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ABSTRACT

Introduction: Targeting of the proinflamma-
tory cytokine interleukin 17A (IL-17A) or tumor
necrosis factor alpha (TNFa) with the mono-
clonal antibodies (mAbs) ixekizumab or adali-
mumab, respectively, is a successful therapy for
chronic plaque psoriasis. The effects of these
treatments on immune cell populations in the
skin are largely unknown.
Methods: In this study, we compared the
composition of cutaneous, lesional and non-
lesional immune cells and blood immune cells

in ixekizumab- or adalimumab-treated patients
with psoriasis.
Results: Our data reveal that both treatments
efficiently downregulate T cells, macrophages
and different subsets of dendritic cells (DCs) in
lesional skin towards levels of healthy skin. In
contrast to lesional skin, non-lesional areas in
patients harbor only few or no detectable DCs
compared to the skin of healthy subjects.
Treatment with neither ixekizumab nor adali-
mumab reversed this DC imbalance in non-le-
sional skin of psoriatic patients.
Conclusion: Our study shows that anti-IL-17A
and anti-TNFa therapy rebalances the immune
cell repertoire of lesional skin in psoriatic
patients but fails to restore the disturbed
immune cell repertoire in non-lesional skin.
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Key Summary Points

Why carry out this study?

Chronic plaque psoriasis is a common
inflammatory skin disease. Monoclonal
antibody therapy is the most effective
treatment in moderate-to-severe cases

Our study compares the impact of two
prominent biologicals (ixekizumab and
adalimumab) on the immune cell
occurrence in the skin and blood

What was learned from the study?

Anti-IL-17A and anti-TNFa both regulate
the increase in immune cells in diseased
skin but are not capable of establishing a
sound immune cell profile in uninvolved
skin of psoriatic patients, as in healthy
persons

The striking difference in the profile of
DCs, especially the low frequency in non-
lesional psoriatic skin, suggests that DCs
could be involved in the localized onset
and distribution of this systemic disease

Only ixekizumab was able to
downmodulate the higher numbers of
CD15?CD14- cells in the blood of
patients suffering from psoriasis and
might therefore play a role in the
differentiation of granulocytic myeloid-
derived suppressor cells (GMDSCs)

INTRODUCTION

Chronic plaque psoriasis is an inflammatory
disease with characteristic skin manifestations
and affects 2–3% of individuals in Western
countries. The disease burden is considerable,
and the risk for comorbidities, including car-
diometabolic or mental health disorders, is

increased within the psoriatic population but
might be reduced by effective treatment [1–3].
Psoriasis is understood to be primarily a DC/T
cell-driven disease [4–7]. The prevailing opinion
is that epidermal keratinocytes hyperproliferate
in response to the massive production of IL-17A
by pathogenic CD4? T-helper 17 cells (Th17)
[8–11]. Th17 expansion in turn is induced by IL-
23, which is released by activated myeloid DCs
[12, 13]. However, IL-17A is also released by
other cells in psoriatic skin, including poly-
morphonuclear neutrophils (PMNs) and mast
cells [14–17]. The role of these cells in the
pathophysiology of psoriasis is poorly defined.
TNFa is released by several immune cells,
including macrophages/monocytes, natural
killer cells (NKs) and DCs [18–20]. In psoriasis,
elevated TNFa stimulates DCs to produce IL-23
and additionally upregulates the proinflamma-
tory scenery for keratinocytes in synergy with
IL-17A [5, 21, 22]. While the knowledge of dif-
ferent immune cell types, particularly T cells
and DCs, is profound in lesional skin, less is
known about non-lesional skin or the periph-
eral blood in chronic plaque psoriasis patients
[23–29]. In the study presented here, we ana-
lyzed and compared the blockade of IL-17A
with TNFa inhibition on the immune cell pro-
file in the skin and blood of psoriasis patients

METHODS

Study Design

This was an experimental ex vivo human study
conducted at the Department of Dermatology
and the Institute of Immunology of the Medical
University of Vienna (Vienna, Austria). We
investigated the impact of ixekizumab (IXE)
and adalimumab (ADA) treatment on skin and
blood samples from psoriatic patients. The
study was approved by the ethics committee of
the Medical University of Vienna (ECS
1642/2017) in accordance with the Helsinki
Declaration of 1964 and its later amendments
and followed national law and ethical principles
in research. It required voluntary participation
of patients and healthy controls with written
informed consent. Study participation involved
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the collection of necessary personal data, pho-
tography of involved skin areas and skin and
blood samples. All patients gave written
informed consent to the release of clinical
images captured. The individual risk for partic-
ipants was low, and adverse effects were not
observed in the course of the study.

Recruitment of Subjects

Psoriasis patients from the outpatient clinic of
the Department of Dermatology, Medical
University of Vienna, as well as healthy controls
were voluntarily enrolled in the study. All study
participants were � 18 and\80 years of age.
All included patients had stable ([6 months)
moderate-to-severe chronic plaque psoriasis
involving C 10% of total body surface area
(BSA), with a psoriasis area and severity index
(PASI) score of C 10 and a Physician Global
Assessment (PGA) of C 3 before treatment ini-
tiation. Biopsies and blood samples of subjects
on therapy with either IXE or ADA were realized
within 12 weeks after treatment initiation.
Further details on the inclusion and exclusion
criteria are listed in the supplementary material.

Collection of Samples and Staining
Strategy

Clinical pictures of participants with psoriasis
were made at the timepoint of inclusion (Fig-
ure S5). In each participant, blood and skin
samples were collected. Peripheral blood
mononuclear cells (PBMCs) were isolated from
blood samples. Six-millimeter (mm) punch
biopsies were obtained in duplicate from
lesional and non-lesional skin of psoriatic
patients, whereas one 6-mm punch biopsy of
healthy skin was obtained from controls. Biop-
sies were split into paraffin and frozen sections.
Paraffin-embedded samples were used for his-
tology (Figure S6), immunohistochemistry and
archiving, whereas frozen samples were used for
immunofluorescence (IF) staining. Based on a
set of mAbs, multiplex immunofluorescence
(mIF) coexpression analyses were established on
acetone-fixed cryosections of lesional psoriatic,
non-lesional psoriatic and healthy skin samples,

according to a mIF panel, particularly elabo-
rated for this study (Table S2, S3; Figure S7, S8).
A detailed description of sample collection and
immunohistochemical and immunofluores-
cence staining protocols are disclosed in the
supplementary material section.

Analysis of Skin Samples via TissueFAXS
and TissueQuest

Stained skin tissue sections were acquired using
the TissueFAXS imaging system (TissueGnostics
GmbH, Vienna, Austria) on an Axio Observer Z1
microscope equipped with an LD Plan-Neofluar
20 9 /0.4 objective (Zeiss). Data from the
acquired photos were processed with Tis-
sueQuest image analysis software 6.0 and Stra-
taQuest (TissueGnostics GmbH). Matched
isotype controls were included for analysis of
background staining. Biopsy specimens were
read in a blinded fashion by an independent
investigator who was not involved in the col-
lection or staining of the tissue sections. The
epidermis and dermis were analyzed separately.
In each biopsy, an area of 5 mm2 of the upper
dermis and the epidermis (at a length of 5 mm
basement membrane) was tagged. Labeled cells
within the tagged area were expressed as the
number of cells/mm2. Additionally, the per-
centage and the absolute numbers of labeled
cells within the selected area were also gathered.
Only cells clearly positive for the antigen were
counted. Artifacts, blood vessels and adnexa
were excluded from the areas of interest.

Flow Cytometry

Flow cytometric analysis of single-cell suspen-
sions was performed by surface marker staining.
PBMCs (2 9 105) were incubated with conju-
gated mAbs (Table S2) for 30 min at 4 �C. After
washing with PBS-BSA, the cells were analyzed
by flow cytometry (LSRFortessaTM Cell Analyzer,
Becton Dickinson, Franklin Lakes, NJ).

Statistical Analysis

Flow cytometric data were analyzed using
FlowJo data analysis software (Becton
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Dickinson). Further statistical analysis for flow
cytometric data and TissueQuest-generated
output was performed via GraphPad Prism ver-
sion 7.00 (GraphPad Software, La Jolla, CA).
Therefore, the normality of the data distribu-
tion was assessed by applying the Shapiro-Wilk
test. For a normal distribution, parametric one-
or two-way analysis of variance (ANOVA) was
performed, depending on the number of tested
conditions. This was followed by Tukey’s pair-
wise comparisons (Tukey’s post hoc test) with
adjusted P values. If a Gaussian distribution was
not assumed, the nonparametric Kruskal-Wallis
test was applied, followed by Dunn’s correction
for multiple comparisons. Probability values of
P\ 0.05 were considered statistically signifi-
cant, represented as *P\0.05, **P\ 0.01,
***P\0.001 and ****P\0.0001. The results are
depicted as the mean ± standard deviation (SD)
in scatter plots or bar charts.

RESULTS

Study Population

We enrolled 21 subjects in this study divided
into 4 subgroups: 5 healthy controls, 6
untreated psoriasis patients, 5 psoriatic patients
under IL-17A inhibition with IXE and 5 indi-
viduals under TNFa blockade with ADA within
the first 12 weeks of therapy. All groups showed
comparable demographic characteristics
(Table S1). All participants receiving mAb ther-
apy responded to treatment with at least a
PASI75% reduction within the first 6 months.
The results presented in Fig. 1 demonstrate a
mean PASI reduction of 94% and 87% among
IXE- and ADA-treated subjects, respectively,
indicating that all patients initially responded
to treatment, excluding nonresponders. Further
details on the study population, including
respective body sites for biopsies, additional
scores for disease activity (BSA, PGA), quality of
life [Dermatology Life Quality Index (DLQI)]
and the histopathologic psoriasis severity score
(HPSS) at inclusion, are reported in the supple-
mentary material.

Treatment of Psoriasis Patients
with Ixekizumab or Adalimumab Reduces
T Cells and NK Cells in the Skin

The results of our study demonstrate that CD4?

and CD8? T cells were found at a higher density
in lesional areas of the epidermal and dermal
regions of the skin of untreated psoriasis
patients than in healthy donors (Fig. 2). Treat-
ment with IXE and ADA reduced the number of
CD4? T cells (Fig. 2a, b) and CD8? T cells
(Fig. 2d, e) in lesional skin to levels observed in
healthy donors. An unexpected finding was that
the amounts of CD3?Ki67? T cells in the epi-
dermis of patients treated with ADA were
increased (Fig. S2a). The number and

Fig. 1 Dynamics of the psoriasis area and severity index
(PASI) upon treatment with IL-17A or TNFa inhibitors.
Bar charts are depicted as the mean ± standard deviation
(SD) with respective single values plotted as points.
Psoriatic patients were grouped into subpopulations based
on their treatment regimen. PASI scores are shown at
study inclusion (I) for all subpopulations. PASI scores
under anti-IL-17A (IXE) or anti-TNFa (ADA) therapy
are given before treatment initiation (B), at inclusion
(I) and within 6 months (R) to confirm treatment
response. The percent decrease in the baseline PASI at
the timepoint of inclusion and within 6 months are
presented for both treatment regimens separately.
C Healthy control; PSO psoriasis without treatment;
IXE psoriasis under IL-17A inhibition with ixekizumab;
ADA psoriasis under TNFa inhibition with adalimumab;
ns nonsignificant
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percentage of T cells in the peripheral blood of
psoriasis patients were not altered compared to
those in healthy donors and were not signifi-
cantly modulated upon treatment of patients
with IXE or ADA (Fig. 2c, f). However, T cells
isolated from the blood of psoriasis patients
expressed higher levels of CD71 (Fig. S2c). The
expression of T cell activation marker was sig-
nificantly lower in patients treated with IXE or
ADA.

Furthermore, untreated psoriatic plaques
appeared with more epidermal CD56? NK cells
than healthy skin (Fig. S3a). In the healthy
controls, only a few NK cells were present in the
epidermis. An increase in epidermal NK cells
was not detected under treatment with IXE and
ADA (Fig. S3a). Interestingly, the number of
dermal NK cells was only reduced by IXE but
not upon ADA therapy (Fig. S3b). No relevant
changes in CD19? B cell counts were observed
in the skin or blood within the different patient
cohorts (Fig. S3d, e, f).

Impact of Treatment with Adalimumab
or Ixekizumab on Low-Density
CD151CD142 Cells

Granulocytes (CD15?CD14-) were rare in
lesional and non-lesional areas of the dermis in
psoriatic patients, and the density and fre-
quency of these cells were not regulated by IXE
and ADA treatment (Fig. 3b). In contrast, the
percentage of granulocytes was significantly
increased in the lesional epidermis of psoriatic
patients (Fig. 3a) but not in the non-lesional
epidermis (data not shown). Treatment with
IXE or ADA reduced granulocytes in the epi-
dermis to baseline levels of healthy controls
(Fig. 3a). Analysis of the PBMCs by flow
cytometry revealed an increased number of low-
density CD15?CD14- cells, potentially resem-
bling granulocytic myeloid-derived suppressor
cells (GMDSCs), in patients with psoriasis
compared to healthy controls. Interestingly,
CD15?CD14- cells were downregulated in IXE-
but not ADA-treated patients within the
induction phase of therapy (Fig. 3c, d). Thus,
ADA and IXE differ in their capacity to

downregulate CD15?CD14- cells in psoriasis
patients.

Treatment of Psoriasis Patients
with Ixekizumab or Adalimumab Does
Not Restore the Repertoire of DCs
in the Skin

Langerhans cells (LCs) are prototypic CD1a?

cells in the epidermis. The density of LCs in
lesional but not in non-lesional areas of psori-
atic skin was found to be significantly decreased
(Fig. 4a, b). Neither treatment with IXE nor
treatment with ADA changed LC numbers in
the psoriatic epidermis. In contrast to epidermal
LCs, the density of CD1a? cells was strongly
increased in the dermis of lesional skin (Fig. 4c).
CD1a? cells, which could resemble inflamma-
tory DCs, were absent in the dermis of healthy
controls as well as in the non-lesional dermis of
psoriasis patients (Fig. 4d). A high number of
CD1a? cells in the lesional dermis was not
detected in patients upon IXE or ADA treatment
(Fig. 4c). Elevated percentages of CD1a? cells
were also detected in the blood of psoriasis
patients, which were normalized to levels in
healthy controls upon both treatment regimens
(Fig. 4e). Other characteristic markers of DCs
that were analyzed in this study were CD141,
which is expressed on conventional DC-type 1
(cDC1), and CD303, a marker for plasmacytoid
DCs (pDCs) (Fig. 4) [30–33]. The density of
CD141? and CD303? cells was significantly
decreased in non-lesional zones of the dermis of
psoriasis patients compared to healthy skin
(Fig. 4i, n). This cellular profile was not restored
in patients upon treatment with IXE or ADA.
The results presented in Figure S4 demonstrate
that in contrast to DCs, the levels of CD68?

cells, which are most likely macrophages, in
non-lesional skin were similar to those in heal-
thy controls.

The lesional skin of psoriasis patients har-
bored significantly more CD141? and CD303?

cells than that of healthy controls (Fig. 4h, m).
Here, treatment with IXE or ADA reversed the
numbers of both cell types to levels of healthy
controls (Fig. 4h, m). In the blood, the numbers
of CD303? cells were increased in psoriasis
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patients, and expression was absent upon IXE
but not adalimumab therapy (Fig. 4o). The
expression of CD141? cells in the blood was
similar in psoriatic patients and healthy donors
(Fig. 4j). Taken together, IXE and ADA had a
comparable impact on the DC compartment of
psoriatic patients but did not restore the reper-
toire of DCs in non-lesional skin or LC in the
epidermis.

DISCUSSION

The biologicals IXE directed against IL-17A and
ADA against TNFa have significantly improved

bFig. 2 Impact of ixekizumab and adalimumab treatment
on T cells in psoriatic skin and blood. Epidermal and
dermal CD3? T cells, including their combination with
CD4? (a, b) and CD8? (d, e) cells, are given in numbers/
mm2 as bar charts with the mean ± standard deviation
(SD) and respective single values plotted as points. The
corresponding CD3? populations in the blood are equally
depicted in % of PBMC fraction (c, f). Psoriatic patients
were grouped based on their treatment regimen during the
induction phase. C Healthy control; PSO psoriasis without
treatment; IXE psoriasis under IL-17A inhibition with
ixekizumab; ADA psoriasis under TNFa inhibition with
adalimumab; ns nonsignificant; L lesional; N non-lesional

Fig. 3 Changes in the granulocyte cell system upon IL-
17A and TNFa inhibition. Expression of CD15? gran-
ulocytes in lesional skin (a, b), and the PBMC fraction (c,
d) of psoriatic patients was analyzed. Data are depicted in
either cells/mm2 (skin) or % (PBMCs) as bar charts with
the mean ± standard deviation (SD). Single values are
plotted as points. Psoriatic patients were grouped into
subpopulations based on their treatment regimen during
the induction phase. A representative flow cytometry plot

of CD15?CD14- cells in a healthy control, an untreated
psoriasis patient and a patient under anti-IL-17A (IXE) or
anti-TNFa (ADA) therapy is shown under e. Percentages
of CD15?CD14- cells are displayed on the right.
C Healthy control; PSO psoriasis without treatment;
IXE psoriasis under IL-17A inhibition with ixekizumab;
ADA psoriasis under TNFa inhibition with adalimumab;
ns nonsignificant
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the handling of moderate to severe psoriasis
[34]. In this study, we performed a head-to-head
analysis of immune cell distribution and fre-
quency in lesional and non-lesional skin and
blood of IXE- and ADA-treated patients with
psoriasis. Our data show that both treatment
strategies have similar effectiveness in reducing
the numbers of key drivers of the disease—T
cells, DCs and pDCs—in lesional areas of pso-
riatic skin. In addition, IXE- but not ADA-trea-
ted psoriatic patients exhibited downregulated
NK cells in lesional regions of the skin and low-
density CD15?CD14- cells in the blood. The
effective downregulation of immune cells in
diseased skin, demonstrated with anti-IL-17A
and anti-TNFa in this study, raises the question
of whether treatment with these monoclonal
antibodies can decrease inflammatory damage
in other tissues apart from the skin. A protective
scenario in pre-clinical enthesitis was already
shown for patients with psoriasis under adali-
mumab [35]. Studies on anti-IL-17A agents, also
report promising results for patients with pso-
riatic arthritis [36, 37]. Future studies on the
immune cell profile under treatment in tissues
involved in psoriasis-associated comorbidities
are crucial to identify if the effects are similar to
the skin. To be able to decrease tissue damage or
even prevent psoriatic comorbidities such as
psychiatric, cardiovascular or arthritic involve-
ment would justify early systemic treatment
and minimize disease burden.

Psoriasis is typically accompanied by an
increase in different types of DCs, in particular

CD1a?, cDC1 and pDCs, in the lesional dermis
[21, 38–42]. Interestingly, we discovered that
the number of DCs in the non-lesional skin was
significantly lower, even compared to healthy
donors (Fig. 4). The striking difference in the
profile of DCs in psoriatic skin suggests that DCs
could be involved in the localized onset and
distribution of this systemic disease. The auto-
induction of psoriatic lesions in xenografts of
unaffected psoriatic skin of immune-deficient
mice supposed a regulatory assignment of resi-
dent immune cells and local immune environ-
ments [43]. In this model, pDCs were rapidly
recruited to the xenograft and played an
important role during the initiation phase of
the psoriatic plaque formation [21] by produc-
ing type I interferon and promoting functional
maturation of myeloid DCs in psoriasis [44, 45].
Thus, the depletion of pDCs in non-lesional
psoriatic skin demonstrated in our results might
be required to keep the respective skin unaf-
fected in a patient with psoriasis. However, the
consequences of the low frequency of DCs in
non-lesional psoriatic skin need to be studied in
more detail in future studies. The results of our
study further demonstrate that both ADA and
IXE treatment regimens did not restore the low
amounts of DCs in the dermis or LCs in the
epidermis in non-lesional or lesional areas of
psoriatic skin, respectively. Thus, both biologi-
cals are effective in regulating the increase in
immune cells in diseased skin but are seemingly
not capable of establishing a sound immune cell
profile in uninvolved skin of psoriatic patients
as in healthy persons.

The number of CD68? cells was reduced
because of IXE or ADA treatment, suggesting
that the increase in macrophages is controlled
by both biologics. In contrast to DCs, the
number of CD68? cells in non-lesional skin was
comparable to that in the skin of healthy indi-
viduals and did not point to a disturbed
immune balance in the unaffected skin of pso-
riasis patients.

Another unexpected finding was the ele-
vated number of low-density CD15?CD14-

cells in the PBMC fraction of psoriasis patients,
which could resemble GMDSCs. GMDSCs, also
described as polymorphonuclear-myeloid-
derived suppressor cells (PMN-MDSCs), are a

bFig. 4 Dynamics of dendritic cells in lesional versus non-
lesional skin and blood in response to anti-IL-17A or anti-
TNFa therapy. Bar charts are depicted as the mean ± s-
tandard deviation (SD), including lesional and non-
lesional epidermal and dermal CD1a? (a–d), CD141?

(f–i) and CD303? (k–n) cells in numbers/mm2. Corre-
sponding CD1a? (e), CD141? (j) and CD303? (o) cells
of the PBMC fraction are given in %. Single values are
plotted as points. Psoriatic patients were grouped into
subpopulations based on their treatment regimen during
the induction phase. C Healthy control; PSO psoriasis
without treatment; IXE psoriasis under IL-17A inhibition
with ixekizumab; ADA psoriasis under TNFa inhibition
with adalimumab; ns nonsignificant
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relatively new subset of regulatory myeloid-
derived cells of the phagocytic cell system that
are generated under inflammatory conditions
and inhibit effector T cells [46–49]. GMDSCs
have been detected in various diseases, above all
in cancer but also in sepsis or autoimmune
disease [50–56]. Although myeloid suppressor
cells in general have shown a remarkable ability
to suppress T cell responses in cancer, their role
seems to be more heterogenous in autoimmune
diseases such as psoriasis [29, 57]. It has been
reported that GMDSCs are elevated in the blood
of psoriatic patients [58], which could be inter-
preted as a compensatory mechanism in
chronic inflammatory diseases. However, IXE
but not ADA was able to downmodulate the
higher numbers of CD15?CD14- cells in
patients suffering from psoriasis. The fact that
GMDSCs in vitro promoted Th17 differentia-
tion matches the observation that anti-IL-17A
but not anti-TNFa downmodulated the higher
numbers of these cells in the blood of our
patients [59]. Thus, IL-17A but not TNFa is
seemingly a key factor for the differentiation of
GMDSCs in the human immune system. It
remains to be determined in future studies
whether the CD15?CD14- cells that we found
in the PBMCs of our patients are indeed
GMDSCs [50, 60, 61]. If so, the presence or
absence of GMDSCs before and after IXE ther-
apy could be used as a biomarker to monitor
disease progression and therapeutic success.

The mechanisms underlying the treatment
of patients with ADA and IXE have been studied
and discussed in many studies [62–66]. We
observed that neither of the two biologicals
induced enhanced apoptosis in immune cells in
either the skin or the blood. However, we
detected reduced expression of activation
markers on T cells, suggesting that inflamma-
tory signals stemming from inflamed tissue may
promote T cell activation and probably also T
cell proliferation, which is supported by the
finding of increased levels of CD71 on T cells in
psoriatic patients and the inhibition of CD71 by
IXE and ADA.

A limitation of our study was the relatively
small study collective of 21 subjects. Biopsies
are not a standard procedure at the Medical
University of Vienna in the monitoring of

psoriasis patients. So, the number of patients
included in the study was intended to be small.
Additionally, participants were enrolled
according to their current treatment status and
were not prospectively followed up. Neverthe-
less, data between patients were generally con-
sistent, arguing against major interpatient
variability. Novel methods such as single-cell
RNA sequencing (scRNAseq) have significantly
advanced our knowledge in the field and led to
the description of additional cell types [67–73].
The findings of expanded T/NK cells in lesional
psoriatic skin corroborate recent transciptome
studies, which deployed scRNAseq to resolve
the cellular heterogeneity of inflammatory skin
and confirmed a Tc17/Th17 signature in psori-
asis [72–75]. The increased numbers of dendritic
cells in lesional psoriatic skin in our study are a
confirmatory finding and in accordance with
flow or transcriptome analyses [69, 72]. The low
frequency of DCs in non-lesional psoriatic skin
demonstrated by our results are unexpected and
in a way contrary to previous reports [71]. Fol-
low-up single-cell analyses might focus on non-
lesional psoriatic skin compared to healthy and
lesional psoriatic skin to further elucidate the
gene programs involved in the localized onset
of the disease. In summary, the key aspects of
the immune cell profile in psoriasis correspond
between multiplex immunohistochemistry/im-
munofluorescence techniques and transcrip-
tome analysis, including scRNAseq. The
purpose of our study was, however, not to better
characterize immune cells and their subsets in
psoriatic skin but to compare the impact of
two prominent biologicals (IXE, ADA) on
the immune cell occurrence.

CONCLUSION

Taken together, the results of our study
demonstrate that ADA and IXE are both effec-
tive in downregulating the increase in promi-
nent cellular drivers of psoriasis but fail to revert
the DC deficiencies in non-lesional parts of the
skin.
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Stöckl; Investigation: Julia Tittes, Jennifer Brell,
Sarojinidevi Künig; Methodology: Julia Tittes,
Jennifer Brell, Pia Fritz, Georg Stary, Julia M.
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