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ABSTRACT

Coronary stenting represents the standard of

care for percutaneous revascularization of

symptomatic coronary artery disease. However,

despite progress in the evolution of intravascular

stents, clinical adverse events such as restenosis

and stent thrombosis still represent the ‘‘achilles

heel’’ of this ground-breaking technology. Of

particular note was the association of these

adverse events with the material, the polymer

coating, and the active drug of currently

approved drug eluting stents. Consequently,

modifications were made to the design,

coating, and the choice of drugs, eventually,

resulting in (fully) biodegradable drug-eluting

stents. Such stents offer the appealing concept of

a temporary vascular scaffold and are currently

under extensive preclinical and clinical

investigation. However, biodegradable stents

must demonstrate efficacy and safety in larger

randomized clinical trials in real-world

scenarios, which are currently on the horizon.
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INTRODUCTION

The introduction of vascular stenting was a

milestone in the field of interventional
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cardiology [1]. The vascular scaffolding

provided by coronary stents significantly

reduced the incidence of acute vessel

occlusions after dissection and restenosis by

vascular recoil as compared with plain old

balloon angioplasty (POBA) [2, 3]. This

dramatic improvement in the percutaneous

treatment of coronary artery disease resulted

in their widespread use in daily practice [4, 5].

Unfortunately, similar to POBA, bare-metal

stents (BMS) were associated with excessive

neointimal formation as a response to

procedure-related wound healing in upto

30–40% of cases [6–8]. Findings from autopsy

studies showed that vascular healing after stent

implantation is similar to wound healing,

including platelet adhesion, fibrin deposition,

and a focal inflammatory cellular infiltrate. This

early process of vascular healing is followed by

re-endothelialization and smooth muscle cell

(SMC) migration and then by proliferation and

matrix formation that can lead to excessive

intimal hyperplasia and clinical restenosis

typically within 3–6 months after stent

implantation [9, 10], or even later.

Drug-eluting stents (DESs) were introduced

as a means of reducing excessive SMC

proliferation. These devices release anti-

proliferative drugs, thus leading to a

significant reduction of neointimal formation

and consequently adverse clinical events like

target lesion revascularization (TLR) and

angiographic restenosis. Enthusiasm for DES

grew quickly following the positive results of

initial large randomized controlled trials

comparing both sirolimus and paclitaxel DES

with their BMS counterparts [11, 12]. However,

early enthusiasm was tempered following

clinical reports of late DES thrombosis [13, 14].

Pathology findings of delayed arterial healing,

hypersensitivity reactions, and malapposition

by vascular remodeling in DES raised concerns

about the impact of the anti-proliferative drugs

and the polymer that is critical for the

modulation of local drug delivery [15, 16].

Given these safety concerns, second-

generation DESs were introduced using cobalt

chromium platforms and modified cell-cycle

inhibitors (everolimus and zotarolimus)

combined with more biocompatible polymers.

When compared with first-generation DES,

these stents proved to be more deliverable

while clinically non-inferior with improved

rates of stent thrombosis [17–24].

Despite the dramatic improvement from

POBA to second-generation DES, there is still

room for further reduction in adverse clinical

events. The majority of adverse events (e.g., acute

recoil, subacute closure, and dissection) occur

early following POBA with very stable long-term

lumen areas beyond a few months [25].

Therefore, perhaps the future of vascular

scaffolding may be stents that can prevent the

early complications of POBA and bioabsorb over

time to allow the vessel to regain its natural shape

and function while eventually improving rates of

stent thrombosis and restenosis by minimizing

late vascular inflammation, hyperproliferation,

and induction of neoatherosclerosis.

Bare-Metal Stents

BMS were designed as a vascular scaffold to treat

POBA-related dissections and acute vessel

occlusions, and to reduce vascular recoil. Early

BMS were made of 316 L stainless steel, nitinol

wire coils, or nitinol coils with various designs

and were self- or balloon expandable [7].

Lessons from autopsies showed that vascular

healing following intravascular BMS

implantation is very similar to the response

after wound healing [10]. The initial stage

(\30 days) includes platelet adhesion, mild

luminal thrombus formation, fibrin
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deposition, and a focal inflammatory cellular

infiltrate consisting of polymorphonuclear

leukocytes and macrophages. T-lymphocyte

infiltration starts around 2 weeks and persists

for several months. The early process of vascular

healing (2–4 weeks) is followed by SMC

migration, proliferation, and matrix formation

(proteoglycans/collagen type III). Completion

of vascular repair in humans is usually achieved

by re-endothelialization 3–4 months after BMS

implantation. Neointimal formation peaks at

6–12 months, with a neointimal volume

decrease by replacement of collagen III with

collagen I [10]. In about 30–40% of cases the

SMC activation leads to an untoward excessive

intimal hyperplasia, which may result in

clinically relevant restenosis and need for

repeat revascularization [26].

First-Generation DES

While BMS were a dramatic leap forward in

the arsenal of interventional cardiologists, the

30–40% rate of clinically relevant restenosis

prompted the development of DES to inhibit

neointimal hyperplasia and SMC

proliferation. Permanent polymer coatings

were applied to control the release kinetics

of the anti-proliferative drug that acts to

minimize neointimal growth. The sirolimus-

eluting stents (SES) used polyethylene-co-

vinyl (PEVA) and poly n-butyl methacrylate

(PBMA) as a non-erodible polymer releasing

80% of the drug sirolimus (140 mg/cm2) from

the BxVelocityTM (Cordis, Johnson &

Johnson, Miami, FL, USA) BMS backbone

within the first month. The various

generations of paclitaxel-eluting stent (PES)

(originally on NIR BMS backbone and

subsequently Express and then Liberte

backbones) had a slow release polymer with

8.8% drug to polymer ratio (1 lg/mm2). The

moderate release version with three times the

local drug concentration was studied in the

TAXUS II trial, with improved rates of target

lesion revascularization, but was not released

commercially [27].

Early DES versus BMS trials demonstrated

DES superiority with significantly reduced rates

of TLR and angiographic restenosis to \10% in

the RAVEL trial [11], the SIRIUS trials [28–31],

and the TAXUS trials [12, 32–34].

Consequently, both first-generation DES, the

SES (Cypher�, Cordis, Johnson & Johnson,

Miami, FL USA), and the PES (Taxus�, Boston

Scientific, Natick, MA USA) were rapidly

approved by the regulatory bodies in Europe

and the USA in 2002/2003.

Following the success of initial clinical trials

of first-generation DES, the indications rapidly

expanded to complex lesions [35] like chronic

total occlusion [36] and left main disease [37].

However, the initial enthusiasm was tempered

by clinical case reports and preliminary data

from the large Swedish Coronary Angiography

and Angioplasty Register (SCAAR), and other

groups [13, 14], showing a significant increase

in late stent thrombosis (LST) in DES.

Concomitantly, autopsy studies revealed that

delayed arterial healing and impaired re-

endothelialization were strongly associated

with the frequently fatal LST [38]. Pathologic

findings showed the development of unstable

features like neoatherosclerosis within the

neointima as a frequent finding in first-

generation DES, which may partly contribute

to events of lLST [15]. Of note, clinical cases of

very LST were reported up to 4 years after the

initial implantation of first-generation DES.

These safety concerns led to a remarkable

reduction of DES usage in 2007. Clinicians

began to prescribe dual anti-platelet therapy

for 1 year or longer to avoid LST. Around this

time the US Food and Drug Administration

Comb Prod Ther (2013) 3:9–24 11
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(FDA) demanded that all DES manufacturers

support the ongoing DAPT trial [39] in an

effort to determine the optimal duration of

dual anti-platelet therapy for DES.

Interestingly, the 5-year follow-up of the

SCAAR results did not suggest a long-term

significant increase of LST in DES as compared

with BMS [40].

Second-Generation DES

The first-generation DESs were another leap

forward compared with BMS; however, there

was still concern about LST and reduced

deliverability with the 140 lm strut/polymer

thickness. The second-generation DESs were

designed to overcome these flaws using for

example thinner cobalt chromium alloys, new

cell-cycle inhibitors (everolimus/zotarolimus),

and more biocompatible polymers

(fluoropolymers/phosphorylcholine). Whereas

the first-generation DES continued to release

drug for a prolonged duration, the release

kinetics of the second-generation DES was

generally shorter.

The Xience V� (Abbott Vascular, CA, USA)

everolimus-eluting stent (EES) is also marketed

by Boston Scientific as PROMUS� (Everolimus-

Eluting Platinum Chromium Coronary Stent

System) and is composed of a poly-vinylidene

fluoride and hexafluoropropylene (PVDF–HFP)

polymer that is loaded with everolimus at a

concentration of 1 lg/mm2. EES release 80% of

everolimus within 1 month and 100% release

within 4 months after implantation. The

clinical trial program included the SPIRIT I

[17], SPIRIT II [19], SPIRIT III [18], and SPIRIT

IV trials [20] the open-label SPIRIT V registry

[41], and the all comer COMPARE trial [42].

These studies consistently exhibited low major

adverse cardiac event (MACE) rates, target vessel

failure, and definite or probable stent

thrombosis with the EES as compared with

first-generation DES (PES).

Biocompatibility is largely considered

secondary to the hydrophilic nature of stent

polymers, as measured by lower contact angles

(the angle between liquid/blood versus solid/

stent), in vitro. The contact angles of the various

DES are as follows: PC (Endeavor�, Medtronic

Vascular, Santa Rosa, CA, USA) 83�, BioLinxTM

(Resolute, Medtronic, Santa Rosa, CA, USA) 94�,
PBMA (Cypher) 115�, SIBS (Taxus) 118� and

fluoropolymer (Xience) 129�. In vitro studies

demonstrate that the more hydrophilic, the less

macrocyte adhesion occur relative to other DES

platforms [43]. Rabbit models confirmed these

findings with the Endeavor stents

demonstrating the lowest inflammation and

fibrin scores at 30 days [44]. The Endeavor

zotarolimus-eluting stent (ZES) was well

studied in the ENDEAVOR [23], ENDEAVOR II

[21], ENDEAVOR III [24], SORT OUT III [45], and

ZEST [46] trials, and in the E-FIVE registry [47],

which confirmed consistently low MACE rates

and target vessel failure. Notably, LST was rare

compared with the first-generation DES (PES,

SES). The Resolute ZES has a novel

biocompatible hydrophilic polymer, termed

BioLinx, that combines the biocompatible

nature of the Endeavor stent with a

hydrophobic core to allow for prolonged drug

elution and improved long-term reductions in

neointimal hyperplasia. The Resolute stent has

50% and 85% drug release at 7 and 60 days after

stent implantation, respectively, versus the

Endeavor, with 75% drug release at 2 days. This

effect is correlated clinically with TLR rates of

12% of the Resolute versus 16% in the Endeavor

group at 2 years [48].

The so-called ‘third-generation’ Promus

Element (Boston Scientific, Natick, MA, USA)

DES has the same polymer and drug elution

properties as the Promus/Xience EES, with a

12 Comb Prod Ther (2013) 3:9–24
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new platinum alloy to improve fluoroscopic

visibility. The stent backbone is designed for

improved deliverability by removing some of

the interconnectors, though this may be related

to reports of longitudinal compression both

clinically and in bench-top models relative to

other DES [49, 50]. The clinical outcomes of the

Promus Element versus the Xience V stents were

comparable up to 3 years in the PLATINUM

studies [51]. Due to concerns about longitudinal

compression, the stent has since been altered to

allow for more support on the proximal and

distal crowns.

While being generally considered

biocompatible, the polymer coating of the

first- and second-generation DES prevents

them from truly behaving like BMS, after time,

even after all of the drug is eluted. Reports of

hypersensitivity reactions and positive vascular

remodeling resulting in stent strut

malapposition in those DES have raised

concerns that the permanent polymer

implants may be linked to late DES thrombosis

[15]. Other pathologic studies of BMS and DES

have implicated alloyed stents themselves in

chronic inflammation, angiogenesis,

neoatherosclerosis [52], restenosis, obstruction

of side branches, and LST via stent fracture [15].

Therefore, the concept of a biodegradable

polymer coating or fully biodegradable

vascular scaffolds remains appealing as a

means of mitigating these late stent/polymer-

vessel interactions.

Biodegradable Polymer Implementation

in the Vascular Scaffold Stent

Various biodegradable polymers have been

used since the 1960s for orthopedic, dental,

and wound closure applications. The ideal

bioabsorbable polymer should demonstrate

no toxic or inflammatory responses, should

be readily metabolized, easy to produce, and

have a good shelf life as well as homogenous

application properties [53]. Polymer

biodegradation is generally a hydrolytic

process starting with the penetration of water

into the polymer. The hydrolysis of ester

bonds between repeating lactide units

fragments the long polymer chain into

multiple products including lactic acid,

glycolic acid, and finally water and carbon

dioxide [54]. Polyacidic acid copolymers such

as polylactic acid (PLA, 6 months degradation

time) or polyglycolic acid (PGA, 2–3 months

degradation time) are commonly used in

current biodegradable vascular stents [55].

The time course of degradation itself depends

on various factors including the chemical

bond, the pH, the presence of catalysts, and

the co-polymer composition. Stent polymer

coatings are prone to mechanical damage

during the fabrication process as well as the

deployment procedure. The clinical impact of

uneven polymer distribution, flaking or

webbing remains poorly understood [56]

(Fig. 1).

Clinical Impact of Biodegradable Polymer

Coated Stents

DESs with completely biodegradable polymer

coatings were designed with the goal of early

neointimal hyperplasia inhibition, followed by

polymer absorption, with the hope of minimal

long-term inflammatory responses similar to

the BMS vascular interaction. Preclinical

histopathologic analysis of porcine implanted

biodegradable polymer (PLA and PGA) SES

demonstrated a reduction of neointimal

formation and a reduced cellular inflammatory

response when compared with permanent

polymer SES and BMS at 28, 90, and 180 days

post-implantation [57]. Similar results were seen

Comb Prod Ther (2013) 3:9–24 13
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in the NoboriTM biolimus-eluting stent

(Terumo, Tokyo, Japan) as compared WITH a

permanent polymer SES [58] and the stainless

steel sirolimus releasing Combo� stent

(OrbusNeich, Wanchai, Hong Kong) with a

biodegradable SimBioSYS coating and anti-

CD34 antibody coating in a porcine model

[59] (Fig.2).

Following the non-inferiority 1-year results

of the EVOLVE trial, the SYNERGY� (Boston

Scientific, Natick, USA) stent with an abluminal

everolimus releasing PLGA polymer coating was

Fig. 1 Representative SEM images from the enzymatic
digested stents deployed into the coronary arteries of pigs
for 7 days. a–c The polymer coating of the BioMatrix stent
displayed polymer cracking within the inner curvature and
linker bards (white arrow head); d–f the polymer coating of
the Cypher SELECT displayed uneven coating (white
arrows) with small-round defects (dashed circle); g–i the
TAXUS Liberté polymer coating displayed webbing

(dashed arrow), uneven coating (white arrow), and focal
regions of bare metal exposure (black arrow head); j–l the
XIENCE V polymer coating displayed regions of uneven
coating (white arrow) and polymer flaking (black arrow).
(white bar 200 lm; red bar 30 lm). Reproduced with
permission from [56]
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CE marked in October, 2012. The EVOLVE II

trial was designed with the goal of approval

within the US and Japanese markets and

enrolled the first patient in November 2012.

The trial compared the SYNERGY stent with the

Promus Element Plus platinum chromium stent

with a primary endpoint of 12-month target

lesion failure defined as any ischemia-driven

revascularization of the target lesion,

myocardial infarction (MI; Q-wave and non-Q-

wave) related to the target vessel, or cardiac

death.

The EXCELLA BD randomized clinical trial

with the DESyneTM BD Novolimus-Eluting

Coronary Stent System, Elixir Medical

Corporate, Sunnyvale, CA, USA, with

resorbable polymer demonstrated superior

results compared to the Endeavor stent for the

primary endpoint of in-stent late lumen loss

[60]. The LEADERS trial demonstrated that a

biodegradable polymer-based biolimus eluting

stent (BioMatrix FlexTM, Biosensors, Biosensors

International, Tokyo, Japan) was non-inferior to

permanent polymer SES at 1 year. Another

biolimus-eluting degradable PLA polymer stent

(Nobori, Terumo; 6–9 month degradation time)

was evaluated in the COMPARE II and NOBORI

trials, demonstrating clinical non-inferiority

versus EES at 1 year [61]. Contrarily, the large

(1,229 patient) SORT OUT V trial compared the

biodegradable polymer lated biolimus-eluting

stent (Nobori) with permanent polymer SES and

found that at 9 months the rate of cardiac

death, MI and definite stent thrombosis or

Fig. 2 Representative histomorphometric images at 14 and 28 days in Cypher, Combo, LD-Combo and Genous stent.
Reproduced with permission from [59]
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target vessel revascularization (TVR) was 4.1%

for the Nobori versus 3.1% (P = 0.22) for the

permanent polymer SES [62]. Interestingly, the

difference was largely driven by the stent

thrombosis endpoint of 0.7% for the biolimus-

eluting stent versus 0.2% for the SES

(P = 0.034). Likewise, the PLGA PES in the

CoSTAR II trial demonstrated an unexpected

clinical inferiority compared with the PES

control stent [63]. Long-term data derived

from the ISAR-TEST 4 trial found similar 3-year

rates of TLR, target vessel re-infarction and

cardiac death while numerically (though not

statistically significant) less definite stent

thrombosis with a custom-made biodegradable

polymer SES versus permanent polymer SES/EES

[64].

Numerous other iterations of biodegradable

polymer-coated stents are currently on the

clinical trial horizon, including the sirolimus-

eluting Biolute stent with a PLA or PLGA

polymer Orsiro� stent (Biotronik, Berlin,

Germany [65]), the Excel� stent (JW Medical

Systems, Shandong, China [66]), and the

Coracto stent (Alvimedica, Istanbul, Turkey

[67]).

Completely Biodegradable Stents

The ultimate evolution of coronary stents is

complete bioabsorption following lesion

treatment with return of normal endothelial

function while maintaining long-term patency.

Igaki and Tamai pioneered the development of

a completely biodegradable polymeric stent

(poly-L-lactic acid [PLLA] polymer) (Igaki–

Tamai stent, Kyoto Medical Planning Co. Ltd,

Kyoto, Japan) with 170 lm strut thickness and

24% stent strut surface/vessel coverage that is

both self-expanding and balloon expandable.

They reported the first in-man series in 2000

after 25 stents were implanted in 15 patients.

Initial 6-month angiographic and intravascular

ultrasound (IVUS) follow-up demonstrated

acceptable rates of restenosis and TVR (6.7%:

1/15 patients) with no deaths or MI [68]. The

long-term follow-up ([10 years) of 50 patients

reported lack of significant stent recoil and

negative vessel remodeling, but with a 50%

MACE rate and two cases of a definite stent

scaffold thrombosis [69].

This concept was adopted and further

developed into the drug-eluting bioresorbable

vascular scaffold (BVS) program of Abbott

Vascular (Abbott Vascular, Santa Clara, CA,

USA). Their BVS PLLA back-bone provides

radial force while a poly-D,L-lactic acid

(PDLLA) coating controls the release of

everolimus. Both the PLLA and PDLLA are

fully biodegradable leaving only small

platinum markers at the scaffold edges. In

order to keep the mechanical strength of a

conventional stent, strut thickness was almost

doubled to 150 lm, which may negatively

impact stent deliverability [70, 71]. Preclinical

studies evaluated the fully biodegradable stents

in porcine coronary arteries implanted for

1 month and up to 3 years demonstrating non-

inferior rates of neointima formation and

vascular inflammation in comparison with

permanent polymer SES. The degradation of

the polymer was evident within 2 years.

Histopathology exhibits replacement of struts

with a proteoglycan matrix [16, 72] (Fig. 3).

The first in-man ABSORB I (Cohort A) trial

was a prospective, open-label study that

enrolled 30 patients who had either stable,

unstable, or silent ischemia and a single de-

novo lesion (Type B1 and B2) that was suitable

for treatment with a single 3.0 9 12 mm or

3.0 9 18 mm stent. At 5 years, there were no

events of ischemia-driven TLR or cardiac death

[73]. Two-year follow-up with optical coherence

tomography (OCT) revealed fully bioabsorbed

16 Comb Prod Ther (2013) 3:9–24
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stents with late lumen loss of 10% and restored

vasomotion [74]. Improvements of scaffold

design and a modified manufacturing process

of its polymer led to the second iteration of the

trial (ABSORB I: Cohort B). Again, imaging

studies with IVUS or OCT were performed at

various intervals up to 36 months in 101

patients. There was 100% device deployment

success with slightly more complex lesions than

the Cohort A. Two-year results were comparable

to the SPIRIT trial data with the original Xience

V stent with no cardiac deaths, 3% non-Q-wave

MI, and 6% ischemia-driving percutaneous

coronary intervention with no scaffold

thrombosis [75–77]. The ABSORB EXTEND

trial is an ongoing non-randomized, single

Fig. 3 a–d Representative histological sections of a Bioab-
sorbable Vascular Solutions (BVS) stent in pig coronary
arteries removed at 1, 18, 24, and 36 months (EVG
staining); e–h High-power images of strut regions (H&E)
showing presence of fibrin at 1 month and absence at all
other time points. Empty spaces represent BVS struts up to
24 months; i and j Smooth muscle actin positive cells are
observed in the neointima and media at 1 and 36 months,
respectively; k–m Representative images of a 36-month

BVS. Note the strut outline is barely visible. k Illustrates
complete degradation of the polymer strut with surround-
ing basophilic deposition of calcium (H&E). l Alcian blue
positive proteoglycan (blue) infiltrated the matrix of the
BVS stent strut. m Calcification is seen around the
degraded stent strut (von Kossa). Reproduced with
permission from [72]
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arm, continued access trial allowing greater

complexity of lesions with planned

overlapping allowed in longer (22–28 mm)

lesions and a greater variety of stent lengths

and diameters. The ABSORB II trial is a

European randomized trial against the Xience

Prime looking at co-endpoints of vasomotion

(change in minimal luminal diameter [MLD]

before and after nitroglycerine and change in

MLD at 2 years versus post-procedure). The

ABSORB III trial started in early 2013 and is

the first randomized trial in the US comparing

the BVS against Xience DES with a primary

endpoint of target lesion failure at 1 year. The

duration of dual anti-platelet therapy in these

trials remains 1 year and, given the increased

strut thickness, may be more important than

with current generation DES.

A different concept was initiated by

Biotronik who introduced the first metallic

bioabsorbable magnesium stent (AMS) with a

strut thickness of 165 lm and 10% vessel

coverage (comparable to current metallic

stents) with no drug coating. The prospective,

non-randomized, multicenter clinical trial,

DREAMS (Drug Eluting Absorbable Metal

Scaffold), demonstrated impressive

angiographic results immediately after stent

implantation [78]. However, accelerated

absorption of the stent resulted in early loss of

Table 1 Pros and cons of fully absorbable DES

PRO CON Unanswered questions

Need orientated temporary scaffold Cost Optimal material/design

No indefinite foreign body Limited radial force of the scaffold Optimal time frame of degradation

No need for long-term DAPT Bulky design limits application Pathobiological long-term effects

(inflammation, neoatherosclerosis,

calcification)

Sufficient drug carrier Lesion/implantation limitations

Potential for fracture

Table 2 Biodegradable polymer-coated drug-eluting stents

Stent Company Polymer Drug

OrsiroTM Biotronik Biolute Sirolimus

NOYATM Med favor PDLLA Sirolimus

FirehawkTM MicroPort PDLLA Sirolimus

AXXessTM Biosensors PLA Biolimus

BiomatrixTM Biosensors PLA Biolimus

ComboTM OrbusNeich PLA Sirolimus

ExcelTM JW Medical PLA Sirolimus

ElixirTM Elixir

Medical

PLA Novolimus

JACTAXTM Boston

Scientific

PLA Paclitaxel

NoboriTM Terumo PLA Biolimus

BuMATM SinoMed PLGA Sirolimus

CoractoTM Alvimedica PLGA Sirolimus

MiStentTM Micell PLGA Sirolimus

SYNERGYTM Boston

Scientific

PLGA Everolimus

InfinniumTM Sahajanad PLGA/PLLA/

PCL/PVP

Paclitaxel

SupralimusTM Sahajanad PLGA/PLLA/

PCL/PVP

Sirolimus

BioMimeTM Meril Life

Science

PLLA/PLGA Sirolimus

InspironTM Sctech PLLA/PLGA Sirolimus

18 Comb Prod Ther (2013) 3:9–24
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the structural integrity of the scaffold and radial

force within weeks. Consequently, initial

clinical trials in the periphery and coronary

circulation suggested higher rates of restenosis

when compared with traditional BMS [79, 80].

The REVA� stent (REVA Medical, Inc., San

Diego, CA, USA) is made of a tyrosine-derived

polycarbonate polymer (poly[deaminotyrosyl-

tyrosine ethyl ester] carbonate) and is radio-

opaque due to the incorporation of iodine

molecules. The stent is balloon expandable,

strut thickness is 200 lm, stent coverage 55% of

the vessel and designed with a unique slide and

lock (ratchet) mechanism. The first in-man

RESTORE pilot study I (Pilot Study of the

ReZolve� REVA Medical, Inc. San Diego, CA

USA Sirolimus-Eluting Bioresorbable Coronary

Scaffold) analyzed outcomes of 22 patients

implanted between December, 2011 and July,

2012 and found a preliminary late lumen loss of

0.2 mm comparable to DES studies [81]. The

ReZolve2 trial is underway with the next-

generation REVA bioabsorbable stent with

improved radial strength and deliverability.

Determination of the most efficient radial

strength and optimal degradation time are

still under extensive preclinical and clinical

investigations (Table 1). Drug-eluting

balloons that leave no scaffolding have

demonstrated promising results for in-stent

restenosis [82] and will need to be compared

with bioabsorbable stent outcomes. A

comprehensive list of investigational

bioabsorbable polymer coated stents/fully

bioabsorbable stents and current fully

bioabsorbable stent trials is listed in Tables 2,

3 and 4.

CONCLUSION

While the current generation DESs have

dramatically improved the rates of adverse

events in clinical practice, the ongoing quest

to minimize late stent thrombotic events while

maintaining maximal lumen diameters and

retuning normal vessel physiology is ongoing.

The biodegradable polymers and completely

biodegradable stents represent the ‘‘cutting

Table 3 Completely biodegradable stents

Stent Company Polymer Drug

BVSTM Abbott P(D)LLA Everolimus

AMS-4.0TM Biotronik PLLA Sirolimus

ReZolveTM REVA Medical Poly (DTE carbonate) Paclitaxel

IDEALTM Xenogenics PAE and salicylic acid Sirolimus

On-ABSTM OrbusNeich PLLA/PCL/PDLLA Sirolimus

BTITM Bioabsorbable therapeutics Polymer/salicylate ? linker Sirolimus

DeSolveTM Elixir Medical PLLA Novolimus/Myoli

ART Arterial Remodeling Technologies PLLA n/a

Amaranth Amaranth Med. PLLA n/a

Xinsorb Huaan Biotech PLLA Sirolimus

Acute Orbus Neich Poly-L-lactic, poly-D-lactic, and

poly-L-lactide-co-e caprolactone

Sirolimus
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edge’’ in the evolution of DES technology. As

substantiated by early clinical trials, these stents

achieve temporary vessel scaffolding to obtain

optimal vessel calibers, prevent vessel recoil,

and stabilize dissections until the vessel has

healed. Through their bioabsorption, normal

vessel physiology and vasomotion return over

time. However, the clinical experience of

currently available ‘‘bulky’’ and expensive

biodegradable stents is limited to a total of

\10,000 estimated implanted stents worldwide.

Dual anti-platelet duration is not reduced and

may be required for a longer time given the

thicker stent struts with bioabsorbable stents.

Several important features such as optimal

polymer composition, degradation, drug release

kinetics, impact of neoatherosclerosis, and stent

fracture are the focus of current investigations

(Table 1). Likewise, ongoing ‘‘real world’’

clinical experience is needed to gain better

evidence after promising initial results.
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