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ABSTRACT

Atopic dermatitis (AD) is a chronic, relapsing
immunoinflammatory skin condition charac-
terized by sensations such as pruritis, pain, and
neuronal hypersensitivity. The mechanisms
underlying these sensations are multifactorial
and involve complex crosstalk among several
cutaneous components. This review explores
the role these components play in the patho-
physiology of atopic dermatitis. In the skin
intercellular spaces, sensory nerves interact with
keratinocytes and immune cells via myriad
mediators and receptors. These interactions
generate action potentials that transmit pruritis

and pain signals from the peripheral nervous
system to the brain. Keratinocytes, the most
abundant cell type in the epidermis, are key
effector cells, triggering crosstalk with immune
cells and sensory neurons to elicit pruritis, pain,
and inflammation. Filaggrin expression by ker-
atinocytes is reduced in atopic dermatitis,
causing a weakened skin barrier and elevated
skin pH. Fibroblasts are the main cell type in the
dermis and, in atopic dermatitis, appear to
reduce keratinocyte differentiation, further
weakening the skin barrier. Fibroblasts and mast
cells promote inflammation while dermal den-
dritic cells appear to attenuate inflammation.
Inflammatory cytokines and chemokines play a
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major role in AD pathogenesis. Type 2 immune
responses typically generate pruritis, and the
type 1 and type 3 responses generate pain. Type
2 responses and increased skin pH contribute to
barrier dysfunction and promote dysbiosis of
the skin microbiome, causing the proliferation
of Staphyloccocus aureus. In conclusion, under-
standing the dynamic interactions between
cutaneous components in AD could drive the
development of therapies to improve the qual-
ity of life for patients with AD.

Keywords: Alloknesis; Chronic itch; Hyper-
knesis; Keratinocyte; Neuroimmunology; Neuro-
nal sensitization; Sensory biology; Skin physio-
logy; Skin pain

Key Summary Points

Atopic dermatitis (AD) is a chronic skin
disease characterized by sensations such as
pruritis and pain due to neuronal
hypersensitivity.

The mechanisms underlying AD
sensations are multifactorial and involve
complex crosstalk among several
cutaneous components including
peripheral sensory neurons, keratinocytes,
infiltrating immune cells, and the skin
microbiome.

As the most abundant cell type in the
epidermis, keratinocytes are key effector
cells, triggering crosstalk with immune
cells and sensory neurons to elicit itching,
pain, and inflammation.

Understanding the dynamic molecular,
cellular, and microbial interactions in AD
could drive the development of new
therapeutic approaches to relieving
cutaneous pain and pruritis.

INTRODUCTION

Atopic dermatitis (AD) is a chronic, relapsing
immunoinflammatory skin condition charac-
terized by localized eczema, scaly dry skin, and
intense pruritis [1, 2]. Disease onset typically
manifests during childhood, but incident dis-
ease may also occur during adulthood [3]. AD
affects approximately 0.96–22.6% of children
and 1.2–17.1% of adults, and the incidence
appears to be increasing in industrialized
countries [2, 4]. AD is associated with a pro-
found negative impact on the psychosocial
functioning and quality of life of patients,
affecting sleep, social interactions, mental
health, and work productivity [5, 6]. Patients
with AD often identify pruritis and pain/sore-
ness as the most important symptoms when
assessing treatment efficacy [7].

AD has heterogeneous clinical characteris-
tics, but intense itch, defined as an unpleasant
sensory perception that causes a desire to
scratch, is the predominant feature [8–10].
Chronic itch, associated with inflammation in
AD, is defined as a continuous pruritis lasting
longer than 6 weeks [11]. The mechanisms
leading to itching in AD and an itch–scratch
cycle are multifactorial and involve crosstalk
between the skin microbiome, the epidermal
barrier, keratinocytes, immune cells, and sen-
sory nerves [3].

Skin pain is frequently described in AD and
affects between 42.7% and 92.2% of patients
with AD [10, 12–15]. Some patients experience
only pain or itch, but 59–78% of patients with
AD experience these sensations concomitantly
[14, 16, 17]. Patients often describe their pruritis
as ‘‘tingling,’’ ‘‘burning,’’ ‘‘searing,’’ and ‘‘sting-
ing,’’ terms that also describe neuropathic pain
[12, 15, 17, 18]. The mechanisms of pain in AD
are still poorly understood compared with pru-
ritis but likely involve nociceptive pain caused
by the activation of peripheral nerve fibers by
scratching and inflammatory pain associated
with tissue damage and inflammation [19–21].

In patients with AD who experience chronic
inflammation and tissue damage, a neural sen-
sitization phenomenon is also noted
[17, 22, 23]. Chronic exposure to inflammatory
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mediators or trauma (such as scratching) asso-
ciated with AD can cause primary sensory neu-
ron afferents and central synapses to amplify
information and become hyper-responsive over
time [23]. Central and peripheral neuronal
sensitization can lead to hyperknesis (increased
sensitivity of nerves to pruritic stimuli) and
alloknesis (nonpruritic stimuli are perceived as
itch), which further contribute to the chronic
nature of AD [17, 23–25].

The pathophysiology of pruritis, pain, and
neurosensitization in AD is complex and
involves crosstalk between several components,
including the peripheral and central nervous
system, resident epidermal skin cells, immune
cells, and the skin microbiome [3, 23, 25]. Here,
we review the role of cutaneous components in
the mechanisms mediating pruritis, pain, and
neurosensitivity in AD.

METHODS

A literature review was performed using
PubMed to identify relevant primary research
and review articles published between 2010 and
2023. Seminal articles published prior to 2010
were included as appropriate. This article is
based on previously conducted studies and does
not contain any studies with human partici-
pants or animals performed by any of the
authors.

OVERVIEW OF CUTANEOUS
COMPONENTS

The epidermis, dermis, and hypodermis are the
main three layers of the skin (Fig. 1) [26]. The
superficial component of the skin is the epi-
dermis, which consists of several layers of ker-
atinocytes in progressive stages of
differentiation following their germination at
the stratum basal layer. The stratum corneum
(SC) is the outermost layer of the epidermis and
forms the skin’s first physical barrier against
water loss and penetration by environmental
irritants. The SC also provides an environment
for commensal skin microbiome colonization.
Below the SC are several layers of keratinocytes

interspersed with Langerhans cells (LCs), mela-
nocytes, and Merkel cells (MCs), as well as
infiltrating immune cells. Below the epidermis,
separated by a basement membrane, is the der-
mis containing infiltrating immune cells,
fibroblasts, mast cells, dermal dendritic cells,
peripheral sensory neurons, blood and lym-
phatic vessels, hair follicles, and sweat glands.
The hypodermis is the innermost layer of skin
and contains large amounts of adipocytes and
fibroblasts [26, 27]. Figure 1 illustrates a sche-
matic of the skin indicating the different cuta-
neous components contributing to pruritis,
pain, and neurosensitization in AD.

Neurosensory Component

Sensory nerves innervate all skin layers and
create a complex neural network that extends to
the stratum corneum [11, 25, 28]. In the skin
intercellular spaces, sensory nerves come in
close contact with resident (e.g., keratinocytes
and dendritic cells) and infiltrating cells (e.g.,
lymphocytes and eosinophils) and interact with
these via myriad mediators and receptors
[11, 20, 22, 25]. These interactions generate
action potentials that transmit signals from the
peripheral nervous system to the dorsal root
and trigeminal ganglia, where they are then
conveyed to the spinal cord and, ultimately, the
brain for interpretation [23, 25].

Pruriceptive neurons are a subset of noci-
ceptors that can be activated by itch-generating
mechanical or chemical stimuli [29]. Most
pruriceptors are polymodal and can be activated
by capsaicin, a classical pain stimulus
[20, 29–31]. It is thought that noxious stimuli
selectively activate distinct receptor and intra-
cellular signaling pathways in the same neurons
for transducing pruritis or pain signaling
[20, 30].

Pruritis in AD is primarily perceived via
nonhistaminergic sensory nerves that can be
activated via receptors for endogenous and
exogenous pruritogens other than histamine,
such as proteases, cytokines, and amines
[11, 23, 32]. Nonhistamine receptors of impor-
tance in AD include cytokine receptors and
various G protein-coupled receptors other than
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histamine receptors, such as protease-activated
receptors (PARs), toll-like receptors (TLRs), and
Mas-related G protein-coupled receptors (Mrg-
prs) [20, 30, 32]. Genetic and functional analy-
ses initially supported the existence of itch-
specific neurons that express Mrgprs [33].
MrgprX2 is upregulated in patients with AD and
correlates with itch intensity [34].

The generation and transmission of neu-
rosensory signals depend on ion channel acti-
vation to generate action potentials. Both itch-
and pain-sensory neurons employ many of the
same ion channels to transmit their signals,
including the voltage-gated sodium channels
NaV1.7 and NaV1.8, transient receptor poten-
tial ankyrin 1 (TRPA1), and transient receptor
potential vanilloid 1 (TRPV1) [8, 35]. Recent

Fig. 1 The skin is a laminated structure composed of
several components that contribute to pruritis, pain, and
neurosensitization in atopic dermatitis: the neurosensory
component (nociceptors and pruriceptors), resident cell

component (keratinocytes, Langerhans cells, Merkel cells,
fibroblasts, mast cells), immune/infiltrating cell component
(macrophages and lymphocytes), and the skin microbiome
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evidence suggests that the function of PIEZO
ion channels may extend beyond mechan-
otransduction; PIEZO1 plays a role in chronic
pruritis but not pain in mice, and PIEZO2 may
contribute to both alloknesis and pain patho-
genesis [36–38].

An imbalance between nerve elongation and
repulsion factors (such as nerve growth factor
and semaphorin 3A, respectively) in the skin of
patients with AD has the potential to enhance
nerve sprouting and promote enhanced
branching of intraepidermal nerves [39, 40].
This might contribute to neural sensitization by
lowering the activation threshold of sensory
neurons [25, 40]. However, there is conflicting
evidence regarding the density of nerve fibers in
human AD skin; it is not clear whether hyper-
innervation plays a role in AD pathogenesis
[41–45].

Resident and Infiltrating Cell Components

Keratinocytes
Keratinocytes comprise most cells in the epi-
dermis and are involved in skin barrier func-
tions [46]. The function of the epidermis as a
physical barrier depends primarily on the
outermost epidermal layer, the SC. It is the end
product of the progressive differentiation of
keratinocytes and comprises 10–20 layers of
corneal keratinocytes embedded in a complex
hydrophobic extracellular matrix consisting of
ceramides, fatty acids, cholesterol lipids, and
proteins [27, 47]. Keratinocytes express several
structural proteins as they mature, including
loricrin, involucrin, and filaggrin (FLG), which
is the main structural protein in the SC [48].
Genetic studies have demonstrated a strong
association between AD and several loss-of-
function mutations in the filaggrin gene (FLG).
Filaggrin deficiency in AD also alters the acidic
milieu of the SC, with reduced urocanic acid
being a possible cause of elevated skin pH in AD
[49].

Keratinocytes are considered the key effector
cells in AD, triggering crosstalk with immune
cells and sensory neurons to elicit pruritis and
inflammation [46, 50]. They also express various
receptors involved in pruritis and pain also

found on nerve fibers, including protease-acti-
vated receptor 2 (PAR2), aryl hydrocarbon
receptors (AhRs), transient receptor potential
ion channels (including TRPV1, TRPV3, and
TRPA1), tropomyosin receptor kinases A and B
(TrkA and TrkB), interleukin (IL)-31 receptors,
and l and j opioid receptors [28, 51, 52].
Therefore, keratinocytes themselves can be
activated by binding pruriceptive and algogenic
molecules to surface receptors. For example,
keratinocytes release thymic stromal lym-
phopoietin (TSLP) in response to a range of
stimuli, including protease activation of PAR2.
TSLP activates other immune cells but can also
directly stimulate pruriceptive sensory nerve
fibers to induce pruritis, a finding that has also
been shown for the alarmin IL-33 [25, 35, 53].
Of the protease alarmins released by ker-
atinocytes, various kallikreins (KLKs), including
KLK5, KLK7, KLK8, and KLK13, are elevated in
lesional AD skin [34, 54]. KLK7 contributes to
chronic pruritis independent of skin inflam-
mation [54].

Periostin is a multifunctional extracellular
matrix protein that is highly expressed in both
keratinocytes and fibroblasts in the dermis and
plays a role in skin inflammation and pruritis
via the activation of integrin a-IIb on sensory
nerves and amplification of the secretion of
type 2 cytokines [55, 56]. The release of perios-
tin from keratinocytes and fibroblasts is further
stimulated by TSLP and other type 2 cytokines,
such as IL-4 and IL-13, thus inducing a positive
feedback cycle of inflammation [40, 56].

Keratinocytes release many other molecules,
including nerve growth factor (NGF), opioids,
substance P, neurotrophin 4, endocannabi-
noids, artemin, and acetylcholine, which have
been implicated in pruritis and/or pain in AD
[28, 57]. For example, NGF binds to TrkA on
nociceptors to initiate both pruritis and pain
signaling [32, 58, 59]. Acetylcholine can acti-
vate sensory nerves both directly and indirectly,
the latter by lowering the activation threshold
for other stimuli [28, 57].

Merkel Cells
MCs are situated within the basal layer of the
epidermis and are closely associated with low-
threshold, slowly adapting Ab sensory fibers,
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which together form Merkel discs. MCs are pri-
marily mechanosensory cells and may play a
role in alloknesis, but generally, the role these
cells play in chronic pruritis and/or pain in AD
remains unclear [50]. The mechanosensitive
PIEZO1 ion channel is expressed in MCs, and
recent evidence suggests that PIEZO1 may play
a role in chronic pruritis but not pain, while
PIEZO2 may contribute to alloknesis and pain
[36–38].

Fibroblasts
Fibroblasts are the principal cell type in the
dermis and exhibit considerable heterogeneity
[60] Using single-cell transcriptome analysis, He
et al. found a novel fibroblast subpopulation
that was unique to lesional AD skin and
expressed C–C chemokine ligand 2 (CCL2) and
CCL19 [61]. These researchers also found a
corresponding dendritic cell population that
expressed C–C chemokine receptor type 7, the
CCL19 receptor, thereby demonstrating possi-
ble crosstalk between fibroblasts and immune
cells in AD. In AD skin, fibroblasts have been
shown to impair the proliferation of ker-
atinocytes and the terminal differentiation
process, partially due to reduced expression of
the differentiation-associated cytokine leuke-
mia inhibitory factor by atopic fibroblasts [62].
The exact role of fibroblasts in pruritis and pain
pathogenesis in AD remains to be determined.

Mast Cells
Mast cells are tissue-resident immune cells filled
with cytosolic granules. Upon activation, mast
cells undergo degranulation and release the
content of their cytosolic granules containing
histamine, serotonin, leukotriene, proteases,
cytokines, and chemokines [30, 63–65] Mast cell
activation also prompts the de novo synthesis
of many cytokines and chemokines as well as
lipid mediators such as prostanoids [65, 66].
Proteases produced by mast cells, such as tryp-
tases, chymases, cathepsins, and KLKs, can
induce strong nonhistaminergic pruritis by
binding to PARs on keratinocytes and sensory
neurons [32, 67]. Activation of MrgprX2 on
mast cells has been found to cause nonhis-
taminergic pruritis [68]. MrgprX1 and MrgprX2

have also been implicated in neuropathic and
inflammatory pain via mast cell activation
[69, 70]. Targeting mast cell-associated Mrgprs
may offer promising therapies for AD.

Dendritic Cells
Dendritic cells represent a heterogeneous family
of bone marrow-derived leukocytes that link
innate and adaptive immunity [71]. LCs are a
unique population of tissue-resident dendritic
cells that form a network of cells across the
epidermis [72]. Upon activation, LCs migrate to
regional lymph nodes, where they prime T
lymphocytes to induce an immune response
[73, 74].

Although more LCs are present and reside in
an activated state in AD lesions, the exact role
they play in this disease is unclear [73]. Some
evidence demonstrates that TSLP causes the
proliferation of skin-resident LCs but not
monocyte-derived LCs. A defective epidermal
barrier in AD possibly causes altered LC behav-
ior, including increased proliferation rates and
an enhanced activation state that instigates
inflammation in AD. The high-affinity
immunoglobulin E (IgE) receptor is expressed at
higher levels on LCs in AD lesions, and the
binding of IgE molecules to the surface of LCs
enhances antigen uptake [73, 74].

Although LCs are the main dendritic cell in
healthy skin, AD skin is additionally colonized
by inflammatory dendritic epidermal cells
(IDECs) that contribute to ongoing inflamma-
tion pathology [75]. Both LCs and IDECs
express several TLRs to sense danger signals
from the external environment, such as from
the skin microbiome, and TLR prompts the
activation and maturation of dendritic cells,
characterized by the expression of costimula-
tory molecules and secretion of cytokines. In
particular, TLR2 stimulation due to a lipopep-
tide from the commensal bacterium Staphylo-
coccus epidermidis is known to prompt
CD36–p38 mitogen-activated protein kinase
signaling in keratinocytes to increase antibac-
terial defense; however, TLR2 expression is
decreased in epidermal LC and IDEC [76, 77].
This may reduce the inflammatory response,
thus contributing to heightened S. aureus colo-
nization in patients with AD [78, 79].
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Immune Component

Inflammatory cytokines and chemokines play a
major role in AD pathogenesis, and pruritis and
pain pathways are immunologically distinct
[35]. Cytokines associated with type 1 and/or
type 3 immune responses, such as IL-1 b, IL-6,
IL-17A and tumor necrosis factor a, together
with chemokines, such as CCL2, CCL5, and
C–X–C motif chemokine 1, have been associ-
ated with pain [8, 35, 80, 81]. Pruritis in AD is
associated with increased type 2 cytokines, such
as IL-4, IL-13, and IL-31 [35, 81]. Macrophages
have also been implicated as cellular sources of
IL-31 [82].

Activated keratinocytes significantly increase
the release of proinflammatory cytokines such
as IL-1, IL-25, IL-33, and TSLP. These cytokines
activate LCs and dendritic cells in the epidermis
and dermis, leading to the activation of T helper
2 cells, which, in turn, causes the production of
more inflammatory cytokines and further acti-
vation of keratinocytes [46]. IL-31 is a key
cytokine mediating pruritis in AD by binding to
its receptor complex, comprising an IL-31
receptor A and oncostatin M receptor, expressed
on peripheral nerve fibers, dorsal root ganglia,
and keratinocytes [40, 83]. IL-31 can also gen-
erate morphological changes in neurons that
increase sensitivity [84]. IL-4 and IL-13 induce
chronic pruritis in a mouse model of AD by
activating sensory neurons through the IL-4
receptor a and Janus kinase 1 [85].

Type 2 immune responses contribute to
barrier dysfunction in AD. For example, the
expression of genes regulating keratin, filaggrin,
involucrin, and loricrin production is down-
regulated by IL-4, IL-13, and IL-22, thereby
suppressing the development of the filaggrin/
keratin structural network [86–88]. IL-4 and IL-
13 also significantly induce keratinocytes to
release the peptidase KLK7, which induces pru-
ritis in AD without inflammation and degrades
corneodesmosomal proteins to initiate skin
desquamation [54, 88]. Type 2 responses also
negatively influence ceramide synthesis in the
SC [86].

IL-4 contributes to S. aureus colonization of
the disrupted skin barrier by suppressing the
production of antimicrobial peptides (AMP) by

keratinocytes and triggering fibroblast produc-
tion of collagen, fibronectin, and fibrinogen,
which serve as adhesion molecules for S. aureus
[87].

Microbial Component

In healthy skin, the microbiome plays an
important role in inhibiting pathogen colo-
nization and growth, such as by the secretion of
AMPs, and modulates innate and adaptive
immune responses [89]. For example, skin
microbiota produce ligands, including trypto-
phan metabolites and short-chain fatty acids,
that activate the aryl hydrocarbon receptor to
initiate host defense responses by keratinocytes
[52].

In AD, increased skin pH promotes microbial
dysbiosis, with a reduction of microbial diver-
sity and proliferation of S. aureus
[78, 79, 90, 91]. Increased pH in atopic skin also
increases the expression of secreted and cell
wall-associated proteins involved in immune
evasion and adherence, such as clumping factor
B and fibronectin-binding protein, which fur-
ther promotes S. aureus colonization on skin
affected by AD [79].

Elevated skin pH and the proliferation of S.
aureus in AD promote an increased abundance
of microbiome-derived serine proteases in
lesional skin [92]. These proteases induce pru-
ritis by activating PAR2 and PAR4 receptors in
keratinocytes and pruriceptors [32, 78]. Sta-
phylococcus d-toxin activates MrgprX2 to
induce mast cell degranulation, which induces
the release of several proinflammatory media-
tors including histamine, ILs, tumor necrosis
factor, and prostaglandin D2 [93]. MrgprX2 is
also activated by AMPs, produced in response to
stimuli such as microbial pathogens, to pro-
mote the release of IL-31 [78].

Studies of pain during S. aureus infection
have indicated that pathogens can directly
activate nociceptors through the release of
N-formyl peptides and the pore-forming toxin a
hemolysin and modulation of ion channel
activity [94].
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CONCLUSIONS

Both pruritis and pain are common symptoms
in patients with AD, and patients may show
neuronal sensitization to pruritis and pain.
Multiple cutaneous components play a role in
the pathophysiology of AD and understanding
the specific pathways involved in pruritis, pain,
and neurosensitivity may offer new insights
regarding the correlation between available
therapies and pruritis/pain relief. Both pruritis
and pain are common in patients with AD, and
associated neuronal sensitization foments these
symptoms. Beyond the components of the
sensory nervous system, multiple additional
cutaneous elements play a role in the patho-
physiology of AD.

Several new therapeutics show promise for
treating the symptoms of itch and pain in
patients with AD. Topical phosphodiesterase 4
inhibitors have been shown to reduce levels of
IL-4 and IL-31, which are key cytokines gov-
erning pruritis in AD [81, 95]. Clinically mean-
ingful improvements in pruritis have been
observed with Janus kinase (JAK) inhibitors,
including the JAK1 selective inhibitor, abroci-
tinib [96]. JAK inhibitors alleviate pruritis by
suppressing the JAK signaling pathway, which is
involved in the production of proinflammatory
cytokines [97, 98]. However, some JAK inhibi-
tors, such as tofacitinib and ruxolitinib, are
known to cause application site discomfort
(pain and burning sensations) [97]. The mono-
clonal antibody dupilumab targets the a sub-
unit of the IL-4 and IL-13 receptor complex,
which has a known role in pruritis in AD
[81, 99]. Dupilumab has been shown to reduce
pruritis in AD, but its role in pain is unknown
[99]. As our understanding of the dynamic
molecular, cellular, and microbial interactions
in normal and skin affected by AD increases, it
is reasonable to expect that these developments
will lead to new insights into the similarities
and differences between chronic pruritis and
chronic pain in AD.
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