4.409 4.314 7.723
n2 = n3 = 2 (.5,1) .300 2.444 2.371 5.052
n4 = 2, n5 = 3 (1,1) 4.048 3.869 8.268
n2 = n3 = 2 (.5,1) .307 2.411 2.343 5.882
n4 = n5 = 3 (1,1) .307 4.045 3.826 9.446
n3 = n5 = 3 (.5,1) .205 2.831 2.782 4.325
n2 = 2 .305 2.456 2.333 7.508
n4 = 4 (1,1) .205 4.737 4.586 7.059

.305 4.014 3.835 11.384
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here show that this assumption will not affect the GQL estimate of β.
However, the average sum of squares of the forecast errors when the in-
correct assumption of ρ = 0 was used, given in Table 2 as ASS0[eit(1)]
shows that this incorrect assumption will significantly inflate the variance
of the forecast errors with the percentage of inflation ranging from 18% to
72%. The magnitude of the percentage of inflation appear to increase as
the value of ρ increases. For instance when n2 = n3 = n4 = n5 = 2, and
β′ = (.5, 1), if one assumes that ρ = 0 when in fact ρ = 0.5 the aver-
age sum of squares of the forecast errors is inflated by approximately 72%;
whereas if the true value of ρ were 0.3, the percentage inflation will only be
about 30%.

In Figure 1, we have overlaid a graph of the average of the forecast in
1,000 simulations over a scatterplot of the average of the observations yi5

(a) (b)

(d)(c)

(e)

Figure 1: A plot of (a) values of nonstationary mean for t = 1 (solid line);
t = 2 (dashed line), t = 3 (dotted line), t = 4 (dotted dashed line); (b) values
of nonstationary variance for t = 1 (solid line); t = 2 (dashed line), t = 3
(dotted line), t = 4 (dotted dashed line); and (c) values of nonstationary lag
1 correlation for t = 1 (solid line); t = 2 (dashed line), t = 3 (dotted line); (d)
average forecast overlaid on average of longitudinal data; (e) proportion of
absolute values of forecast error that are 0 or 1 (solid lines) and > 1 (dashed
line); by communities obtained from 1,000 simulations with ρ = 0.5, β =
(1, 1)′, nonstationary covariates (3.8)–(3.9) and n1 = 1, n2 = . . . = n5 = 2.
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(Figure 1(a)). The plot shows that the average forecast follows the general
pattern of the infections at the fifth time point. In order to assess the ac-
curacy of our forecasts, we have also displayed a graph showing the average
of the proportion of the forecast error eit with absolute deviations 0, 1, and
greater than 1. Figure 1(e) shows that deviations of magnitude 0 and 1
appear to be over 50% for the first 25 communities and over 80% for the
remaining 75 communities. It is clear from Figure 1(d) that the number of
infections for the first 25 communities range from 2.5 to 17.5 approximately.
This large spread in the number of infections for the first 25 communities
accounts for the 50% deviation of magnitude 0 and 1 in the absolute value of
the forecast error for these 25 communities. Graphs showing the nonstation-
ary patterns in the mean μit, variance σit,t, and the lag 1 correlation ρi,t−1,t

are also shown in Figure 1. For the purpose of highlighting the differences be-
tween the stationary case and the nonstationary case, we constructed similar

(a) (b)

(c)

(e)

(d)

Figure 2: A plot of (a) values of stationary mean for t = 1, 2, 3, 4; (b) values
of nonstationary variance for t = 1 (solid line); t = 2 (dashed line), t = 3
(dotted line), t = 4 (dotted dashed line); and (c) values of nonstationary lag
1 correlation for t = 1 (solid line); t = 2 (dashed line), t = 3 (dotted line); (d)
average forecast overlaid on average of longitudinal data; (e) proportion of
absolute values of forecast error that are 0 or 1 (solid lines) and > 1 (dashed
line); by communities obtained from 1,000 simulations with ρ = 0.3, β =
(1, 1)′, stationary covariates (3.10)–(3.11) and n1 = 1, n2 = . . . = n5 = 2.
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(a) (b)

(c)

(e)

(d)

Figure 3: A plot of (a) values of stationary mean for t = 1, 2, 3, 4; (b)
values of stationary variance for t = 1, 2, 3, 4; (c) values of stationary lag 1
correlation; (d) average forecast overlaid on average of longitudinal data; (e)
proportion of absolute values of forecast error that are 0 or 1 (solid lines)
and > 1 (dashed line); by communities k = 1, 2, . . . , 100 obtained from 1,000
simulations with ρ = 0.8, β = (1, 1)′, stationary covariates (3.10)–(3.11) and
n1 = n2 = . . . = n5 = 1.

plots in Figures 2 and 3 for a stationary case obtained from data generated
using the covariate components

xit1 =

{
−0.5, t = 1, 2, 3, 4, 5; i = 1, 2, . . . , K2
0.5, t = 1, 2, 3, 4, 5; i = K

2 + 1, . . . ,K
(3.10)

and

xit2 =

{
0, t = 1, 2, 3, 4, 5; i = 1, 2, . . . , K2
1, t = 1, 2, 3, 4, 5; i = K

2 + 1, . . . , 3K4
(3.11)

The difference between Figures 2 and 3 is that in Figure 2 the maximum
number of individuals that can be infected nt, t = 1, 2, . . . , 5 is time depen-
dent whereas in Figure 3, nt = 1, for all t = 1, 2, 3, 4, 5.

4 Extended model

4.1. Dynamic mixed model. In this section, we account for the fact that
aside from the community related covariate xit, the number of infections
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generated by the model (2.1) may be influenced by some unobservable com-

munity effects. Suppose that for the ith community, γi
iid∼ N(0, σ2

γ) is this
latent community effect. Then, conditional on the ith community effect γi,
a dynamic mixed model for the number of infections at time t, t = 2, . . . , T ,
as a generalization of (2.1) can be written as

yit |γi =

yi,t−1∑
j=1

Bj(nt, ρ) |γi + dit |γi , (4.1)

where,

Assumption 1. yi1 |γi ∼ Poi(μ∗
i1).

Assumption 2. dit |γi ∼ Poi(μ∗
it − ρntμ

∗
i,t−1), for t = 2, . . . , T , where

μ∗
it = exp(x′

itβ + γi), for all t = 1, . . . , T .

Assumption 3. dit |γi and yi,t−1 |γi are independent for t = 2, . . . , T .

4.1.1. Basic properties of the dynamic mixed model. We note that in
the present dynamic mixed model, the conditional means are denoted by μ∗

it

whereas in the fixed model (2.1) the means were denoted by μit, free from
γi. Because of the similarities between the fixed model (2.1) and the mixed
model (4.1), following (2.2) and (2.3) or (2.4), the mean and variance of yit
conditional on γi can be written as

μ∗
it = E[Yit |γi ] = exp(x′

itβ + γi),
σ∗
i,11 = var[Yi1 |γi ] = μ∗

i1,
(4.2)

and

σ∗
i,tt= var[Yit |γi ]= ntρ(1− ρ)μ∗

i,t−1 + (μ∗
it − ρntμ

∗
i,t−1) + n2

tρ
2var[Yi,t−1 |γi ],

for t = 2, . . . , T . Thus,

σ∗
i,tt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ∗
i1, t = 1

μ∗
i2 + ρ2n2(n2 − 1)μ∗

i1 t = 2

μ∗
it + ρ2nt(nt − 1)μ∗

i,t−1 +
∑t−2

l=1 t = 3, . . . , T.

×
[
ρ2(l+1)nt−l(nt−l − 1)

(∏l−1
j=0 n

2
t−j

)
μ∗
i,t−(l+1)

]
,

(4.3)

To understand the important properties of the data from the mixed model
(4.1) it is now necessary to find the unconditional mean and variance of
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yit. They can be found by averaging (4.2) over the distribution of γi. More
specifically, from (4.2) we obtain

μit = E(Yit) =E
γi

{E[Yit |γi ]} = exp(x′
itβ + σ2

γ/2), (4.4)

and using (4.2) and (4.3) we find that

σi,tt = var(Yit)

= E[var(Yit |γi )] + var[E(Yit |γi )]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi1 + μ2
i1[exp(σ

2
γ)− 1], t = 1

μi2 + ρ2n2(n2 − 1)μi1 + μ2
i2[exp(σ

2
γ)− 1] t = 2

μit + ρ2nt(nt − 1)μi,t−1+∑t−2
l=1

[
ρ2(l+1)nt−l(nt−l − 1)

×
(∏l−1

j=0 n
2
t−j

)
μi,t−(l+1)

]
t = 3, . . . , T.

+μ2
it[exp(σ

2
γ)− 1],

(4.5)

Regarding the covariance between yit and yi,t+k we once again use the sim-
ilarities between the fixed model (2.1) and the mixed model (4.1) to first
write the conditional covariance of yit and yi,t+k given γi in a form similar
to (2.5) as

Cov(Yit, Yi,t+k |γi )

=

(
k∏

l=1

nt+l

)
ρkσ∗

i,tt, t = 1, 2, . . . , T − 1, k = 1, 2, . . . , T − t, (4.6)

where σ∗
i,tt is given by (4.3). We then average (4.6) over the distribution of

γi and use (4.2) to obtain the expression for the covariance between yit and
yi,t+k as

Cov(Yit, Yi,t+k) = E[Cov(Yit, Yi,t+k |γi )] + Cov[E(Yit |γi ), E(Yi,t+k |γi )],

=

(
k∏

l=1

nt+l

)
ρkhit + μitμi,t+k[exp(σ

2
γ)− 1],

= σi,t,t+k, say,

where μit and σi,tt are given by (4.4) and (4.5) respectively, and hit = σi,tt−
μ2
it[exp(σ

2
γ)− 1].
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We note that when nt = 1, for all t = 1, . . . , T , the variance of yit in (4.5)
reduces to

σi,tt = μit + μ2
it[exp(σ

2
γ)− 1],

which is the variance of a negative binomial random variable. In this case, hit
in (4.7) simplifies to hit = μit yielding a simplified version of the covariance
between yit and yi,t+k in (4.7) as

σi,t,t+k = ρkμit + μitμi,t+k[exp(σ
2
γ)− 1].

4.2. Estimation of parameters. The dynamic mixed model (4.1) con-
tains three unknown parameters, namely, β, ρ, and σ2

γ . Note that the mean
μit (4.4) and the variance (4.5) are functions of both β and σ2

γ , whereas the
covariances σi,t,t+k (4.7) are functions of all three parameters β, σ2

γ , and ρ.
It is then appropriate to jointly estimate β and σ2

γ by exploiting the first and
the squared second order responses. Next, for known β and σ2

γ , we use the
method of moments to estimate ρ, where the unbiased moment functions are
constructed from the cross products of the responses.

Alternatively, for known σ2
γ , we may first exploit the first order responses

to estimate β. Secondly, for known β, we exploit all second order responses
to estimate σ2

γ . Finally, for known β and σ2
γ , only pairwise product responses

are utilized to estimate ρ. In this section, we follow this alternative approach
and solve a GQL estimating equation for the estimation of β for known σ2

γ .
The GQL approach is also used for the estimation of σ2

γ , whereas the moment
approach is used for the estimation of ρ.

4.2.1. Estimation of β. Recall that μ′
i = (μi1, μi2, . . . , μiT ) is the mean

of the response vector y′
i = (yi1, yi2, . . . , yiT ). Because Σi(β, ρ, σγ) is the

covariance matrix of yi, it then follows from (3.1) that the GQL estimating
equation for β has the form

K∑
i=1

∂μ′
i

∂β
Σ−1
i (β, ρ, σγ)(yi − μi) = 0.

Next, because

∂μ′
i

∂β
= X ′

iUi, i = 1, 2, . . . ,K,

where X ′
i = (xi1,xi2, . . . ,xiT ) and Ui = diag(μi1, μi2, . . . , μiT ), the GQL

estimating equation can be written in the form

K∑
i=1

X ′
iUiΣ

−1
i (β, ρ, σγ)(yi − μi) = 0,



336 A.J. Oyet and B.C. Sutradhar

where the diagonal elements and off-diagonal elements of Σi(β, ρ, σγ) =
cov(Yi) are given by (4.5) and (4.7) respectively. The GQL estimating
equation can now be solved iteratively using the Newton–Raphson iterative
procedure, which in this case, is defined by

β̂(r + 1) = β̂(r) +

⎧⎨
⎩
[

K∑
i=1

X ′
iUiΣ

−1
i (β, ρ, σγ)U

′
iXi

]−1

×
K∑
i=1

X ′
iUiΣ

−1
i (β, ρ, σγ)(yi − μi)

}

β=β̂(r)

, (4.7)

where β̂(r) is the value of β at the rth iteration.
4.2.2. Estimation of correlation parameter ρ. Similar to the approach

in Section 3.2 we define the standardized variance and covariance as

Sitt =
K∑
i=1

T∑
t=1

(
yit − μit

σit

)2
/

KT

Sit,t+1 =
K∑
i=1

T−1∑
t=1

(
yit − μit

σit

)(
yi,t+1 − μi,t+1

σi,t+1

)/
K(T − 1).

For the dynamic mixed model (4.1) we can show that whereas E(Sitt) = 1,
the expectation of the standardized covariance is given by

E(Sit,t+1) =
1

K(T − 1)

K∑
i=1

T−1∑
t=1

1

σitσi,t+1

{
nt+1ρhit + μitμi,t+1

[
exp(σ2

γ)− 1
]}

.

For known β and σ2
γ , using the method of moments, we now solve for ρ in

the expression Sit,t+1/Sitt = E(Sit,t+1) to obtain the estimator

ρ̂ =

{
Sit,t+1

Sitt
− 1

K(T−1)

K∑
i=1

T−1∑
t=1

μitμi,t+1[exp(σ
2
γ)− 1]

σitσi,t+1

}

1
K(T−1)

K∑
i=1

T−1∑
t=1

nt+1hit
σitσi,t+1

, (4.8)

where hit = σi,tt − μ2
it[exp(σ

2
γ)− 1].
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4.2.3. Estimation of the variance of the latent community effect σ2
γ. We

note that the scale parameter σ2
γ is involved in the mean, variance and the

covariances between yit and yi,t+k, for t = 1, 2, . . . , T , k = 1, 2, . . . , T − t.
However, as first order responses were used for β estimation, we will be
constructing an unbiased estimating function based on second order re-
sponses, where the expectation of these second order responses involve σ2

γ .
Let z′i = (y2i1, y

2
i2, . . . , y

2
iT , yi1yi2, . . . , yi1yiT , . . . , yi,T−1yiT ) and λi = E(zi),

i = 1, . . . ,K with elements

λitt = E(y2it) = σi,tt + μ2
it, t = 1, 2, . . . , T,

λit,t+k = E(yityi,t+k) = σit,t+k + μitμi,t+k,

k = 1, 2, . . . , T − 1; t = 1, 2, . . . , T − k,

leading to an unbiased estimating function λi− zi, where μit, σi,tt, and σi,ut
are given by (4.4), (4.5), and (4.7) respectively. One can then solve the GQL
estimating equation

K∑
i=1

∂λ′
i

∂σ2
γ

Ω−1
i (β, ρ, σγ)(zi − λi) = 0, (4.9)

for σ̂2
γ , where Ωi = Cov(zi) and the elements of the vector

∂λ′
i

∂σ2
γ
are given by

∂λitt

∂σ2
γ

=
1

2
hit + 2μ2

itexp(σ
2
γ),

∂λit,t+k

∂σ2
γ

=
1

2

(
k∏

l=1

)
hitρ

k + 2μitμi,t+kexp(σ
2
γ),

k = 1, 2, . . . , T − 1; t = 1, 2, . . . , T − k.

Clearly, computing the matrix Ωi will require exact second order, third or-
der, and fourth order joint moments of yit. However, unlike the computation
for second order moments, computing third order and fourth order joint mo-
ments will require further distributional assumptions, which may not be
practical. As a remedy, since the consistency of the estimator is not affected
by the weight matrix Ωi, one can use certain suitable approximations to
compute the required third and fourth order joint moments. Two possible
approximations that can be used in the computation of the joint higher order
moments are: (i) to pretend that the counts yit are normally distributed with
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the correct mean (4.4) and variance (4.5), (ii) to pretend that yit’s are con-
ditionally independent even if they are correlated. We remark here that the
unbiased estimating function λi−zi is not affected by these approximations.
In what follows, we have used the assumption of conditional independence
to compute the components of Ωi.

Now, to begin the computation of the components of Ωi, we first use the
assumption that γi ∼ N(0, σ2

γ) to obtain

E[exp(2γi)] = exp(2σ2
γ),

E[exp(3γi)] = exp(9σ2
γ/2), and

E[exp(4γi)] = exp(8σ2
γ). (4.10)

Then, by taking expectation over γi and using (4.10) it can be shown that

E
γi

(μ∗2
it ) = μ2

itexp(σ
2
γ), E

γi
(μ∗3

it ) = μ3
itexp(3σ

2
γ) and E

γi
(μ∗4

it ) = μ4
itexp(6σ

2
γ).

Under the assumption of conditional independence we can now use the ex-
pectation of powers of μ∗

it in (4.11) to derive second and higher order joint
moments of yit. Specifically, after some algebra, we found that the condi-
tional second and higher order joint moments are given by

E(Y 2
it |ρ = 0) = μit + μ2

itexp(σ
2
γ)

E(YiuYit|ρ = 0) = μiuμitexp(σ
2
γ)

E(Y 4
it |ρ = 0) = μit + 7μ2

itexp(σ
2
γ) + 6μ3

itexp(3σ
2
γ) + μ4

itexp(6σ
2
γ),

E(Y 2
iuY

2
it |ρ = 0) = [1 + {μiu + μit}exp(2σ2

γ) + μiuμitexp(5σ
2
γ)]μiuμitexp(σ

2
γ)

E(Y 3
iuYit|ρ = 0) = [1 + 3μiuexp(2σ

2
γ) + μ2

iuexp(5σ
2
γ)]μiuμitexp(σ

2
γ)

E(Y 2
iuYivYit|ρ = 0) = [1 + μiuexp(3σ

2
γ)]μiuμivμitexp(3σ

2
γ)

E(YiuYivYisYit|ρ = 0) = μiuμivμisμitexp(6σ
2
γ).

(4.11)

These conditional moments in (4.11) have been used in the computation of
the elements of Ωi needed for estimating the variance of the latent community
effect σ2

γ . For instance,

Cov(Y 2
iu, YivYit|ρ = 0)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(Y 2
iuYivYit|ρ = 0) u �= v and u �= t,

−E(Y 2
iu|ρ = 0)E(YivYit|ρ = 0),

E(Y 3
iuYit|ρ = 0) u = v and u �= t,

−E(Y 2
iu|ρ = 0)E(YiuYit|ρ = 0),

E(Y 3
iuYiv|ρ = 0) u = t and u �= v.

−E(Y 2
iu|ρ = 0)E(YiuYiv|ρ = 0),
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The GQL estimating equation (4.9) can now be solved iteratively for σ2
γ using

the Newton–Raphson iterative procedure, which in this case, is defined by

σ̂2
γ(r + 1) = σ̂2

γ(r) +

⎧⎨
⎩
[

K∑
i=1

∂λ′
i

∂σ2
γ

Ω−1
i (β, ρ, σγ)

∂λi

∂σ2
γ

]−1

×
K∑
i=1

∂λ′
i

∂σ2
γ

Ω−1
i (β, ρ, σγ)(zi − λi)

}

σ2
γ=σ̂2

γ(r)

.

(4.12)

4.3. A simulation study.
4.3.1. Estimation performance of β, σ2

γ, and ρ. We observe that the
dynamic mixed model has an additional parameter σ2

γ as compared to that
of the dynamic fixed model discussed in Section 3. The simulation study
conducted in Section 3.4.1 showed that the GQL estimation approach per-
forms well in estimating the fixed model parameters β and ρ for various
selected combinations of n′ = (n1, n2, n3, n4). In this section, we examine
the performance of the GQL approach for estimating the parameters of the
extended mixed model including σ2

γ , the variance component of the latent
community effect γi. To be specific, the GQL estimates are obtained by
solving the GQL estimating equation (4.7) iteratively for β, and (4.12) for
σ2
γ and the moment estimating equation (4.8) for ρ.
The data for our study was generated from model (4.1) with covariates

previously defined in (3.8) and (3.9) for T = 4, K = 100 and various com-
binations of the parameter values σ2

γ ≡ 0.25, 0.5, 0.75 β′ ≡ (0.5, 1), (1, 1),
and n′ = (n1, n2, n3, n4) ≡ (1, 2, 2, 2), (1, 2, 2, 3, ), (1, 2, 3, 4, ). It is clear,
from (4.1) that in order to generate the observed longitudinal data yit,
(i = 1, 2, . . . ,K; t = 1, 2, . . . , T ), we first had to generate values of the
community effect γi ∼ N(0, σ2

γ) which are then used in the computation of
the conditional mean μ∗

it = exp(x′
itβ + γi) for fixed values of σ2

γ and the
regression parameter vector β. We then choose the correlation parameter

ρ satisfying the condition ρ < min
{

μ∗
it

ntμ∗
i,t−1

, 1
}
, and generate dit condi-

tional on γi following Assumption 2 under model (4.1). Using the generated
values of dit and the conditional mean μ∗

i1, the generation of yi1 and yit,
t = 2, . . . , T , and i = 1, . . . ,K followed directly from Assumption 1 and
model (4.1) respectively.

Now, by using yit and associated xit, (t = 1, . . . , T ; i = 1, 2, . . . ,K),
the method of moments estimate of ρ and the GQL estimates of β and σ2

γ

were computed iteratively from (4.8), (4.7), and (4.12), respectively. The
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process of data generation and estimation was repeated 1,000 times. The
average of the estimated parameters and their standard errors are reported
in Table 3. From Table 3, we see that the method of moments and the
GQL method perform well in estimating the true values of the parameters.
For example, when n′ = (1, 2, 2, 3), the parameter values, namely, ρ = .307,

β′ = (.5, 1) and σ2
γ = 0.75 were estimated as ρ̂ = .310, β̂

′
= (.510, .989), and

σ̂2
γ = 0.755, respectively, showing that the estimates are very close to their

corresponding true values. In a separate example, we took n′ = (1, 2, 3, 4)
and estimated ρ = .205, β′ = (1, 1) and σ2

γ = 0.25. The estimates were

found to be ρ̂ = .224, β̂
′
= (.991, 1.035), and σ̂2

γ = 0.229 which are close to
the respective parameter values.

5 Concluding remarks

In this paper, we have taken the first step in using branching processes
with immigration to model the spread of an infectious disease in communities
for the purpose of forecasting future spread and control. Because the model
was developed mainly to deal with infectious disease data obtained over a
short period of time, we have considered only a small number of time points,
such as T = 5, in our simulation studies. This, however does not imply that
the proposed methods are applicable only for small T. We have demonstrated
that the GQL method performs well in estimating the parameters of the
infectious disease model. The results also show that the estimated model can
be used to obtain reasonable forecasts of future spread of the disease using
the proposed forecasting function. We remark that the lag 1 dynamic models
(2.1) and (4.1) show how individuals within communities with infections at
time point t − 1 determine the number of new infections at time point t.
However, there may be situations, in practice, where an individual who was
infected at time point t− k, for k = 1, . . . , t− 1, continue to infect others at
future time points until he/she is discovered and treated. This higher order
lag situation is a subject for future consideration.
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