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Abstract
Metals are indispensable raw materials for industry and have strategic importance in economic development. The price 
forecasting of metals is crucial for the production sector and production policies of countries. The paper presents the appli-
cation of various exponential smoothing methods to metal spot price forecasting. Aluminum, copper, lead, iron, nickel, tin, 
and zinc prices were analyzed by using yearly data from 1990 to 2021. The root mean square error (RMSE), mean absolute 
percentage error (MAPE), and mean absolute error (MAE) values of the models were obtained and their performances were 
compared to determine the appropriate model for each metal price. These metal prices were forecasted up to 2030 by using 
the best-fitted models.
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Introduction

Metals such as zinc, copper, nickel, lead, and aluminum 
are the main raw materials for national and international 
economic development and are the basis of most industries 
such as construction, electric, electronic, and mechanical 
(Zhong et al. 2019; Wang et al. 2018). In addition, with the 
development of technology, metals play an important role in 
social development (Watkins and McAleer 2004; Gargano 
and Timmermann 2014; Alameer et al. 2019).

The price fluctuations in supply chains that started with 
COVID-19 affected the metal sector as well as all other sec-
tors. The effects of this fluctuation continue in a dramatic 
way. With the increase in fuel and energy prices, produc-
tion costs in the mining sector have also increased. This 
has also triggered increases in metal prices. Metal prices 
are a major factor for investment decisions for such as min-
ing, refining, and fabrication (Watkins and McAleer 2004) 

because metal price forecasts play a role in planning min-
ing operations primarily and the cost–benefit balance of 
the manufacturing sector. Furthermore, metal prices cause 
variability in revenues from mining operations (Dooley and 
Lenihan 2005). Accurate price forecasts are necessary to 
determine the economic feasibility of metal exploration and 
mining activities (Kriechbaumer et al. 2014). As a result, 
there is rising demand for modeling and forecasting of 
metal prices, forecasting of metal prices has attracted many 
researchers, and these researchers have improved various 
approaches to forecasting. Labys (2006) used a structural 
time-series model to forecast monthly prices of main met-
als. He indicated the importance of correctly accounting for 
cyclicality in modeling and forecasting primary commodity 
prices. Kriechbaumer et al. (2014) predicted aluminum, cop-
per, lead, and zinc prices using the mixed wavelet approach 
with the ARIMA method. Their study confirmed the impor-
tance of cyclicality for forecasting metal prices. Sanchez 
Lasheras et al. (2015) predicted copper prices by comparing 
the ARIMA model with the neural network approach. Their 
study indicated that the multilayer perceptron or Elman 
network produced more accurate forecasts. Drachal (2019) 
predicted lead, nickel, and zinc prices using Bayesian model 
combination schemes. He showed that model selection was 
more beneficial for accuracy of the forecast. Shafiee and 
Topal (2010) investigated the future gold price using differ-
ent models. They proposed a dip diffusion model and found 
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improved forecasting performance than the ARIMA model. 
He et al. (2015) studied forecasting of lead and zinc prices 
and they showed that the wavelet-based method delivered 
better forecasts than RW and ARMA. Rubaszek et al. (2020) 
investigated the dynamics of real prices for main non-ferrous 
industrial metals using four types of autoregressive model. 
Sohbari et al. (2021) estimated the coal prices using two-
time-series combined radial basis function (RBF) neural 
network methods. Their suggested model has eventually 
approximated the coal price with acceptable precision con-
cerning the time-series method.

In this study, aluminum, copper, lead, iron, nickel, tin, 
and zinc prices were analyzed by using data from 1990:1 
to 2021:11. The root mean square error (RMSE), mean 
absolute percentage error (MAPE), and mean absolute 
error (MAE) values of the models were obtained and their 
performances were compared to determine the appropri-
ate model for each metal price. The main contributions of 
this paper are summarized as follows: a global metal price 
forecasting framework is proposed by using Holt, Brown, 
and damped exponential smoothing methods. Exponential 
smoothing assigns weights that decrease exponentially as the 
observation ages, and the prediction is very effective. Thus, 
the study will shed light on mining, metal sales, and other 
related industrial policies.

The rest of the paper is organized as follows. In the 
“Methodology” section, we describe the methodology. The 
“Data and results” section discusses the data and results. The 
conclusion is given in the “Conclusions” section.

Methodology

Exponential smoothing methods

A time series is statistical data about various quantitative 
indices of economic and social phenomena in the order of 
time. Time-series analysis is the analysis of dynamic series. 
The aim is to master the law of statistical data, based on 
time changes to control and predict outcomes. An impor-
tant part of the forecasting method system is the time-series 
forecasting method. Time-series estimation methods include 
various estimation techniques and the most important of 
these techniques is the exponential smoothing estimation 
method. Exponential smoothing approaches are relatively 
simple but robust techniques that are widely used in various 
business applications, such as inventory control (Gardner 
1985; Abderrezak et al. 2014). The accuracy and robustness 
of exponential smoothing estimations led to its common use 
in applications where multiple series are present because it 
requires an automated procedure (Christodoulos et al. 2011).

The formulation of exponential smoothing estimation meth-
ods emerged in the 1950s from the original work by Brown 

(1959, 1962) and Holt (1960) who attempted to create forecast-
ing models for inventory control systems (Fomby 2008). The 
principle is to find the main improvement trend by smoothing 
time series to eliminate random fluctuations in historical statis-
tical series by calculating exponential smoothing averages (Li 
2013). One of the key ideas in smoothing models is to construct 
estimates of future values as weighted averages with more recent 
observations carrying more weight than observations from the 
more distant past in determining the predictions (Fomby 2008).

Exponential smoothing assigns weights that decrease expo-
nentially as the observation ages. That is, recent observations 
are given relatively more weight in the estimation than pre-
vious observations (Christodoulos et al. 2011). Exponential 
smoothing models do not explicitly include model identifica-
tion and parameter estimation processes, attempting to sepa-
rate trends or seasonality from uneven variation (Yaffe and 
McGee 2000; Oni, and Akanle 2018). These methods are com-
bination methods which assign different weights to the time 
series of the previous period (Sharpe et al. 2010).

In this study, Holt, Brown, and damped exponential 
smoothing methods are discussed.

Holt exponential smoothing

Holt exponential smoothing is a kind of linear exponential 
smoothing method (Li 2013). The simple exponential smooth-
ing proposed by Holt allows for the forecasting of data with a 
trend (Oni and Akanle 2018). The most prominent advantage of 
this method is the varied trend of time series; it directly smooths 
the trend data and predicts the original time series without using 
secondary exponential smoothing. It is widely used because of 
a great deal of flexibility (Li 2013). Holt’s method is the most 
popular approach for trending series, though its linear forecast 
function was criticized for tending to overshoot the data beyond 
the short term (Christodoulos et al. 2011). It should be noted that 
Holt’s method performs well where only trends but no seasonal-
ity exist (Hasan and Dhali 2017). Holt is a double exponential 
smoothing method that has two parameters (level and trend), and, 
in this model, they are not constrained by each other’s values. In 
the weighting parameters, the new value is greater than previ-
ous observations. In addition, there is a weighted estimate of 
the trend of data. Generally, Holt has two smoothing constants 
(values between 0 and 1) (Supriatna et al. 2017). The following 
two coefficients (α and β) are smoothing coefficients for estimat-
ing the trend in the Holt model (Melekşen and Eyduran, 2017). 
The equations for Holt’s exponential smoothing are given below:

(1)P
t
= αX

t
+ (1 − α)(P

t−1 + Z
t−1)

(2)Z
t
= β

(
P
t
− P

t−1

)
+ (1 − β)Z

t−1

(3)F
t+r = P

t
+ rZ

t
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where X
t
 is the actual observed value, P

t
 is an estimate of the 

level of the series at the time t, Z
t
 is an estimate of the trend 

(slope) of the series at time t, � is also a smoothing constant 
between 0 and 1 and plays a role similar to that of � , and 
F
t+r is the r step-ahead forecast made from forecast origin t.

Brown’s linear exponential smoothing

Another exponential smoothing method is Brown’s linear exponential 
smoothing method with one parameter. This method was proposed 
by Brown to overcome the forecasting process with data in the form 
of trends on a plot where the rationale of this method is similar to 
forecasting a linear moving average (LMA) (Muchayan 2019). The 
basic theory of Brown exponential smoothing is similar to the linear-
quadratic mobile average method, when the trend single and double 
smoothing both lag behind the actual values. The difference between 
the values of the single and double smoothing is added to the single 
smoothing value, which can correct the trend (Li 2013). Estimates for 
this model are made using the following equations (Eqs. (4) and (5)):

(4)P
�

t
= αX

t
+ (1 − α)P

�

t−1

(5)P
��

t
= αP

�

t
+ (1 − α)P

��

t−1

Table 1  Descriptive statistics of metal prices

Variable Mean
US dollars

Standard devia-
tion

Minimum
US dollars

Maximum
US dollars

Aluminum 1778.47 411.35 1139.93 2639.86
Copper 4517.85 2518.27 1560.29 9296.16
Lead 1325.78 771.57 407.34 2579.12
Iron 54.22 50.62 11.45 167.79
Nickel 12,838.74 7073.47 4623.59 37,135.84
Tin 12,526.41 7809.72 4061.00 31,747.72
Zinc 1731.85 762.77 778.90 3266.18

Fig. 1  Fit of the models and 
forecast graphs for metal prices
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Brown’s double exponential smoothing requires the pre-
vious observations in any time period t as well as single 
exponential smoothing. However, Brown’s double expo-
nential smoothing had P′

t
 and P′′

t
 where P′

t
 is the first expo-

nential smoothing in the period t, and P′′

t
 is the second 

exponential smoothing in the period t based on P′

t
 . P�

t−1
 and 

P
��

t−1
 must be known to use Eqs. (4) and (5). Yet, since these 

values must be determined at the beginning of the period, 
they are not known when t = 1. To overcome this problem, 
it can be determined that P�

t−1
 and P��

t−1
 are equal to X1.

Table 2  Exponential smoothing 
model parameters

*p < 0.05 model parameter coefficient was significant

Metal Model Parameters Coefficient Standard error T P-value

Aluminum Holt Alpha (level) 0.700 0.188 3.729 0.001*
Gamma (trend) 0.000 0.165 0.000 1.000

Brown Alpha (level and trend) 0.299 0.066 4.502 0.000*
Damped Alpha (level) 0.715 0.194 3.677 0.001*

Gamma (trend) 0.000 0.171 0.000 1.000
Phi (trend damping factor) 1.000 0.035 28.268 0.000*

Copper Holt Alpha (level) 1.000 0.215 4.652 0.000*
Gamma (trend) 0.000 0.092 0.002 0.999

Brown Alpha (level and trend) 0.550 0.090 6.084 0.000*
Damped Alpha (level) 1.000 0.223 4.493 0.000*

Gamma (trend) 0.000 0.142 0.000 1.000
Phi (trend damping factor) 0.999 0.028 35.658 0.000*

Lead Holt Alpha (level) 0.804 0.179 4.491 0.000*
Gamma (trend) 0.000 0.038 0.000 1.000

Brown Alpha (level and trend) 0.394 0.071 5.527 0.000*
Damped Alpha (level) 0.814 0.186 4.386 0.000*

Gamma (trend) 0.001 0.106 0.005 0.996
Phi (trend damping factor) 0.993 0.033 30.194 0.000*

Iron Holt Alpha (level) 1.000 0.211 4.748 0.000*
Gamma (trend) 0.000 0.122 0.004 0.997

Brown Alpha (level and trend) 0.770 0.093 8.297 0.000*
Damped Alpha (level) 0.900 0.838 1.073 0.292

Gamma (trend) 0.999 4.221 0.237 0.815
Phi (trend damping factor) 0.500 0.803 0.623 0.538

Nickel Holt Alpha (level) 0.999 0.198 5.050 0000*
Gamma (trend) 0.000 0.131 0.000 1.000

Brown Alpha (level and trend) 0.392 0.074 5.318 0.000*
Damped Alpha (level) 1.000 0.205 4.880 0.000*

Gamma (trend) 0.001 0.161 0.006 0.995
Phi (trend damping factor) 0.999 0.062 16.173 0.000*

Tin Holt Alpha (level) 0.600 0.199 3.023 0.005*
Gamma (trend) 0.000 0.134 0.000 1.000

Brown Alpha (level and trend) 0.650 0.219 2.963 0.006*
Damped Alpha (level) 0.650 0.219 2.963 0.006*

Gamma (trend) 0.001 0.144 0.007 0.994
Phi (trend damping factor) 1.000 0.013 74.277 0.000*

Zinc Holt Alpha (level) 1.000 0.190 5.252 0.000*
Gamma (trend) 0.000 0.073 0.002 0.998

Brown Alpha (level and trend) 0.188 0.048 3.888 0.000*
Damped Alpha (level) 1.000 21.340 0.047 0.963

Gamma (trend) 1.000 446.623 0.002 0.998
Phi (trend damping factor) 0.100 21.237 0.005 0.996
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After P�

t−1
 and P��

t−1
 are calculated, the process continues 

with Eqs. (6) and (7). b
t
 is an adjustment factor to compute 

the slope of trend value, whereas a
t
 is used to compute the 

difference between the first exponential smoothing 2P′

t
 and 

the second exponential smoothing P′′

t
.

By following Eq. (8), the forecast for the next period t 
is made. Here in F

t+m , m is the period number of the step 
ahead. The next forecast is the exponentially smoothed dif-
ference in the period t; a

t
 is added to the product of the 

slope value b
t
 and the period number of a step ahead m 

(Narotama 2022).

Holt linear exponential smoothing

Despite its popularity, empirical evidence showed that the 
Holt linear forecast function tends to overestimate (Gardner 
and McKenzie, 1985). Given this, Gardner and McKenzie 
(1985) described how a dampening parameter, φ, can be 
used within Holt’s method to provide more control over 
trend extrapolation (Taylor 2003). The forecasting system 
is based on the class of autoregressive-damping systems, 
also known as damped trend systems, developed by Gardner 
and McKenzie (1985) (Gardner 1999). In forecasting with 
exponential smoothing, although many attempts were made 
to improve this practice by selecting individual methods for 
each series, it is common to apply the damped trend method 
to every time series. They have yet to produce better fore-
cast accuracy though method selection procedures result-
ing in simpler methods than the damped trend (Gardner 
and McKenzie 2011). In error-correction form, the damped 
trend is written as follows (Gardner 1999):

(6)a
t
= 2P

�

t
− P

��

t

(7)b
t
=

α

1 − α
(P

�

t
− P

��

t
)

(8)F
t+m= a

t
+ mb

t

where a
t
 is the current estimate of the level, exponentially 

smoothed by the constant α; φ is the damping parameter 
that can be interpreted as a measure of the persistence of 
the trend; d

t
 is the time series being forecasted; b

t
 is the cur-

rent estimate of the trend, exponentially smoothed by the 
constant β; b0 is the initial value of the trend, assumed to be 
zero, b0 = 0 ; k is the number of periods ahead that the fore-
cast is required to predict; and d̂

t,t+k is the forecast, made at 
time t in the period t + k. The damped trend itself is defined 
by optimal parameters in the ranges 0 ≤ α ≤ 1, 0 < β ≤ 1, and 
0 < φ < 1. When all parameters are selected from the [0, 1] 
interval, at least 11 different methods can be defined (Bauer 
2022).

Because of the principal importance of time forecast-
ing in many practical situations, proper care should be 
taken while selecting a particular model, comparing 
different models, and estimating forecast accuracy (Oni 
and Akanle 2018). In many forecasting situations, accu-
racy is the criterion for refusing to choose a forecasting 
method. In many cases, the word precision refers to the 
virtue of ultimately indicating how far the forecasting 
model can reproduce the known data (Dharmawan and 
Indradewi 2021).

In this study, RMSE, MAPE, and MAE criteria were used 
to evaluate the performance of the models.

The standard error can well reflect the precision of the 
measurement since the standard error is very sensitive 
to large or special small errors in a set of measurement 
data. RMSE is a measure of the deviation between the 
true values and the observed values. It is calculated by 
the following equation:

(9)â
t
= (1 − �)

(
â
t−1 + �b̂

t−1

)
+ �d

t

(10)b̂
t
= (1 − �)�b̂t−1 + �(â

t
− a

t−1)

(11)d̂
t,t+k = â

t
+ b̂

t

∑k

i=1
�i

Table 3  Model accuracy 
statistic results for the 
exponential smoothing methods

The significance of the “bold” is indicated as the smallest value in the text

Aluminum Copper Lead Iron Nickel Tin Zinc

Holt’s model RMSE 328.619 1120.858 330.834 21.587 5035.768 3688.866 512.261
MAE 251.683 780.696 228.594 12.769 3235.982 2477.906 304.111
MAPE 14.117 17.833 19.785 25.301 23.787 20.896 16.862

Brown’s model RMSE 352.442 1232.884 349.641 21.859 5460.880 3854.318 559.443
MAE 264.000 884.242 238.780 12.385 3594.080 2385.927 346.252
MAPE 14.649 18.476 18.962 16.794 26.006 15.902 18.366

Damped trend model RMSE 334.208 1140.284 335.379 21.072 5124.104 3753.167 520.936
MAE 251.547 779.263 221.755 11.702 3240.150 2450.981 306.875
MAPE 14.106 17.759 18.674 15.686 23.795 20.296 16.746
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Since MAPE is widely used in cases of combining and 
selecting forecasts, it was selected to be the main measure 
in the present evaluation. Its equation is depicted below:

where X
t
 is the actual value at time t, T is the number of 

predictions, and F
t
 is the predicted value at time t. The dif-

ference between X
t
 and F

t
 is divided by the actual value X

t
 

again. The absolute value of this calculation is summed for 
every fitted or forecast point in time and divided again by 
the number of fitted points.

Another popular error measure used to ensure the accu-
racy of results is MAE. It is calculated using the following 
equation (Li 2013):

Data and results

This study aimed to forecast the prices of aluminum, cop-
per, lead, iron, nickel, tin, and zinc metals with time-series 
analysis. The data used in the study were obtained monthly 
from the Federal Reserve Economic Data for the period 
1990:1–2021:11 and analyses were made by taking the 
average price for each year (FRED 2022). Holt, Brown, and 
damped models, which are exponential smoothing methods 
within the scope of prediction methods, were applied to the 
data discussed in the study using the SPPS 25 program. To 
determine the appropriate model, the RMSE, MAE, and 
MAPE values of the models were obtained and their per-
formances were compared. In total, there were 32 data for 
each product and the descriptive statistics of metal prices per 
metric ton are given in Table 1.

The time-series graph for each metal price used in the 
study was obtained and is given in Fig. 1. Moreover, the 
fitted values according to the methods used for each metal 
price and the forecast values for the period 2022–2030 are 
also given in Fig. 1. Figure 1 shows the time-series graph 
of metal prices, which is non-seasonal with observable 
trends. For this reason, exponential smoothing methods were 
applied to metal prices. To determine the appropriate expo-
nential smoothing method, model predictions were made 
for each metal with Holt, Brown, and damped methods. The 
appropriate exponential smoothing model was determined 
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by using the data set of each metal price and the parameters 
contributing to the model were selected. The exponential 
smoothing model parameters obtained according to the 
analysis results are given in Table 2.

The accuracy of the models of Holt, Brown, and damped 
using RMSE, MAE, and MAPE refers to the magnitude of 
the error rate (errors) of an estimate. The smaller the value 
of these test statistics, the better the forecasts. The model 
accuracy values for the exponential smoothing methods were 
obtained and compared to determine the appropriate model 
for each metal price. The results of the evaluation of the 
forecasting models are shown in Table 3.

When Table 3 is examined, the smallest RMSE (328.619, 
1120.858, 330.834) values for aluminum, copper, and lead 
metal prices, respectively, were obtained with the Holt 
model, while the smallest MAE (251.547, 779.263, 221.755) 
and MAPE (14.106, 17.759, 18.674) values, respectively, 
were for the damped trend model. The smallest RMSE 
(21.072), MAE (11.702), and MAPE (15.686) values for 
the iron metal price were obtained with the damped trend 
model. For the nickel price, the smallest RMSE (5035.768), 
MAE (3235.982), and MAPE (23.787) values belong to the 
Holt model. For the tin price, the smallest RMSE (3688.866) 
value belongs to the Holt model, while the smallest MAE 
(2385.927) and MAPE (15.902) values were from the Brown 
model. For the zinc price, the smallest RMSE (512.261) and 
MAE (304.111) values belonged to the Holt model, while 
the lowest MAPE (16.746) was obtained with the damped 
trend model. In this case, suitable forecasting model was the 
damped trend model for aluminum, copper, lead, and iron 
metal prices; the Holt model for nickel and zinc metal prices; 
and the Brown model for tin metal prices.

Forecasting of metal prices is the third important aspect 
after modeling and assessment as forecasts are useful to poli-
cymakers for contingency planning in a country. Aluminum, 
copper, lead, iron, nickel, tin, and zinc metal prices were 

forecasted by using the best-fitted models developed for 
this purpose. Forecasting up to 2030 was done in this study, 
and Table 4 and Table 5 show that forecating price for alu-
minum, copper, lead, iron, nickel, zinc, and tin, respectively.

The price of aluminum rose from $1639.50 in 1990 
to $2172.99 in 2010 and fell to $1704.10 in 2020. It is 
expected to reach $2482.02 in 2030. Similarly, the price 
of copper rose from $2661.34 in 1990 to $7538.36 in 2010 
and declined to $6174.56 in 2020. It is expected to increase 
to $11,093.89 by 2030. Lead prices rose from $809.50 in 
1990 to $2148.18 in 2010 and then declined to $1824.93 
in 2020. It is predicted to drop to $808.56 in 2030. The 
price of iron rose from $14.05 in 1990 to $146.72 in 2010 
and then fell to $108.07 in 2020. It is expected to reach 
$808.56 by 2030. Nickel prices rose from $8864.00 in 1990 
to $21,810.0 in 2010 and fell to $13,790.43 in 2020. It is 
expected to reach $21,637.86 in 2030. The price of the 
zinc rose from $1517.92 in 1990 to $2160.35 in 2010 and 
$2266.77 in 2020. It is expected to rise to $3505.83 in 2030. 
The price of tin rose from $6085.38 in 1990 to $20,367.25 
in 2010 and fell to $17,125.46 in 2020. It is projected to rise 
to $39,312.7 in 2030.

Conclusions

This study presents an analysis of the dynamics of real 
prices for main metals (aluminum, copper, lead, iron, 
nickel, tin, and zinc) by using yearly data from the period 
Jan 1990 to Now 2021. Holt, Brown, and damped mod-
els, which are exponential smoothing methods within the 
scope of prediction methods, were applied to the data. The 
model accuracy values (MSE, MAE, and MAPE) of the 
exponential smoothing methods were obtained and com-
pared to determine the appropriate model for each metal 
price. In this study, in addition to exponential smoothing 

Table 5  Metal price forecast results for the 2022–2030 period for nickel, zinc, and tin

Nickel Zinc Tin
Holt Holt Brown

Date Forecast Lower limit 
95% CI

Upper limit 
95% CI

Forecast Lower 
limit 95% 
CI

Upper limit 
95% CI

Forecast Lower limit 
95% CI

Upper limit 95% 
CI

2022 18,690.78 8406.37 28,975.19 3026.69 1980.5 4072.87 27,399.89 19,538.95 35,260.82
2023 19,059.16 4521.39 33,596.93 3086.59 1606.9 4566.22 28,888.99 19,242.87 38,535.11
2024 19,427.55 1625.01 37,230.08 3146.48 1334.1 4958.81 30,378.09 18,698.95 42,057.23
2025 19,795.93  − 759.35 40,351.21 3206.37 1113.4 5299.25 31,867.19 17,944.77 45,789.62
2026 20,164.32  − 2816.4 43,145.07 3266.26 926.15 5606.37 33,356.29 17,006.41 49,706.17
2027 20,532.70  − 4641.0 45,706.42 3326.15 762.47 5889.83 34,845.39 15,902.53 53,788.25
2028 20,901.09  − 6289.4 48,091.58 3386.04 616.72 6155.37 36,334.49 14,646.94 58,022.05
2029 21,269.47  − 7798.3 50,337.25 3445.94 485.15 6406.72 37,823.59 13,250.27 62,396.92
2030 21,637.86  − 9193.2 52,468.92 3505.83 365.17 6646.49 39,312.70 11,720.97 66,904.42
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methods, the performances of benchmarks (Mean, Naive) 
and ARIMA methods were compared in order to determine 
the appropriate method for the data set. Mean, Naive, and 
ARIMA methods did not give good results. Since 7 dif-
ferent metal prices were examined in the study, models 
that did not give good results were not presented. Since 
presenting all applied models in the study would cause con-
fusion, only suitable models were compared. According 
to the results obtained, the suitable forecasting model was 
the damped trend model for aluminum, copper, lead, and 
iron metal prices; the Holt model for nickel and zinc metal 
prices; and the Brown model for tin metal prices. Fore-
casting metal prices is useful for contingency planning by 
policymakers in countries. Therefore, aluminum, copper, 
lead, iron, nickel, tin, and zinc metal prices were forecasted 
up to 2030 by using the best-fitted models developed for 
this purpose. The prices of aluminum, copper, iron, nickel, 
zinc, and tin are expected to reach $2482.02, $11,093.89, 
$808.56, $21,637.86, $3505.83, and $39,312.7 in 2030, 
respectively. However, the lead price is predicted to drop 
to $808.56 in 2030.

Metal price movements are a key source of macroeco-
nomic volatility in Emerging Markets and Developing 
Economies (Jacks et al. 2011). Metals, such as tin and 
copper, are critical inputs for some sectors (e.g., tin, in 
the electronic industry), and are important for the small 
number of countries that produce or export them. In addi-
tion, with the technological progress, metals are indispen-
sable in the production cycle. Therefore, the estimation 
of metal prices is important for both the producing coun-
tries and the world economy. The results of the analysis 
in this paper provide some interesting insights for indus-
trial advancement and will shed light on the preliminary 
cost analyses of some detectors. In addition, this study 
will encourage and stimulate further research on this vital 
issue, which is important for the development of countries.
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