Skip to main content
Log in

Heat tolerance as a function of membrane lipid remodeling in the major US oilseed crops (soybean and peanut)

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With a steadily increasing population, the demand for crops to feed the world population and satisfy the energy needs is also increasing. The diminishing land resources and changing environmental conditions, specifically global warming, have further exacerbated these problems. Developing heat-tolerant crops that maintain yield under stress is one way to keep pace with future demands. Heat stress tolerance is a complex trait; hence it is vital to identify major contributors to heat stress tolerance and develop molecular markers to breed for them. The present communication reviews the recent progress made in this direction in oilseed crops soybean and peanuts, where heat-induced membrane lipid unsaturation was identified as an indicator of heat tolerance and the heat-induced changes in the expression pattern of the fatty acid desaturase gene as a marker to select for this trait. The further efforts underway and the future research needed in this direction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACP:

Stearoyl-Acyl carrier protein

BPMV:

Bean pod mottle virus

CRISPR:

Clustered regularly interspaced short palindromic repeats

DAF:

Days after flowering

eQTLs:

Expression quantitative trait loci

ER:

Endoplasmic reticulum

ESPS:

Early soybean production system

FAB:

Fatty acid biosynthesis

FAD:

Fatty acid desaturase

FAR:

Fatty acid-regulated region

HSPs:

Heat shock proteins

LOX:

Lipoxygenase

NASS:

National Agricultural Statistics Service

NBTs:

New breeding techniques

RILs:

Recombinant inbred lines

SAD:

Stearoyl-acyl carrier protein desaturase

Tm:

Melting temperature

USDA:

United States Department of Agriculture

References

  • Akbar A, Singh MS, Tottekkaad VM, Kurapati S, Pasupuleti J (2017) Efficient partitioning of assimilates in stress-tolerant groundnut genotypes under high-temperature stress. Agron J 7:30

    Google Scholar 

  • Alam T, Anco DJ, Rustgi S (2021) Reconditioning and disposition of aflatoxin-contaminated peanut: A guide for US peanut producers. CU Land-Grant Press LGP 1116. https://lgpress.clemson.edu/publication/reconditioning-and-disposition-of-aflatoxin-contaminated-peanut-a-guide-for-us-peanut-producers/

  • Alberts B, Johnson AD, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th edn. W. W. Norton & Company, New York

    Google Scholar 

  • Amy W, Sreya G, Matthew JW, William SC, James S, María-Dolores R, Asyraf MH, Alison H, Andrew S, Daniel R, Nikolai MA, Andy B, Andrey K, Tracey R, Laura ED, Adnan R, William M, Merrill R, David E, Jacqueline B, Harsh R, Jeremy C, Christian R, Claire D, Graham M, Wendy H, Paul N, Mark JD, Ian HD, Ji Z, Cristobal U, Scott AB, Robert FP, Brande BHW, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Google Scholar 

  • Andreu V, Lagunas B, Collados R, Picorel R, Alfonso M (2010) The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. J Exp Bot 61:3371–3384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellaloui N, Smith JR, Ray JD, Gillen AM (2009) Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci 49:608–620

    CAS  Google Scholar 

  • Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Biol 36:297–306

    CAS  PubMed  Google Scholar 

  • Bhandari K, Siddique KHM, Turner NC, Kaur J, Singh S, Agarwal SK, Harsh N (2016) Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J Crop Improv 30:118–151

    CAS  Google Scholar 

  • Bonku R, Yu J (2020) Health aspects of peanuts as an outcome of its chemical composition. Food Sci Hum Wellness 9:21–30

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan BB, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Brockman JA, Norman HA, Hildebrand DF (1990) Effects of temperature, light and a chemical modulator on linolenate biosynthesis in mutant and wild type Arabidopsis calli. Phytochemistry 29:1447–1453

    CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis. Ann Rev Plant Physiol Plant Mol Biol 42:467–506

    CAS  Google Scholar 

  • Burdon JJ, Zhan J (2020) Climate change and disease in plant communities. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000949

    Article  PubMed  PubMed Central  Google Scholar 

  • Byfield GE, Upchurch RG (2007) Effect of temperature on microsomal omega-3 linoleate desaturase gene expression and linolenic acid content in developing soybean seeds. Crop Sci 47:2445–2452

    CAS  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:28

    Google Scholar 

  • Cheesbrough TM (1989) Changes in the enzymes for fatty acid synthesis and desaturation during acclimation of developing soybean seeds to altered growth temperature. Plant Physiol 90:760–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheesbrough TM (1990) Decreased growth temperature increases soybean stearoyl-acyl carrier protein desaturase activity. Plant Physiol 93:555–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Stefanova K, Siddique KHM, Cowling WA (2020) Transient daily heat stress during the early reproductive phase disrupts pod and seed development in Brassica napus L. Food Energy Secur 10:262

    Google Scholar 

  • Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Shanlin Y (2011) Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep 30:1393–1404

    CAS  PubMed  Google Scholar 

  • Chi X, Zhang Z, Chen N, Zhang X, Wang M, Chen M, Wang T, Pan L, Chen J, Yang Z, Guan X, Yu S (2017) Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS ONE 12:0189759. https://doi.org/10.1371/journal.pone.0189759

    Article  CAS  Google Scholar 

  • Choi JY, Stukey J, Hwang SY, Martin CE (1996) Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 271:3581–3589

    CAS  PubMed  Google Scholar 

  • Chu Y, Ramos L, Holbrook CC, Ozias-Akins P (2007) Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection. Crop Sci 47:2372–2378

    CAS  Google Scholar 

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036

    CAS  Google Scholar 

  • Conn EC, Stumpf PK, Bruening G, Doi RH (1987) Outlines of biochemistry, 5th edn. Wiley, New York

    Google Scholar 

  • Cox FR (1979) Effect of temperature treatments on peanut vegetative and fruit growth. Peanut Sci 6:140–147

    Google Scholar 

  • Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8:1789

    PubMed  PubMed Central  Google Scholar 

  • Das A, Eldakak M, Paudel B, Kim DW, Hemmati H, Basu C, Rohila JS (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. BioMed Res Int. https://doi.org/10.1155/2016/6021047

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plant J 6:21

    Google Scholar 

  • Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:034011

    Google Scholar 

  • Dominguez T, Hernandez ML, Pennycooke JC, Jimenez P, Martinez-Rivas JM, Sanz C, Stockinger EJ, Sanchez-Serrano JJ, Sanmartin M (2010) Increasing omega-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153:655–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Economic Research Service US Department of Agriculture (2021) Oil Crops Sector at a Glance. https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/oil-crops-sector-at-a-glance/

  • EL Sabagh A, Hossain A, Islam MS, Barutcular S, Ratnasekera D, Gormus O, Amanet K, Mubeen M, Nasim W, Fahad S, Tariq M, Llanes A, Meena RS, Ueda A, Saneoka H, Erman M, Hasanuzzaman M (2020) Drought and heat stress in cotton (Gossypium hirsutum L.): Consequences and their possible mitigation strategies. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore

    Google Scholar 

  • Elferjani R, Soolanayakanahally R (2018) Canola responses to drought, heat, and combined stress: Shared and specific effects on carbon assimilation, seed yield, and oil composition. Front Plant Sci 9:1224

    PubMed  PubMed Central  Google Scholar 

  • Farmer EE (1994) Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol 26:1423–1437

    CAS  PubMed  Google Scholar 

  • Faye B, Webber H, Diop M, Mbaye ML, Owusu-Sekyere JD, Naab JB, Gaiser T (2018) Potential impact of climate change on peanut yield in Senegal, West Africa. Field Crops Res 219:148–159

    Google Scholar 

  • Garcia FC, Bestion E, Warfield R, von-Durocher GY (2018) Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci USA 115:10989–10994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillman JD, Biever JJ, Ye S, Spollen WG, Givan SA, Lyu Z, Joshi T, Smith JR, Fritschi FB (2019) A seed germination transcriptomic study contrasting two soybean genotypes that differ in terms of their tolerance to the deleterious impacts of elevated temperatures during seed fill. BMC Res Notes 12:522

    PubMed  PubMed Central  Google Scholar 

  • Guy C (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol 1:231–242

    CAS  PubMed  Google Scholar 

  • Hamada T, Kodama H, Nishimura M, Iba K (1996) Modification of fatty acid composition by over- and antisense-expressions of a microsomal ω-3 fatty acid desaturase gene in transgenic tobacco. Transgenic Res 5:115–121

    CAS  PubMed  Google Scholar 

  • Harwood JL (1997) Plant lipid metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, pp 237–272

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Google Scholar 

  • Hernandez F, Poverene M, Presotto A (2018) Heat stress effects on reproductive traits in cultivated and wild sunflower (Helianthus annuus L.): evidence for local adaptation within the wild germplasm. Euphytica 214:146

    Google Scholar 

  • Hernandez ML, Sicardo MD, Alfonso M, Martinez-Rivas JM (2019) Transcriptional regulation of stearoyl-acyl carrier protein desaturase genes in response to abiotic stresses leads to changes in the unsaturated fatty acids composition of olive mesocarp. Front Plant Sci 10:251

    PubMed  PubMed Central  Google Scholar 

  • Herritt MT, Fritschi FB (2020) Characterization of photosynthetic phenotypes and chloroplast ultrastructural changes of soybean (Glycine max) in response to elevated air temperatures. Front Plant Sci 11:153

    PubMed  PubMed Central  Google Scholar 

  • Hildebrand D, Rao S, Hatanaka T (2002) Redirecting lipid metabolism in plants. In: Kuo TM, Gardner HW (eds) ‘Lipid biotechnology.’ Marcel Dekker, Inc., New York, pp 57–84

    Google Scholar 

  • Hiremath SS, Sajeevan RS, Nataraja KN, Chaturvedi AK, Chinnusamy V, Pal M (2017) Silencing of fatty acid desaturase (FAD7) gene enhances membrane stability and photosynthetic efficiency under heat stress in tobacco (Nicotiana benthamiana). Indian J Exp Biol 55:532–541

    CAS  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    CAS  PubMed  Google Scholar 

  • Iba K (2002) Acclimative resposne to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    CAS  PubMed  Google Scholar 

  • Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells 13:264–271

    CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (2018) Climate change report is a “wake-up” call on 1.5°C global warming. https://public.wmo.int/en/media/press-release/climate-change-report-“wake-”-call-15°C-global-warming

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    CAS  PubMed  Google Scholar 

  • Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot 59:2043–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebede H, Smith JR, Ray JD (2013) A new gene that controls seed coat wrinkling in soybean. Euphytica 189:309–320

    CAS  Google Scholar 

  • Kirsch C, Takamiya-Wik M, Reinold S, Hahlbrock K, Somssich IE (1997) Rapid, transient, and highly localized induction of plastidial omega-3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum. Proc Natl Acad Sci USA 94:2079–2084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan HB, Kim W-S, Oehrle NW, Smith JR, Gillman JD (2020) Effect of heat stress on seed protein composition and ultrastructure of protein storage vacuoles in the cotyledonary parenchyma cells of soybean genotypes that are either tolerant or sensitive to elevated temperatures. Int J Mol Sci 21:4775

    CAS  PubMed Central  Google Scholar 

  • Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    CAS  PubMed  Google Scholar 

  • Lindsey (2018) New in Data Snapshots: Monthly maps of future U.S. temperatures for each decade of the 21st century. https://www.climate.gov/news-features/featured-images/new-data-snapshots-monthly-maps-future-us-temperatures-each-decade

  • Liu XY, Yang JH, Li B, Yang XM, Meng QW (2006) Antisense-mediated depletion of tomato chloroplast omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 48:1096–1107

    CAS  Google Scholar 

  • Liu X, Ma D, Zhang Z, Wang S, Du S, Deng X, Yin L (2019) Plant lipid remodeling in response to abiotic stresses. Environ Exp Bot 165:174–184

    CAS  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Martin KC, Yaffe M, Amon A (2021) Molecular cell biology, 9th edn. Macmillan, New York

    Google Scholar 

  • Lu J, Xu Y, Wang J, Singer SD, Chen G (2020) The role of triacylglycerol in plant stress response. Plant J 9:472

    CAS  Google Scholar 

  • MacCarthy JJ, Stumpf PK (1980) The effect of different temperatures on fatty-acid synthesis and polyunsaturation in cell suspension cultures. Planta 147:389–395

    CAS  PubMed  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    CAS  PubMed  Google Scholar 

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob Change Biol 11:2078–2089

    Google Scholar 

  • Matsuda O, Sakamoto H, Hashimoto T, Iba K (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J Biol Chem 280:3597–3604

    CAS  PubMed  Google Scholar 

  • Morales D, Rodriguez P, Dellamico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Plant Biol 47:203–208

    Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    CAS  PubMed  Google Scholar 

  • Murphy DJ, Stumpf PK (1979) Light-dependent induction of polyunsaturated fatty acid biosynthesis in greening cucumber cotyledons. Plant Physiol 63:328–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahashon SN, Kilonzo-Nthenge AK (2011) Advances in soybean and soybean by-products in monogastric nutrition and health. In: El-Shemy H (ed) Soybean and nutrition. InTech. http://www.intechopen.com/books/soybean-and-nutrition/advances-in-soybeanand-soybean-by-products-in-monogastric-nutrition-and-health

  • Narayanan S (2021) Membrane fluidity and compositional changes in response to high temperature stress in wheat. In: Wani SH, Mohan A, Singh GP (eds) Physiological, molecular, and genetic perspectives of wheat improvement. Springer, Cham, pp 151–123

    Google Scholar 

  • Narayanan S, Zoong-Lwe ZS, Gandhi N, Welti R, Fallen B, Smith JR, Rustgi S (2020) Comparative lipidomic analysis reveals heat stress responses of two soybean genotypes differing in temperature sensitivity. Plants 9:1–17

    Google Scholar 

  • National Peanut Board (2021) Peanut Country, U.S.A. https://www.nationalpeanutboard.org/peanut-info/peanut-country-usa.htm

  • Nelson DL, Cox MM (2017) Lehninger Principles of Biochemistry, 7th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Nishiuchi T, Hamada T, Kodama H, Iba K (1997) Wounding changes the spatial expression pattern of the arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell 9:1701–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge J, Browse J, Jaworski J, Somerville C (2015) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 2nd edn. Wiley, West Sussex

    Google Scholar 

  • Ohnishi J, Yamada M (1980) Glycerolipid synthesis in Avena leaves during greening of etiolated seedlings. I. Lipid changes in leaves. Plant Cell Physiol 21:1595–1606

    CAS  PubMed  Google Scholar 

  • Peng Z, Ruan J, Tian H, Shan L, Meng J, Guo F, Zhang Z, Ding H, Wan S, Li X (2020) The family of peanut fatty acid desaturase genes and a functional analysis of four ω-3 AhFAD3 members. Plant Mol Biol Rep 38:209–221

    CAS  Google Scholar 

  • Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham AT, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    CAS  PubMed  Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ (1999a) Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci 39:1352–1357

    Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ (1999b) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, Thomas JMG (2003) Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Glob Change Biol 12:1775–1787

    Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. BMC Genomics 9:432

    PubMed  PubMed Central  Google Scholar 

  • Reszczynska E, Hanaka A (2020) Lipids composition in plant membranes. Cell Biochem Biophys 78:401–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez M, Canales E, Borras-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl Biochem 22:1–10

    CAS  Google Scholar 

  • Roman A, Andreu V, Hernandez ML, Lagunas B, Picorel R, Martínez-Rivas JM, Alfonso M (2012) Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. J Exp Bot 63:4973–4982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu C, Qureshi A, Emili A (2017) Panomics for precision medicine. Trends Mol Med 24:85–101

    PubMed  PubMed Central  Google Scholar 

  • Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Muller C, Pugh TA, Rolinski S, Schaphoff S, Schmid E, Wang X, Schlenker W, Frieler K (2017) Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun 8:13931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean: Insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci 47:S14–S26

    Google Scholar 

  • Selvaraj MG, Burow G, Burke JJ, Belamkar V, Puppala N, Burow MD (2011) Heat stress screening of peanut (Arachis hypogaea L.) seedlings for acquired thermotolerance. Plant Growth Regul 65:83–91

    CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Rev Plant Physiol Plant Mol Biol 49:611–641

    CAS  Google Scholar 

  • Singh AK, Fu DQ, El-Habbak M, Navarre D, Ghabrial S, Kachroo A (2011) Silencing genes encoding omega-3 fatty acid desaturase alters seed size and accumulation of Bean pod mottle virus in soybean. Mol Plant Microbe Interact 24:506–515

    CAS  PubMed  Google Scholar 

  • Singh D, Balota M, Collakova E, Isleib TG, Welbaum GE, Tallury SP (2016) Heat stress related physiological and metabolic traits in peanut seedlings. Peanut Sci 43:24–35

    Google Scholar 

  • Singh A, Kumar M, Raina S, Ratnaparkhe M, Rane J, Varshney R, Kachroo A (2020) Modulation of GmFAD3 expression alters responses to abiotic stress in soybean. Authorea. https://doi.org/10.22541/au.160569953.30220980/v1

    Article  Google Scholar 

  • Skendzic S, Zovko M, Zivkovic IP, Lesic V, Lemic D (2021) The impact of climate change on agricultural insect pests. Insects 12:440

    PubMed  PubMed Central  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    CAS  PubMed  Google Scholar 

  • Wang HS, Yu C, Tang XF, Wang LY, Dong XC, Meng QW (2010) Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 52:568–577

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang X, Zhao Y, Prakash CS, He G, Yin D (2015) Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut. Genome 58:375–383

    CAS  PubMed  Google Scholar 

  • Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, Lippman ZB (2021) Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nat Plants 7:419–427

    CAS  PubMed  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Symp Soc Exp Biol 42:329–346

    CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    CAS  PubMed  Google Scholar 

  • Windham J, Sharma S, Kashyap MK, Rustgi S (2021) CRISPR/Cas12a (Cpf1) and its role in plant genome editing. In: Tang G, Teotia S, Tang X, Singh D (eds) RNA-based technologies for functional genomics in plants. Springer, Cham, pp 15–42

    Google Scholar 

  • Wood IMW (1968) The effect of temperature at early flowering on the growth and development of peanuts. Aust J Agric Res 19:241–251

    Google Scholar 

  • Zaidi SS, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36:898–906

    CAS  PubMed  Google Scholar 

  • Zayan SA (2019) Impact of climate change on plant diseases and IPM strategies. In: Topolovec-Pintarić S (ed) Plant diseases—current threats and management trends. IntechOpen. https://doi.org/10.5772/intechopen.87055.

  • Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371

    CAS  PubMed  Google Scholar 

  • Zhang L, Hu X, Miao X, Chen X, Nan S, Fu H (2016) Genome-scale transcriptome analysis of the desert shrub Artemisia sphaerocephala. PLoS ONE 11(4):e0154300. https://doi.org/10.1371/journal.pone.0154300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Muller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoong Lwe ZS, Welti R, Naveed S, Rustgi S, Anco D, Narayanan S (2020) Heat stress elicits remodeling in the anther lipidome of peanut. Sci Rep 10:22163

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIFA Hatch/Multi-state Grant (S009 and 1013013), South Carolina Soybean Board (Grant # 2013753), National Peanut Board (Grant # 2012637 and 2014086), South Carolina Peanut Board (Grant # 2012613), and Clemson University Support for Early Exploration and Development (CU SEED) (Grant # 1501816). The author would also like to thank Salman Naveed and Nitant Gandhi for their technical support in generating preliminary data used in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Rustgi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustgi, S., Kakati, J.P., Jones, Z.T. et al. Heat tolerance as a function of membrane lipid remodeling in the major US oilseed crops (soybean and peanut). J. Plant Biochem. Biotechnol. 30, 652–667 (2021). https://doi.org/10.1007/s13562-021-00729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00729-2

Keywords

Navigation