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Abstract
Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present 
in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism 
of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in 
leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the 
driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the 
ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene 
(Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and 
differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had 
shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves 
of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that 
the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation 
has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthe-
sis, specifically the KAT2 gene which is otherwise thought to be involved mainly in β-oxidation. The results of the present 
investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering 
in ginger for large-scale production of gingerols.
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Abbreviations
KAT  3-Ketoacyl-CoA thiolase
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GO  Gene ontology
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CPBMB  Centre for Plant Biotechnology and 

Molecular Biology
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ogy Industry Research Assistance Council
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ACAT   Acetyl-CoA acetyltransferase
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ICAR   Indian Council of Agricultural Research
ACL  ATP-citrate lyase
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Introduction

Ginger is a valuable spice crop used in pharmaceutical 
industries for its aromatic and medicinal properties. Gin-
gerols are the most potent and pharmacologically active 
compounds in ginger. Of the gingerols, [6]-gingerol is the 
most abundant bioactive compound with many medicinal 
properties viz. analgesic (Young et al. 2005), gastropro-
tective, anti-cancer (Zhu et al. 2017), cardiotonic, anti-
inflammatory (Xu et al. 2018), anti-oxidant (Almatroodi 
et al. 2021), anti-pyretic, anti-hepatotoxic, anti-angiogenic 
(Kim et al. 2005), anti-hyperglycemic (Samad et al. 2017) 
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and anti-platelet aggregation activities (Liao et al. 2012). 
Molecular docking studies have revealed the effectiveness of 
[6]-gingerol against cancer (Kumar et al. 2017) and against 
COVID-19 (Rathinavel et al. 2020 and Haridas et al. 2021), 
making [6]-gingerol a future drug of choice. Somaclonal 
variation is utilized to generate genetic variants in ginger 
due to breeding incompatibilities and lack of seed set in the 
crop. High variation in gingerol content was observed in gin-
ger somaclones developed at Kerala Agricultural University 
(KAU) and somaclone B3 with high gingerol content was 
selected from the investigations.

Ginger has a large genome of 3099.75 Mbp (Genbank 
ID: GCA_018446385.1), and the DNA 1C value for gin-
ger is given as 1.61 picograms (Smarda et al. 2014; Leitch 
et al. 2019) which is yet to be exploited fully. In ginger, the 
polyketide synthase (PKS) family of enzymes (e.g. Type III 
PKS) belonging to the phenylpropanoid pathway are respon-
sible for the biosynthesis of a wide array of active secondary 
metabolites and medicinal value (Dibyendu 2015) includ-
ing the gingerol backbone structure (Dennif et al. 1980 and 
Schroder 1997). The chalcone synthase (CHS) is involved in 
the biosynthesis of metabolically active gingerols (Denniff 
et al. 1980; Schroder 1997; Ramirez-Ahumada et al. 2006; 
and Ghosh and Mandi 2015). The present investigation uti-
lizes Suppression Subtractive Hybridization to identify the 
genes involved in high gingerol production as SSH offers 
the advantage of comparing mRNA populations to isolate 
the differential cDNA. Suppression Subtractive Hybridiza-
tion (SSH) has been successfully used for identifying high-
quality differential ESTs responsible for the production of 
secondary metabolites/flavonoids (Park et al. 2004), flavor-
enhancing genes encoding secondary metabolites induced 
by biotic stress (Gohain et al. 2012), and flavonoid genes 
acting as antimicrobial/antifungal agents (Nisha et al. 2018), 
in tea. Also, SSH-derived ESTs were utilized for studying 
gene up-regulation and flavonoid accumulation in lettuce 
(Park et al. 2007) and strawberry (Baldi et al. 2018). The 
ESTs for metabolites/flavonoid production were reported, 
in blueberry (Zifkin et al. 2012) using cDNA libraries, and 
for litchi (Lai et al. 2015), tea (Li et al. 2015), and banana 
(Muthusamy et al. 2016) using mRNA-sequencing. Besides, 
in silico analysis for ginger leaf, rhizome, and root ESTs in 
ginger provided valuable information on genes involved in 
the gingerol biosynthetic pathway (James et al. 2015). Also, 
EST-SSR markers were developed in ginger (Zingiber offici-
nale Rosc.) with cross-transferability to other Zingiberaceae 
species (Awasthi et al. 2017). The present investigations thus 
aimed to study the molecular mechanism of gingerol bio-
synthesis in ginger using transcriptome analysis. The study 
included the successful generation of SSH-derived leaf and 
rhizome ESTs using genotypes with varied content of gin-
gerols and analysis of EST sequences to find out the differen-
tial genes responsible for high gingerol production in ginger.

Materials and methods

Planting material

Selected ginger somaclone B3 (High gingerol), Athira 
(Medium gingerol), 132 M (Low gingerol) of KAU, and par-
ent cultivar Maran (low gingerol) genotypes were received 
from the germplasm maintained at the Centre for Plant 
Biotechnology and Molecular Biology (CPBMB), KAU, 
Vellanikkara, Kerala, under the Department of Biotechnol-
ogy-Biotechnology Industry Research Assistance Council 
(DBT-BIRAC) ginger research project of CPBMB.

Total RNA extraction and mRNA purification for SSH

Total RNA was extracted from young leaf tissues of ginger 
sprouts using TRIzol Reagent (Invitrogen), as directed in 
the manufacturer’s protocol (modified method developed by 
Chomcynski and Sacchi 1987). Since TRIzol is not specific 
for plant tissues, a few other modifications were incorporated 
into this method viz. the horizontal incubation of the tube 
with the homogenate (Pereira et al. 2017), the addition of 
chloroform into the homogenate before first centrifugation, 
additional chloroform step (Toni et al. 2018), one-hour incu-
bation of extract in the freezer after addition of isopropanol 
and use of 3 M sodium acetate for precipitation (Deepa et al. 
2014). For total RNA extraction from rhizomes, a protocol 
using acidic phenol (pH–4.2) was followed (Sreeja et al. 
2018). Around 0.1 g of ground leaf tissue and 2 g of fresh 
rhizome tissue (one month before the harvesting stage) from 
the somaclone B3 and cultivar Maran was used for each iso-
lation. The RNA samples were run on 1% agarose (formal-
dehyde) gel and quantified before performing SSH. The total 
RNA samples were pooled individually to purify out mRNA 
using the PolyATtract mRNA Isolation Kit (Promega).

Subtractive cDNA library construction

Suppression Subtractive Hybridization was performed 
using the PCR-select cDNA Subtraction Kit (Clontech) as 
instructed in the manufacturer’s protocol (Diatchenko et. al. 
1996). A forward subtraction was carried out using a con-
centrated mRNA population of approximately 2 µg from the 
tester and driver respectively for generating corresponding 
ds cDNA. The cDNA library was constructed by eluting and 
ligating the cDNAs into a pTZ57R/T vector (Thermo Scien-
tific) and subsequent transformation into competent DH5α 
E. coli cells. For EST library preparation, the ampicillin-
resistant (white) colonies were selected and maintained as 
grids on LB-Ampicillin (10%) plate at 37 °C for overnight 
incubation. The colonies maintained as grids were further 
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verified for the presence of inserts, using colony PCR with 
M13 universal primers. The stab cultures on 2% LB agar 
were prepared for each clone with proper labeling and stored 
at 4 °C for future use.

Sequencing, analysis, and functional annotation

Twenty-seven clones from leaf ESTs and 42 clones from 
rhizome ESTs were Sanger sequenced by outsourcing the 
samples to the DNA sequencing facility of Scigenom, Kochi, 
Kerala, using universal M13 forward and reverse primers. 
The region covering vector and adaptor sequences were 
detected and removed from the raw and trimmed sequences 
using the VecScreen (www. ncbi. nlm. nih. gov/ tools/ vecsc 
reen) and Bioedit (Biological Sequence Alignment Editor) 
tool. The assembly of edited forward and reverse sequences 
was performed using CAP3 Sequence Assembly Program 
(http:// doua. prabi. fr/ softw are/ cap3) and BLAST tools were 
used for homology search. The functional annotation for the 
gene of interest was carried out using the program KAAS-
KEGG Automatic Annotation Server (http:// www. genome. 
jp/ tools/ kaas/). The Blast2GO software program was imple-
mented for high throughput functional annotation, repre-
sented through the Gene Ontology.

qRT‑PCR for CHS gene expression analysis

Total RNA was extracted from rhizome sprouts (young 
leaves) using PureLink Plant RNA Reagent (Ambion, Life 
technologies), as directed in the manufacturer’s protocol. 
Around 100 mg of sprouts from the somaclone B3, variety 
Athira, somaclone 132 M, and parent cultivar Maran were 
used for each isolation. The RNA samples were run on 1% 
agarose (formaldehyde) gel and quantified before perform-
ing qRT-PCR. The first-strand cDNA was synthesized using 
the Revert Aid First Strand cDNA Synthesis Kit (Thermo 
Scientific), as per the manufacturer’s protocol. The for-
ward and reverse primers for the test gene CHS (Ghosh and 
Mandi 2015) and the endogenous housekeeping gene Actin 
(Yamanouchi et. al. 2002) were as follows: CHS F (5’ACT 
TCT ATT TCC GCG TCA CC3’), CHS R (5’TCA CCC TCG 
TCT TCT CAC AG3’), Act F (5’TCC ATC TTG GCA TCT CTC 
AG3’) and Act R (5’GTA CCC GCA TCA GGC ATC TG3’). 
The master mix was prepared using 10 µL SYBR Premix 
Ex Taq II (Tli RNaseH Plus) (2X), 1.0 µL each of forward 
and reverse primers (10 µM), 0.4 µL ROX Reference Dye 
(50X), and the final volume was made up to 18 µL using 
distilled water. The cDNA samples were loaded on 96 well 
plates followed by the addition of the master mix and proper 
pipetting. The PCR profile was followed as given by DSS 
Takara Bio India i.e., initial denaturation at 95 °C for 3 min 
followed by a PCR cycle with 95 °C for 10 s of denatura-
tion and 62 °C for 30 s of annealing for 40 cycles. For each 

variety, two technical replicates were used. Relative quantifi-
cation was done by relating the PCR signal in the target tran-
script (B3, Athira, 132 M) to that of the control transcript 
(Maran). The value for the control (Maran) was set at zero. 
The fold expression change was analyzed in CHS by keeping 
the actin gene as an internal control. The relative expres-
sion ratio was calculated by using the mathematical model 
Comparative ΔCt method by Livak and Schmittgen (2001).

Results and discussion

Suppression Subtractive Hybridization was adapted in the 
investigations to subtract out the common sequences present 
in high gingerol somaclone B3 and parent cultivar Maran 
and to identify the genes specifically involved in the upregu-
lation of gingerol biosynthesis in B3. The CHS gene expres-
sion analysis of rhizome sprouts of selected somaclones and 
the parent cultivar was done to show the activity of CHS 
even at a very young stage and to establish the role of leaves 
in gingerol biosynthesis.

Total RNA isolation and identification of differential 
leaf and rhizome ESTs using SSH

In the modified protocol for total RNA isolation, the hori-
zontal incubation of the tubes with powdered leaf sample 
and TRIzol at room temperature for 5 min (Pereira et al. 
2017), was carried out for the proper dissociation of nucleo-
protein complexes by increasing the surface area of contact. 
Additional chloroform wash was given to remove the left-
over impurities which also included insoluble lipids (Toni 
et al. 2018). Again, an hour of incubation of extract in the 
freezer after the addition of isopropanol and the use of 3 M 
sodium acetate (Deepa et al. 2014) facilitated proper pre-
cipitation of the RNA sample since the positively charged 
sodium acetate neutralized the negative charges on the sugar-
phosphate backbone of nucleic acid, making the molecule 
less soluble in water. The details of total RNA isolation from 
rhizomes have been discussed in our previous publication 
(Sreeja et al. 2018). For SSH, high-quality total RNA with 
good band integrity was obtained from leaves (Fig. 1a) and 
rhizomes (Sreeja et al. 2018). Three distinct RNA bands cor-
responding to 28S rRNA, 18S rRNA, and 5S rRNA + tRNA 
were present (Fig. 1a). The concentration of total RNA from 
leaves of B3 and Maran were 1.09 and 1.21 µg/µL respec-
tively and a good concentration of purified mRNA was 
obtained for B3 (0.37 µg/µL) and Maran (1.54 µg/µL). The 
 A260/A280 and  A260/A230 values for total RNA and mRNA of 
leaves were more than 1.8 and 1.0 respectively.

A single forward experimental subtraction was performed 
using mRNA populations from the B3 (tester) and Maran 
(driver). The electrophoresis results revealed the subtracted 

http://www.ncbi.nlm.nih.gov/tools/vecscreen
http://www.ncbi.nlm.nih.gov/tools/vecscreen
http://doua.prabi.fr/software/cap3
http://www.genome.jp/tools/kaas/
http://www.genome.jp/tools/kaas/
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fragments ranging from 0.3–1.5 kb and unsubtracted frag-
ments of 0.3–2.0 kb for the leaf sample (Fig. 1b). The sub-
tracted and unsubtracted fragments for the rhizome sam-
ple ranged from 0.11–1.1 kb and 0.19- > 2.0 kb (Fig. 1c) 
respectively. The subtracted sample smears were further 
eluted from the gel for cloning, using the Thermo Scientific 
GeneJET Extraction Kit which yielded a PCR product of 
25.47 ng/µL and 38.56 ng/µL for leaf and rhizome respec-
tively. After transformation 26 white colonies for leaf and 
42 white colonies for rhizome were obtained for perform-
ing colony PCR and the amplicons showed high molecular 
weight ranging from 400 bp to 1 kb [Online resource 1 and 
Online resource 2].

Assembly and annotation of ESTs

After sequencing, quality ESTs were obtained from 19 
leaf clones and 24 rhizome clones. Trimming, removal 

of vector and adaptor sequences, and assembly of for-
ward and reverse sequences were done to obtain a read-
able sequence length ranging from 268 to 863 bp and 154 
to 937 bp for the leaf and rhizome ESTs respectively. 
The sequences from 18 leaf and rhizome ESTs, showed 
sequence similarity with significant proteins/enzymes 
from the database (Tables 1 and 2). Five leaf ESTs were 
involved in the production of plant secondary metabolites 
(Table 3) and leaf EST 12 coded for an unknown protein. 
Seven novel rhizome ESTs (EST 2, EST 11, EST 15, EST 
17, EST 18, EST 20, and EST 22) with unknown func-
tions were obtained and differential genes involved in the 
secondary metabolic pathway were not reported from rhi-
zome ESTs. The 19 forward and reverse leaf ESTs and 24 
forward and reverse rhizome ESTs were submitted in the 
public database with GenBank Accession ID (JZ979518 to 
JZ979555) and (JZ979556 to JZ979603) as given in Online 
resource 3 and Online resource 4 respectively.

Fig. 1  a Agarose-formaldehyde gel electrophoresis showing total 
RNA isolated from ginger leaves of somaclone B3 and control cul-
tivar Maran using modified TRIzol method. Lane1: Transcript RNA 
marker (0.2–10  kb), Lane 2: Total RNA from somaclone B3, and 
Lane 3: Total RNA from control cultivar Maran b Second PCR prod-
uct after experimental subtraction of leaf tester sample. Lane 1 and 

Lane 6: ϕX174 DNA/Hae III digest marker, Lane 3 and Lane 4: Sub-
tracted and unsubtracted leaf tester cDNA. c Second PCR product 
after experimental subtraction of rhizome tester sample. Lane 1 and 
Lane 5: ϕX174 DNA/Hae III digest marker, Lane 2 and Lane 3: Sub-
tracted and unsubtracted rhizome tester cDNA
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Blast2GO functional annotations of ESTs

Leaf EST classifications (Fig. 2, (a) and (b)) were done as 
per the Blast2GO results. The species distribution chart 
for the leaf EST sequences showed the maximum hits with 
Musa acuminata subsp. malaccensis which is from the order 
Zingiberales of Zingiber officinale. The major biological 

process taking place in leaves was the metabolic process and 
the major molecular function reported was the ATP binding 
followed by the transferase activity. The gene ontology of 
important biological activities and molecular functions in 
leaves are represented in Fig. 3, (a) and (b) respectively. 
Transferase (major enzyme class reported, Fig. 4) class 
of enzymes, 3-ketoacyl- CoA thiolase (EC 2.3.1.16) and 

Table 1  Blastx analysis of differentially expressed leaf ESTs encoding proteins/enzymes in somaclone B3

S. no. Leaf ESTs Size (bp) Proteins/enzymes E-value Homology (%)

1 EST1 361 Glutathione S-transferase 2e-32 81
2 EST2 386 Sucrose synthase 3-like protein 2e-37 86
3 EST3 789 Cellulase synthase 4 catalytic subunit 1 6e-159 97
4 EST4 503 XR1 isoform X2 6e-13 43
5 EST5 331 14–3-3 isoform X2 3e-56 89
6 EST6 657 DNA repair protein RAD1 homolog 2 isoform X4 2e-37 51
7 EST7 863 Inactive poly (ADP-ribose) polymerase RCD1-like isoform X1 6e-85 55
8 EST8 712 Zinc finger CCCH domain-containing protein 18 isoform X2 4e-22 53
9 EST9 714 3-ketoacyl-CoA thiolase 2, peroxisomal-like protein 6e-94 90
10 EST10 268 O2 evolving complex 33kD family protein 3e-42 89
11 EST11 453 Glycerol-3-phosphate acyltransferase 3 7e-92 95
12 EST13 694 Probable LRR receptor-like serine/threonine protein kinase At1g63430 protein 2e-95 80
13 EST14 437 Serine-glyoxylate aminotransferase protein 4e-81 91
14 EST15 298 Alanine tRNA ligase protein 1e-15 80
15 EST16 674 Alanine-tRNA ligase protein 4e-78 88
16 EST17 430 Kinesin-like protein KCA2 6e-57 93
17 EST18 850 Phosphoribulokinase protein 8e-143 93
18 EST19 541 Peptidyl-prolyl cis–trans isomerase FKBP16-4, chloroplastic protein 3e-76 94

Table 2  Blastx analysis of differentially expressed rhizome ESTs encoding proteins/enzymes in somaclone B3

S. no. Leaf ESTs Size (bp) Proteins/enzymes E-value Homology (%)

1 EST1 154 Protein kinase domain 9e-15 81
2 EST3 196 Retrotransposon protein, putative, Ty1-copia subclass 2e-12 52
3 EST4 422 Uncharacterized protein LOC108207215 8e-60 74
4 EST5 477 Putative retrotransposon protein 8e-77 79
5 EST6 271 Uncharacterized protein LOC108207215 7e-26 67
6 EST7 470 Hypothetical protein F511 44,012, partial 9e-64 79
7 EST8 937 Integrase, catalytic core protein 2e-69 72
8 EST9 469 Uncharacterized protein LOC108207215 1e-36 57
9 EST10 789 Uncharacterized protein LOC107846441 2e-36 60
10 EST12 422 Uncharacterized protein LOC108207215 2e-64 77
11 EST13 352 ATP synthase subunit beta, chloroplastic-like protein 2e-45 76
12 EST14 478 Hypothetical protein VITISV 017,217 1e-10 51
13 EST16 795 Photosystem I PsaA/PsaB 3e-133 98
14 EST19 345 ADP-ribosylation factor 9e-63 90
15 EST21 303 Hypothetical protein DCAR 001,525 4e-23 86
16 EST23 345 ATP synthase subunit beta, chloroplastic-like protein 2e-47 75
17 EST24 428 Uncharacterized protein LOC108207215 4e-12 42
18 EST25 411 Uncharacterized protein LOC108207215 6e-63 80
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acetyl-CoA-acetyltransferase (EC 2.3.1.9), have conserved 
domains in Leaf EST 9 and were involved in the formation 
of secondary metabolites. The Blast2GO data for rhizome 
ESTs showed the maximum hits with Daucus carota subsp. 
sativus. As per the GO count, the major biological process 
taking place in rhizomes was the cellular (DNA integration 
and DNA recombination) and metabolic (DNA metabolism) 
process (Fig. 5a), and the major molecular function reported 
in rhizomes were the zinc ion binding function (Fig. 5b). 
The biological activities and molecular functions for rhi-
zome ESTs are presented in (Fig. 6, (a) and (b)) respectively.

Chalcone synthase gene expression

High-quality total RNA from rhizome sprouts of (young 
leaves) B3, Athira, 132 M, and Maran having concentra-
tions of 1.20, 1.60, 1.52, and 2.00 µg/µL respectively were 
used for qRT-PCR. The concentration of first-strand cDNA 
for B3, Athira, 132 M, and Maran were 1.50, 1.71, 1.70, and 
1.60 µg/µL respectively. A system-generated graph showed 
the expression fold change for the CHS gene in B3 (0.54), 
Athira (0.20), and 132 M (−1.56) when Maran was set as 
a calibrator (Fig. 7). The expression data analysis for the 
CHS gene confirmed higher secondary metabolic activity for 
gingerol in somaclone B3 (0.54) even in the initial sprout-
ing stage. The qPCR result supports our SSH experimental 
outcome assuming the leaf as the site of synthesis of gin-
gerols/flavonoids and rhizomes as the site of accumulation, 

distribution, and storage of the metabolites. Ghasemzadeh 
et al 2016 also observed the highest CHS activity in three-
month-old leaves of ginger as compared to older leaves. 
Some of the previous studies also support our presumption 
that the site of synthesis of gingerols is the leaves in ginger. 
The gingerol/flavonoid biosynthesis decreased in ginger 
leaves and increased in rhizomes from 3 to 9 months after 
planting (MAP) with the highest values in leaves from 3 
to 6 MAP and the highest values in rhizomes from 6 to 9 
MAP (Ghasemzadeh et al. 2016). The transport of second-
ary metabolites was thus observed from leaves to rhizomes 
for the final accumulation of the metabolites in rhizomes 
(Ghasemzadeh et al. 2010, 2016; Jiang et al. 2018; Li et al. 
2019). Also, Tanweer et al. 2020, highlighted the importance 
of leaf gingerol for medicinal purposes, again confirming the 
synthesis of gingerols in leaves.

To validate the role of the 3-ketoacyl-CoA thiolase 
gene in gingerol biosynthesis, Rani et al. 2020, performed 
a qRT-PCR analysis in ginger sprouts, keeping KAT2 as a 
test gene and actin as a housekeeping gene and observed 
higher expression of KAT2 gene in high gingerol yielding 
varieties /clones (viz. B3) as compared to cultivar Maran.

Leaf EST 9 encoding KAT2: degradative thiolase 
involved in secondary metabolism

The KAT2 gene was identified as the differential gene 
responsible for the higher gingerol biosynthesis in ginger 

Table 3  Differential leaf ESTs involved in secondary metabolism and their functions

S. no. Leaf ESTs Proteins/enzymes Functions

1 EST1 Glutathione S-transferase PARB-like protein Detoxification of toxic compounds and transporter proteins for secondary 
metabolites and their unstable intermediates (Petrussa et. al. 2013)

Donate sulfur atoms to glucosinolates and indole-type phytoalexins which are 
induced during pathogen attack (Czerniawski and Bednarek 2018)

Involved in the conjugation, transport, and storage of reactive oxylipins, phe-
nolics, and flavonoids (Dixon et. al. 2010)

2 EST2 Sucrose synthase 3-like protein Metabolizes sucrose into different pathways involved in metabolism, structure, 
and storage (Subbaiah et. al. 2007)

Considered the major root of carbon entry from sucrose into cellular metabo-
lism

3 EST9 3-ketoacyl-CoA thiolase 2, peroxisomal-like 
protein/ KAT2

An important enzyme involved in the beta-oxidation cycle which in turn is 
crucial for plant germination and sustainability. The final step of breakage of 
two carbon units was performed by KAT2 with the release of shortened fatty 
acids for different cellular functions (Pye et. al. 2010)

4 EST11 Glycerol-3-phosphate acyltransferase 3 Responsible for the acylation of glycerol-3-phosphate at the sn-1 position 
to produce lysophosphatidic acid. The lysophosphatidic acid acts as an 
important intermediate for the formation of different types of acyl-lipids, viz 
extracellular lipid polyesters, membrane, and storage lipids. The enzyme is 
involved in several lipid biosynthetic pathways and has important biological 
roles in plant development (Chen et. al. 2011)

5 EST18 Phosphoribulokinase protein An important enzyme in Calvin-cycle function and is reported to be part 
of the evolutionary breakthrough with respect to the biogenesis of the 
metabolic pathway, because Calvin-cycle enzymes perform additional (i.e. 
non-Calvin-cycle) metabolic duties (Hariharan et. al. 1998)
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somaclone B3. KAT2 belongs to the Type I thiolase fam-
ily of enzymes which are degradative thiolase (Igual et. al. 
1992; Peretó et. al. 2005) and are normally peroxisomal. 
Type I thiolase (KAT2) is involved in fatty acid β-oxidation 
and carries out thiolysis of acetyl-CoA units from the thiol 
end. Previous studies in Arabidopsis could locate three loci 
encoding KAT viz. KAT1, KAT2, and KAT5 (Germain 
et. al. 2001) are closely related to the type I thiolase from 
humans, mice, and yeast as well as Neurospora crassa and 
Oryza sativa, located in peroxisomes. The Arabidopsis 
KAT2 locus showed high expression throughout the life 
cycle with a strong expression during germination and later 

stages (Wiszniewski et. al. 2012) with higher transcript lev-
els than KAT1 and KAT5 (Germain et. al. 2001; Kamada et. 
al. 2003). The KAT2 gene has shown contribution toward 
jasmonic acid (biotic and abiotic stress response) (Castillo 
et. al. 2004; Afitlhile et. al. 2005; Chen et. al. 2020) bio-
synthesis, peroxisomal benzoic acid (building blocks for 
specialized metabolites) synthesis (Bussell et. al. 2014) and 
reproductive success in plants (Footitt et. al. 2007). Also, the 
mutations in the KAT2 gene terminated the mobilization of 
TAGs and the degradation of lipids during seedling growth, 
showing the influence of the KAT2 gene on lipid metabolism 
(Germain et. al. 2001).
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Fig. 2  Leaf ESTs coding for a biological processes and b molecular functions
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In the present study Leaf EST 9 also showed a con-
served domain for acetyl-CoA acetyltransferases (ACAT) 
which are Type II thiolase or biosynthetic thiolase (Igual 
et. al. 1992; Peretó et. al. 2005) and are commonly cyto-
solic. Type II thiolase performs acetoacetyl CoA syn-
thesis in the mevalonate biosynthesis pathway through 
Claisen-condensation-reaction.

Despite showing a very less sequence identity of ~ 38%, 
KAT2 and ACAT display more shared structural characteris-
tics and spatial positioning of the active site residues among 
themselves and with CHS (pivotal for the biosynthesis of 
flavonoids viz. gingerols in ginger). Hence indicates a com-
mon evolutionary origin (Mathieu et al. 1997; Modis and 
Wierenga 2000) and may be concluded as the prime reason 

Fig. 3  Gene Ontology (GO) counts for a biological processes and b molecular functions in leaf ESTs



459Journal of Plant Biochemistry and Biotechnology (July–September 2023) 32(3):451–466 

1 3

for the involvement of these enzymes in secondary metabo-
lite production viz. flavonoid and isoprenoid compounds 
respectively. Since land plants have gene lineages corre-
sponding to KAT2 and KAT5 recommending conservation 
of different functions for these two genes, the data obtained 
for Arabidopsis with respect to the role of KAT in secondary 
metabolite production suggests a similar role for the KAT 
gene in Zingiber officinale.

KAT2: Contributes to the KAT5‑generated cytosolic 
acetyl‑CoA pool for gingerol/flavonoid biosynthesis

The role of the phenylpropanoid pathway in the construction 
of the basic backbone of flavonoids (provides p-coumaroyl-
CoA from Phe) has been neatly explained (Saito et al. 2013), 
but the involvement of the polyketide pathway (provides 
malonyl-CoA for C2 chain elongation by CHS) (Tohge et al. 
2018) is yet to be fully explained. KAT5 is one of the major 
genes acting in the polyketide pathway for the production 
of cytosolic acetyl-CoA which is further degraded into the 
building block malonyl-CoA. Malonyl-CoA is a substrate 
for the biosynthesis of core flavonoid naringenin by CHS. 
Many studies have shown the co-regulation of the cytosolic 
KAT5 with genes involved in flavonoid biosynthesis (Ger-
main et al. 2001; Carrie et al. 2007; Yonekura-Sakakibara 
et al. 2008; Wiszniewski et al. 2012; de Souza et. al. 2020).

Based on the present investigations, efforts have been 
made to explain the possible contribution of the peroxiso-
mal KAT2 gene to the KAT5-generated cytosolic acetyl-
CoA pool, which is the major substrate for gingerol/fla-
vonoid biosynthesis. The β-oxidation of the fats stored as 

triacylglycerols (TAGs) provide energy for the post-germi-
native process in plants (Chapman et al. 2012). The lipases 
break down TAGs into fatty acids in the peroxisomes and 
fatty acids get activated (esterified with CoA moiety) by 
long-chain acyl-CoA synthetases, which is crucial for the 
entry to the β-oxidation cycle (Fulda et al. 2002). The final 
step in β-oxidation is performed by KAT2 which releases 
acetyl-CoA and a shortened fatty acyl-CoA which can carry 
on with β-oxidation further (Hayashi et al. 1998; Germain 
et al. 2001). The acetyl-CoA thus produced can enter the 
glyoxylate cycle to form four-carbon metabolites to be con-
verted to sucrose as a source of carbon and energy (Graham 
2008; Theodoulou and Eastmond 2012). The acetyl-CoA 
cannot as such cross the peroxisomal membrane and is 
metabolized into citrate, by citrate synthase enzyme (CSY) 
which can readily traverse the peroxisomal membrane to 
enter the cytosol (Rottensteiner and Theodoulou 2006) for 
fatty acid biosynthesis as well as to the mitochondrial TCA 
cycle for respiration (Raymond et al. 1992). In Arabidopsis, 
CSY2 and CSY3 convert acetyl-CoA to citrate for export 
to mitochondria (Hu et al. 2012) which contributes to the 
mitochondrial pool of acetyl-CoA and further production 
of mitochondrial citrate. Other than entering the mitochon-
dria, peroxisomal citrate is also cleaved by another important 
cytosolic enzyme ATP-citrate lyase (ACL) which converts 
citrate and CoA to oxaloacetate and acetyl-CoA, contribut-
ing to the cytosolic acetyl-CoA (Fatland et. al. 2002). An 
alternate route for producing acetyl-CoA is the formation of 
fatty acyl-CoAs from free fatty acids, ATP, and CoA in chlo-
roplasts (de Souza et al. 2020). As depicted in Fig. 8, acyl-
CoAs from chloroplasts could break down to acetyl-CoA in 

Fig. 4  Enzyme code distribution for leaf ESTs of somaclone B3
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the cytosol and one of the intermediates, 3-ketoacyl-CoA 
is acted upon by KAT5 to produce cytosolic acetyl-CoA. 
The cytosolic acetyl-CoA thus formed is the major substrate 
for flavonoid biosynthesis and undergoes carboxylation 
by acetyl-CoA carboxylase (ACC) to form malonyl-CoA 
which acts as the extender unit in the reaction catalyzed by 

Chalcone synthase for the biosynthesis of gingerols. The 
possible contribution of KAT2 in cytosolic acetyl-CoA pro-
duction for flavonoid/gingerol biosynthesis is illustrated in 
Fig. 8 (modified from de Souza et al. 2020) which indicates 
how acetyl-CoA generated from peroxisomes could get 
involved in gingerol biosynthesis. The detailed pathway for 

Fig. 5  Gene Ontology counts for a biological processes and b molecular functions in rhizome ESTs
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gingerol biosynthesis is given as Online resource 5 and is 
also explained by Ramirez-Ahumada et al. 2006.

Earlier studies in yeast suggested metabolic engineer-
ing for the overproduction of mitochondrial citrate (Tang 
et. al. 2013) leading to increased cytosolic acetyl-CoA and 
malonyl-CoA for higher flavonoid production (Tang et. al. 
2013). Similarly, the present investigation explains the role 
of the peroxisomal KAT2 gene towards citrate generation 
in the cytosol, leading to increased cytosolic acetyl-CoA 
and malonyl-CoA in ginger for higher gingerol production 
(Fig. 8). Peroxisomal citrate transported to mitochondria 
may also add carbon flux towards mitochondrial citrate 
generation leading to increased cytosolic acetyl-CoA pool.

Future prospects and conclusion

The future prospects for KAT enzymes or the major iso-
forms like KAT2/KAT5 can be, post-translational modifica-
tion, active site modification (Tan et. al. 2020), and protein 
engineering (Liu et. al. 2020) for drug development which 
could unravel the true potential of this enzyme for synthesiz-
ing important secondary metabolites. It’s known that pol-
yketide biosynthesis is performed by PKS via decarboxy-
lative Claisen condensation reactions with possibly some 
additional modifications catalyzed by modifying domains 
of PKSs. Such modifications are responsible for the great 
variety of secondary metabolites being produced by PKSs. 

Fig. 6  Rhizome ESTs coding 
for a biological processes and b 
molecular functions
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The modified pathways can be further engineered using 
microbial systems as “factories” for the mass production of 
secondary metabolites which is another new emerging field 
of metabolite engineering (Pyne et. al. 2019; Huccetogullari 
et. al. 2019; Cravens et. al. 2019; Birchfield and McIntosh 
2020; Mishra et. al. 2021).

An effort has been extended in the current study to 
unravel the molecular basis of gingerol biosynthesis in 
ginger, by generating leaf EST encoding the peroxisomal 
KAT2 gene for 3-ketoacyl-CoA thiolase 2, responsible for 
the possible upregulation of gingerol. The study explains 
the possible contribution of KAT2-generated peroxisomal 
acetyl-CoA in the cytosolic acetyl-CoA pool which sub-
sequently gives rise to malonyl-CoA, the extender unit for 
gingerol biosynthesis. Although the peroxisomal KAT2 
gene is otherwise known for β-oxidation-related functions, 
the similar contributions of KAT2/KAT5 isoforms towards 

cytosolic acetyl-CoA generation is an interesting outcome 
of the present study. The expression level of the rate-limiting 
gene, chalcone synthase, involved in the gingerol biosyn-
thetic pathway in rhizome leaf sprouts, confirmed gingerol 
biosynthesis even at the sprouting stage. In this study, no 
differential genes for secondary metabolites were reported 
in ginger rhizomes, and it is presumed that the leaf is the 
site of synthesis of secondary metabolites in ginger and the 
rhizome is the site of storage of metabolites. This work sup-
ports recent studies done on the thiolase family of enzymes 
as potential candidates for active site modification/binding 
pocket engineering that paves way for future protein engi-
neering and drug development studies in the pharmaceutics/
medical sector, in an energy-efficient and PKS-independent 
way. Integrating proteomics and metabolomics towards engi-
neering enzymes with better stability, substrate specificity, 

Fig. 7  Expression fold change for CHS gene with Maran as calibrator. Somaclone B3 shows the highest CHS (rate limiting gene in gingerol bio-
synthesis) gene expression at the sprouting stage of rhizome
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and catalytic activity will lead to robust KAT enzymes pro-
ducing a range of desired value-added products.
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