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ABSTRACT

Psoriasis is a chronic, immune-mediated,
inflammatory disease primarily affecting the
skin. It is currently coming to light that patients
with psoriasis have disrupted intestinal barrier
and often suffer from comorbidities associated
with the gastrointestinal tract. Moreover, there
is growing evidence of both cutaneous and
intestinal paradoxical reactions during biologic
treatment in patients with psoriasis. This review
focuses on barrier defects and changes in
immune responses in patients with psoriasis,
which play an important role in the develop-
ment of the disease but are also influenced by
modern biological treatments targeting IL-17

and TNFa cytokines. Here, we highlight the
relationship between the gut–skin axis, micro-
biota, psoriasis treatment, and the incidence of
paradoxical reactions, such as inflammatory
bowel disease in patients with psoriasis. A better
understanding of the interconnection of these
mechanisms could lead to a more personalized
therapy and lower the incidence of treatment
side effects, thereby improving the quality of
life of the affected patients.
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Key Summary Points

The gut-skin axis is of critical importance
in the pathogenesis of psoriasis. The
connection between skin and gut is
mediated by several mechanisms, where
microbiota plays an irreplaceable role.

Psoriasis patients suffer from impaired gut
barrier integrity and are therefore at high
risk for comorbidities such as IBD, which
disrupt their already delicate health
balance.

Intensive efforts are underway to
investigate what triggers the disruption of
the gut barrier in psoriasis patients and
whether this could be a cause or
consequence of psoriasis manifestation.
The involvement of the microbiota in the
pathogenesis of psoriasis has been
suggested.

Despite significant advances in modern
biologic therapy for psoriasis, there are
still patients who do not respond
adequately to therapy or in whom have
been the adverse effects observed.
Personalized medicine should be the key
to effective treatment.

Current scientific research seeks to
identify biomarkers that can predict the
occurrence of adverse events in psoriasis
patients treated with biologics. We
hypothesize that the composition and
function of the microbiota may influence
therapeutic efficacy and the development
of adverse events.

INTRODUCTION

Psoriasis is one of the most common chronic,
immune-mediated, inflammatory diseases pri-
marily affecting the skin. Despite intensive
research, the exact etiology of psoriasis remains
unknown. Its prevalence is estimated to be
2–3% worldwide. Clinical manifestations of

psoriasis have up to five different variants, with
the plaque type psoriasis accounting for more
than 80% of all cases [1]. The development of
psoriasis has a strong genetic background [2],
and numerous external triggers contribute to
disease development. These triggers include
stress, unhealthy lifestyle, various medications,
trauma, infections, and alterations in the com-
position of the microbiota [3].

Although psoriasis may also have an
autoimmune origin, only a limited number of
studies support this hypothesis [4]. The patho-
genesis of psoriasis is most likely associated with
a loss of immune tolerance to one of the three
described potential psoriasis autoantigens (i.e.,
LL37/cathelicidin, ADAMTSL5, or neolipid
antigens) [5–9]. With a better understanding of
the immune system function and the discovery
of new subpopulations of cells, psoriasis came
to be perceived more as a systemic multifacto-
rial disease associated mainly with Th17 and
Th1 activation [6, 9].

Patients with psoriasis have a higher risk of
developing other systemic diseases such as
celiac disease or inflammatory bowel disease
(IBD) [10, 11]. Moreover, patients with psoriasis
are more likely to develop metabolic disorders
such as type II diabetes, obesity, or dyslipi-
demia, and often show increased atherogenesis
leading to a higher risk of myocardial infarction
or stroke [12]. Up to 20% of patients with pso-
riasis also develop seronegative arthropathy
[13]. Moreover, the physical symptoms of pso-
riasis often lead to patient stigmatization and
further development of mental health comor-
bidities [14].

The use of targeted therapy, particularly
TNFa and IL-17 inhibitors, has become a com-
mon practice in moderate-to-severe cases of
psoriasis, IBD, and other inflammatory diseases.
Although immensely helpful, modern biologic
treatment comes with drawbacks, such as para-
doxical side effects often manifested on the skin
or in the intestine. This attests to the impor-
tance of the interconnection between the
cutaneous and intestinal environment, referred
to as the gut–skin axis.

This review discusses diverse aspects of the
pathogenesis of psoriasis in relation to modern
biologic treatment that are relevant for the
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development of paradoxical reactions. Under-
standing the role of microbiota in paradoxical
reactions to targeted therapies will ultimately
lead to better therapy management with direct
potential for improving the patient’s quality of
life.

The Role of Barriers in Disease
Pathogenesis

The concept of psoriasis as a systemic disease
with malfunctioning barriers has emerged in
recent years [10, 15]. Psoriasis is not only asso-
ciated with compromised skin barrier function
[16, 17], but it has been linked to an intestinal
barrier malfunction as well [18, 19]. Impaired
intestinal and skin barrier in patients with pso-
riasis could be responsible for circulating
microbial antigens in the blood [20, 21], which
likely potentiate inflammation [20, 22].

Changes in Skin Barrier Function

Apart from the visible manifestation of psoriatic
plaques and well-described histological chan-
ges, impaired skin barrier functions
include lower stratum corneum hydration, sig-
nificantly higher transepidermal water loss
(TEWL), and changes in skin surface pH, tem-
perature, elasticity, or erythema index [23–25].
This goes hand in hand with decreased protec-
tion against environmental toxins and patho-
gens, which may then sensitize the immune
system of patients with psoriasis. Moreover, the
immune system primed against environmental
agents may cross-react with various skin com-
ponents, thereby disrupting the skin barrier
from within. Another factor involved in com-
promising the skin barrier function in psoriasis
might be the leaky gut syndrome common in
many other chronic inflammatory diseases
[26, 27].

Changes in Gut Barrier Function

There has been an intense effort to investigate
what triggers intestinal barrier disruption in
patients with psoriasis and to find out whether
this is a cause or consequence of psoriasis

manifestation. One of the factors contributing
to an impaired intestinal barrier could be the
systemic increase of cytokines such as IL-17 and
TNFa. Inhibitors against these proinflammatory
cytokines are commonly used as psoriasis and
IBD treatment. However, many cytokines have
a dual role. For instance, IL-17 is usually con-
sidered a proinflammatory cytokine but under
physiological conditions acts at the mucosal
interface, where it maintains and protects the
epithelial barrier [28, 29].

The dual role of IL-17 is crucial for the opti-
mal strategy treatment based on IL-17 inhibi-
tors. A protective effect of this cytokine was
demonstrated in mice deficient in IL-17R, who
suffered from reduced neutrophil mobilization,
making them more susceptible to infection by
Porphyromonas gingivalis, an oral mucosa patho-
gen [28]. Thus, treatment with IL-17A inhibitors
may interfere with the protective function of IL-
17A in the intestine and IL-17F but not IL-17A
deficiency leads to colitis reduction, as shown in
a mouse model of colitis [30]. On the contrary,
while protecting against bacterial infections, IL-
17 also mediates several tissue pathologies in
conditions such as P. aeruginosa mucoid infec-
tions [31], whooping cough [32], cystic fibrosis
[33], or H. pylori infection in the gastrointestinal
tract [34]. Therefore, IL-17RA- or IL-17A-
knockout mice are resistant to IL-23-induced
psoriasis-like epidermal hyperplasia and
inflammation [35, 36].

TNFa increases intestinal permeability via
modulation of tight junctions [37], whose
important role in the formation of the epider-
mal and epithelial barrier is well documented.
The overexpression of tight junctions in skin
psoriatic lesions mainly compensates for the
defective barrier. This is supported by the
expression of occludin and zonulin (ZO-1) in
acanthotic spinous cell layers and of claudin-5
in the granular cell layer [38]. Furthermore, a
study by Sikora et al. [18] described elevated
serum levels of claudin-3 in patients with pso-
riasis, which is typically connected to epithelial
tightness [18]. Additionally, three times higher
levels of serum zonulin were found in patients
with psoriasis compared with healthy controls
[39]. Although some studies have cautioned
against using serum zonulin as a marker of
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intestinal mucosal barrier function [40], the
positive correlation of serum zonulin with
serum lipopolysaccharide suggests an impaired
gut barrier function and subsequent bacterial
translocation into the bloodstream [39].

Altered concentrations of serum markers in
patients with psoriasis, such as the concentra-
tion of aforementioned claudin-3 or intestinal
fatty-acid binding protein (I-FABP), indicate
intestinal barrier damage in these patients
[19, 41, 42] Interestingly, levels of I-FABP posi-
tively correlate with increased values of body
mass index (BMI), psoriasis area and severity
index (PASI), and neutrophil-to-lymphocyte
ratio (NLR) indicating that intestinal integrity is
affected by obesity, severity of the disease, and
systemic inflammation [41]. There may be also
other markers of intestinal barrier damage,
nevertheless, when we assessed the ratio of
cytokeratin 18 (CK18) and caspase-cleaved
CK18 (ccCK18) as a marker of enterocyte dam-
age, we did not find any significant differences
between patients with psoriasis and healthy
controls [19]. Other markers of intestinal barrier
disruption in patients with psoriasis need to be
investigated and their effects on disease patho-
genesis examined.

The Gut–Skin Axis in the Pathogenesis
of Psoriasis

Skin and gut are in intimate contact with the
underlying immune system and together
orchestrate the host’s response to external
antigens. The linkage between the skin and gut
is mediated by several mechanisms, and the
microbiota plays an irreplaceable role in this
process. The interaction between these two
organs probably plays an important role in the
development of psoriasis as illustrated in Fig. 1.

Adaptive immune system in both the skin
and the gut is shaped by resident microbes.
Commensal microbes interact with a subset of
antigen presenting dendritic cells and the
effector T-cell populations, controlling the
immune response [43, 44]. As an example, the
presence of segmented filamentous bacteria
(SFB) in Peyer’s patches in the gut and their
interactions with the immune system promote

immune maturation and have been linked to
the Th17 immune response and the develop-
ment of Th17-mediated diseases [45–47]. How-
ever, to fully reach their proinflammatory
potential, SFB bacteria might need the presence
of other commensals [48]. As a Th17-mediated
disease, it is highly possible that psoriasis is
influenced by microbiota. We have shown that
mice treated with broad-spectrum antibiotics
have lower levels of local and systemic Th17
and are more resistant to skin psoriasis-like
inflammation induced by imiquimod. In the
same model of experimental psoriasis, mice
receiving intestinal microbiota from patients
with psoriasis have increased IL-17A expression
in the gastrointestinal tract, delaying the
recovery of psoriatic lesions. Thus, increased
expression of IL-17A in the gut leads to systemic
IL-17 production in the bloodstream, which in
turn affects skin inflammation [49].

Apart from immunological engagement,
microbiota produces mammalian-like neuro-
transmitters and hormones, such as acetyl-
choline, histamine, serotonin, or corticotropin,
as well as various products of dietary compound
breakdown [50–52]. Microbial endocrinology
lies at the intersection of the hormone produc-
tion of both host and microbes and gut–skin
axis, and may have general applications beyond
a particular disease due to the neurochemicals
shared between the host and microbiota [53].

The intestinal microbiota also produces
metabolites that have the potential to modulate
host immunity and alter the balance between
tolerance and inflammation by influencing the
differentiation of naı̈ve T cells into the Th17 or
Treg lineage [54]. Regulatory metabolites are
molecules from the degradation of dietary
components such as the short-chain fatty acids
(SCFAs) propionate, butyrate or acetate. SCFAs
are formed primarily by microbial digestion of
prebiotics, dietary supplements indigestible to
humans that selectively stimulate the growth of
beneficial gut microbiota [55]. Recent research
suggests that SCFAs such as butyrate inhibit the
action of histone deacetylases, whereas inositol-
3-phosphate (IP3), produced by microbial
digestion of phytate, activates histone deacety-
lases in mammalian intestinal epithelial cells.
As a result, microbial metabolites could balance
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the mucosal response to various microbial sig-
nals [56]. SCFAs also help to establish certain
skin microbiota profiles, influencing cutaneous
defense mechanisms [57]. Additionally, SCFAs
bind to G-protein-coupled receptors, which can
subsequently mediate systemic or skin anti-

inflammatory responses and thus influence the
pathogenesis of psoriasis [58].

Another link connecting the pathogenesis of
psoriasis with the gut environment is the fact
that patients with psoriasis are often diagnosed
with small-intestinal bacterial overgrowth syn-
drome (SIBO). SIBO is described as microbial

Fig. 1 Simplistic representation of skin and gut intercon-
nection in health and during psoriasis. The diseased state is
characterized by a disturbed barrier function of the skin
and gut. In psoriatic skin, this is usually associated with
perturbed composition of microbiota, increased produc-
tion of antimicrobial peptides, increased transepidermal
water loss, and overall inflammation, which manifests as

skin redness, thickening, and accelerated cell turnover in
psoriatic lesions. In the gut of patients with psoriasis, the
diseased state is usually associated with microbiota dysbio-
sis, lower production of SCFAs, disrupted mucus layer,
increased intestinal permeability, or decreased IgA secre-
tion. DC dendritic cells, pDC plasmacytoid dendritic cell,
SCFAs short-chain fatty acids
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dysbiosis in the upper intestine, associated with
intestinal discomfort of various kinds. Patients
with psoriasis suffering from SIBO have experi-
enced an improvement in the cutaneous
symptoms of psoriasis after SIBO treatment with
antibiotics and prebiotics that, apart from their
main activity, also affect biofilm formation and
intestinal motility [59].

THE COMPOSITION
AND FUNCTION OF THE SKIN
AND GUT MICROBIOTA
IN PATIENTS WITH PSORIASIS

A great deal of effort is being made to uncover
the relationship between the composition of
the microbiota and the pathogenesis of psoria-
sis. To date, several features of a disturbed
composition of the microbiota have been
described as contributing to the pathogenic
processes of psoriasis. Microbial infections have
been linked to exacerbations of psoriasis already
in the 1950s [60–62]. Tonsils of patients with
psoriasis with a sore throat were more fre-
quently infected by Group C Streptococcus and
possess higher frequencies of skin-homing
CD4? and CD8? T cells compared with infected
tonsils of patients without psoriasis [63]. The
onset of post-streptococcal psoriasis was attrib-
uted to the activation of T cells upon stimula-
tion with keratin determinants that could be
mistakenly recognized as streptococcal M pro-
teins due to molecular mimicry [60]. Altered
homeostasis of skin-resident Staphylococcus au-
reus, Streptococcus pyogenes, or Malassezia species
could also contribute to the pathogenic pro-
cesses of psoriasis [20, 64, 65]. Moreover, in
patients with psoriasis, bacterial DNA may cir-
culate in the blood and trigger a systemic
inflammatory response [20, 21]. Two potential
psoriasis cutaneotypes of pathophysiological
significance have been described, the first
dominated by Proteobacteria and associated
with unaffected skin specimens, and the second
dominated by Actinobacteria and Firmicutes,
associated with lesioned specimens [66].

However, skin microbiome studies are
strongly influenced by experimental design,

such as different sampling methods (swabs,
scrapings, biopsies), the choice of sequencing
strategy (in the case of amplicon sequencing,
the choice of 16S rRNA region), or DNA
extraction strategy [19, 67, 68]. Each method
has its strengths and weaknesses, making the
study of the microbiome extremely challenging
and the results difficult to compare. The choice
of the 16S rRNA region for amplicon sequencing
is especially important, as this can strongly
affect the perceived diversity and composition
of the microbial community [69–72]. The V1V3
region better distinguishes among Staphylococ-
cus species [73, 74], and sequencing only the V4
region leads to an underrepresentation of
Cutibacterium species [75]. The V3V4 region
sufficiently covers skin microbial diversity
[70, 76, 77], which was also confirmed by Teng
et al. (2018), who compared the V3V4 and
V1V3 regions of 16S rRNA [78]. By comparing
the V1V2 and V3V4 regions in one dataset of
patients with psoriasis, we showed that,
although primers for the V1V2 regions were
better at classifying Staphylococcus to the species
level, sequencing of the V3V4 region yielded
greater overall diversity [19].

Fungi on the human skin are an integral part
of the whole microbiota community, yet studies
concerning the composition of mycobiota in
psoriasis are still scarce and inconsistent. The
dominant genus in both healthy and psoriatic
skin is Malassezia. We observed that psoriatic
lesions on oily dorsal skin were dominated by
Malassezia restricta, whereas dry elbow skin was
dominated by Malassezia sympodialis [19]. In
contrast, Paulino et al. (2006) described the
opposite, i.e., M. restricta as the predominant
species on dry elbow skin, followed by M. sym-
podialis [79]. We have observed a lower
Malassezia globosa to Malassezia restricta ratio in
samples from psoriatic lesions on the back
compared with healthy skin, which is consis-
tent with the finding of Takemoto et al. [80].
One of the factors potentially confounding
results is ethnicity, as M. sympodialis was the
predominant species of the skin mycobiota in a
Polish patient cohort [81], whereas in Canadian
patients it was M. globosa [82] and in Japanese
patients M. restricta [83].
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Specific associations between clusters of the
bacterial genera Corynebacterium and Pep-
toniphilus have been identified in skin samples
from patients with psoriasis [84], and we
uncovered a similar pattern when we investi-
gated bacteria–fungi interactions. We have
shown that Corynebacterium and Peptoniphilus
were positively correlated with Malasseziales in
samples from healthy back skin of patients with
psoriasis [19]. In psoriatic elbow lesions, we
found Corynebacterium and Finegoldia clustering
together with Aspergillus [19], which has been
previously shown for Corynebacterium/Finegoldia
clusters also in an American study by Chang
et al. [84]. Additionally, mouse studies sug-
gested that cutaneous fungi may exacerbate
experimental skin inflammation by inducing
the accumulation of IL17-A-producing Th, Tc,
and cd-T cells in the skin [85]. In our experi-
ments, we manipulated the composition of
mycobiota with antifungal agents, but have not
observed any change in the severity of imiqui-
mod-induced skin inflammation (IISI) between
treated and control mice (unpublished data).

Dysbiosis of microbiota composition can
shift the metabolic profile of the entire micro-
bial community and is therefore an important
factor underlying the altered immune response
associated with a disease. Generally, loss of
microbial diversity appears as the most constant
finding among studies investigating microbiota
composition during an illness [86]. However,
dysbiosis does not necessarily mean the overall
microbial diversity is reduced [22, 45, 87–90]. As
an example, we have shown that patients with
Crohn’s disease (CD) have increased skin
microbiota richness and evenness and that CD
is a stronger driver of skin microbiota than
ulcerative colitis (UC). In addition to that, both
CD and UC might influence various ecological
niches on the skin [91].

Disturbances in the biodiversity and com-
position of the gut microbiota, even in less
abundant species, have been associated with
many diseases [27]. In psoriasis, no single
pathogen has been identified to demonstrably
contribute to psoriasis onset [22, 89, 92], even
though the composition of gut microbiota of
psoriasis patients differs from that of the heal-
thy population [93]. Psoriatic gut microbiota

displays a marked increase in Actinobacteria
species and significant overrepresentation of
Blautia, Coprococcus, Ruminococcus, or Dorea [89].
Tan et al. demonstrated that patients with pso-
riasis have a lower abundance of Akkerman-
sia muciniphila, an important producer of SCFAs
in the gut [90]. Other human studies reported a
lack of A. muciniphila in other diseases, such as
allergic asthma or ulcerative colitis [94, 95].
Patients with concomitant IBD and psoriasis
had lower counts of F. prausnitzii in the gut than
patients with psoriasis or IBD only [96].
F. prausnitzii could contribute to intestinal
integrity via its production of anti-inflamma-
tory peptides responsible for inhibition of the
NF-jB pathway in intestinal epithelial cells [96].

Animal experimental models, although
often expensive and difficult to carry out, offer
great promise and could help us gain insights
into different aspects of both balanced and
dysbiotic human microbiota [97]. Despite the
fact that no particular gut bacteria have been
found to trigger systemic psoriatic inflamma-
tion or to worsen skin inflammation in human
trials, several mouse studies were conducted to
identify such taxa. Okada et al. (2020) showed
that Staphylococcus aureus and Streptococ-
cus danieliae orally administered to antibiotic-
treated mice led to exacerbated skin lesions and
elevated levels of TNFa, IL-17, and IL-22 cyto-
kine in imiquimod induced model of skin
inflammation (IISI) [98]. This is in line with our
observation that there is a correlation between
IISI improvement and decreased skin abun-
dance of staphylococci and streptococci species
after antibiotic treatment with metronidazole
[99]. The antimicrobial effect of metronidazole
and its subsequent effect on disease pathogen-
esis is further supported by studies showing the
efficacy of metronidazole in alleviating experi-
mental uveitis via changing the microbiota
composition [100] or in improving the SIBO
syndrome, which is primarily caused by small
intestinal dysbiosis [101, 102].

We have shown that mice treated with a
broad-spectrum antibiotic mix and germ-free
mice had lower skin inflammation as mani-
fested by reduced frequencies of cd-T cells and
Th17 cells in spleen and lymph nodes, in com-
parison with conventional mice treated with
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water [103]. Interestingly, even though the
antibiotic administration did not change the
bacterial load, it changed the bacterial com-
munity structure [99, 103]. In another study,
neonatal vancomycin and polymyxin B treat-
ment led to permanent compositional changes
in cutaneous and intestinal microbiota in adult
mice, which resulted in higher susceptibility to
IISI experimental psoriasis [104]. A mouse study
focused on wound healing revealed altered
microbial density and composition on the skin
after oral vancomycin treatment, specifically a
reduced proportion of staphylococci-related
sequences, as well as a lower IL-17 expression in
the wounded skin [105].

Many studies have reported a beneficial
effect of lactobacilli on cutaneous health
[106–108], as well as their beneficial role in
improving the intestinal barrier and decreasing
sensitization to allergens [109]. In a mouse
model of experimental colitis, the administra-
tion of Lactobacillus casei DN-114 001 lysate
reduced the severity of colitis by increasing the
numbers of Treg cells and decreasing the pro-
duction of proinflammatory cytokines, while
also changing the gut microbiota composition
[110]. Mice monocolonized with Lactobacil-
lus plantarum WCFS1 or with segmented fila-
mentous bacteria (SFB) did not differ in IISI
severity from germ-free mice [99].

Conducting microbiome research in humans
has its advantages and disadvantages. Apart
from the costly experiments, researchers have
to deal with less predictable sample collection,
generation, and analysis of data. Moreover,
human microbiome studies are usually correla-
tional and do not address causality. Combining
mouse and human investigation approaches
could give us a more comprehensive indication
of the potential disease causality. From this
point of view, the combined evidence supports
the hypothesis that a specific composition of
the gut microbiota could enhance the Th17
response and thus contribute to psoriasis exac-
erbation [99, 103].

CURRENT APPROACHES
TO THE TREATMENT OF PSORIASIS

A wide range of different therapies is currently
used for psoriasis. The choice of treatment
course depends on several factors including the
severity of the disease, the concurrent presence
of psoriatic arthritis, patient age, and the impact
the disease has on the patient’s life. First-line
therapies include topical treatments such as
emollients, topical corticosteroids, vitamin D3
derivatives, phototherapy, or nonsteroidal anti-
inflammatory drugs. Mild to moderately severe
forms of psoriasis require systemic treatments
such as methotrexate or cyclosporine A. For
more severe forms of psoriasis, targeted biolog-
ical treatment is becoming increasingly com-
mon [111].

Biologics targeting TNFa (tumor necrosis
factor alpha) are now often referred to as first-
generation biologics. This group includes cer-
tolizumab, etanercept [112], infliximab [113],
and adalimumab. Each of these TNFa inhibitors
has a different structure, so the mechanisms of
their immunological action differ. Therefore,
each of them has different efficacy and causes
different adverse events. Although anti-TNFa
therapy is widely approved for the treatment of
both psoriasis and IBD, 30–40% of patients do
not respond or lose response during the therapy
[114, 115]. Based on data from real-world pso-
riasis registries, the survival rate of infliximab or
etanercept therapy is about 50% and 70% after
2 years of therapy, respectively [116].

Second-generation biologics provide a more
targeted therapy, focused on blocking the key
cytokines in psoriasis, i.e., IL-23 and IL-17.
These biologics include the IL-12/-23 inhibitor
ustekinumab [117], and IL-17 inhibitors secuk-
inumab and brodalumab. Anti-IL-17 drugs are
currently biologics with the fastest onset of
action and are effective in many immune-me-
diated inflammatory diseases, including psori-
atic arthritis [1, 117, 118].

The latest psoriasis therapy works by block-
ing the regulatory cytokine IL-23. Three drugs
blocking the IL-23 cytokine, specifically its p19
subunit, are currently available for psoriasis
treatment: guselkumab, tildrakizumab, and
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risankizumab. IL-23 antagonists achieve very
effective therapy of psoriasis with a quick onset
of action and the highest long-term efficacy of
all current biological drugs. Moreover, their
safety profile is excellent, with only minor side
effects such as nasopharyngitis, upper respira-
tory tract infection, or headache [117–119].
Anti-IL-23 therapy also has a great potential for
the treatment of psoriatic arthritis and other
inflammatory diseases such as IBD, but clinical
trials for these diseases are still ongoing [1, 117].

THERAPEUTIC MANIPULATION
OF THE MICROBIOTA OF PATIENTS
WITH PSORIASIS

The current body of literature suggests that
biologic treatment may indeed affect the com-
position of the microbiota [93, 120] and that
some patients may not respond to the treat-
ment due to possible differences in microbiota
composition [93, 121]. Altered microbiota
composition changes microbiota interactions,
which in turn influence the immune system
and modify the body homeostasis. Yeh et al.
[93] described changes in the gut microbiota
composition of psoriasis patients after admin-
istration of IL-17 (secukinumab) but not IL12/
23 (ustekinumab) inhibitors [93]. Six months
after the treatment, patients receiving IL-17
inhibitors had shifted microbiota composition
so that it resembled the microbiota composition
of patients with IBD. In particular, these
patients showed significantly increased abun-
dance of Proteobacteria and decreased abun-
dance of Bacteroidota and Firmicutes, which
was not observed in patients treated with IL12/
23 inhibitors. Interestingly, Coprococcus, a
commensal bacterium decreased in patients
with IBD, increased after treatment with IL12/
23 inhibitors in patients with psoriasis. More-
over, the study described baseline differences
between therapy responders and nonresponders
in gut microbiota composition. This observa-
tion may be taken into account in future clini-
cal practice when choosing the proper
treatment for psoriatic patients that are geneti-
cally predisposed to the development of
IBD [93].

A study dealing with the changes in skin
microbiota after ustekinumab treatment
showed that microbial communities diverged
between lesional and nonlesional skin, and the
distinction between body sites increased [120].
The skin microbiota of patients with psoriasis
exhibited greater heterogeneity within skin
lesions than in nonlesional skin before treat-
ment initiation, and microbial variance
increased as treatment progressed. The micro-
biota colonizing recurrent lesions did not
overlap with microbiota residing there prior to
the treatment, suggesting that colonization
pattern varied between initial and recurrent
psoriatic lesions. There is only one study deal-
ing with mycobiota composition after the use of
biologics, which shows that the psoriatic skin
mycobiome composition is retained even after
systemic anti-TNFa or anti-IL17 treatment
[122].

MICROBIOTA AS A THERAPEUTIC
TOOL IN THE TREATMENT
OF PSORIASIS

The complex role the microbiota plays in
shaping the immune system is increasingly
being recognized. Its potential health impacts
have motivated more practical applications in
recent years. One approach is the intervention
with either prebiotics, probiotics, or other
commensal microbes that could be useful in
restoring a protective microbiota composition
and could thus serve as preventive medical
therapy. Oral administration of probiotics
together with beneficial prebiotics (i.e., in the
form of synbiotics) could moderate the course
of some dermatoses [123–125].

Despite the relative paucity of data regarding
the therapeutic effect of microbiota in psoriasis,
it has been shown that oral administration of
Lactobacillus brevis SBC8803 for 12 weeks
decreased TEWL and increased corneal hydra-
tion in human volunteers [126]. A phase 1b
clinical trial, where patients with psoriasis were
administered a high dose of EDP1815, a
Prevotella histicola formulation, shows highly
promising results [127]. Groeger et al. showed
that daily administration of viable
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Bifidobacterium infantis 35264 for 6–8 weeks
resulted in a significant decrease in plasma
levels of C-reactive protein and TNFa, but not
IL-6 concentration in patients with psoriasis
[128]. Navarro-Lopez et al. evaluated the effect
of a mixture of three probiotic strains in a 1:1:1
ratio, i.e., Bifidobacterium longum CECT 7347,
B. lactis CECT 8145, and Lactobacillus rhamnosus
CECT 8361, with a total of 1 9 109 CFU per
capsule once a day for 12 weeks. This probiotic
mixture was given as an adjunctive treatment
along with topical steroids in patients with
plaque psoriasis. The results showed a signifi-
cant reduction in PASI score after 12 weeks in
66.7% of patients receiving probiotics and
41.9% of patients receiving placebo. Interest-
ingly, after 6 months, patients who had
received probiotics had a lower risk of psoriasis
relapse compared with the placebo group [129].

Fecal microbiota transplantation (FMT) rep-
resents another widely tested approach to
restoring balance to dysbiotic microbiota of the
gut. Although it is officially recognized only for
specific indications and its use is therefore
mainly experimental, FMT offers a way of
directly changing the gut microbiota to gain a
therapeutic benefit via normalizing gut micro-
biota. To date, there is a limited number of
studies using FMT for the treatment of psoriasis
as the main diagnosis [130, 131]. The only
clinical study shows that FMT is safe in psoriatic
arthritis, but its efficacy with concomitant
methotrexate treatment has not been estab-
lished [130]. Taken together, these data under-
score the importance of the gut–skin axis in the
pathophysiology of psoriasis and imply the
potential use of oral probiotics in the treatment
of psoriasis.

Manipulation of the skin microbiota com-
position is also starting to gain attraction. The
skin microbiota can be changed in several ways,
i.e., skin microbiota transplantation, skin bac-
teriotherapy, or prebiotic stimulation. Skin
microbiota transplantation (SMT) is an emerg-
ing concept in the treatment of skin diseases.
However, it is technically challenging, as the
skin microbiota composition is shaped by the
distinct properties of the different skin
microenvironments. Moreover, the dynamics of
the skin microbiota profile differ between dry,

moist, and sebaceous skin sites, with the latter
two being considered quite stable over time
[132]. SMT involves the transfer of the skin
microbiota from a healthy donor to a disin-
fected skin area of a diseased person. Although
the microbiota is transferred to its natural
environment, this method is not widely appli-
cable yet. In contrast to FMT, where the trans-
mitted material undergoes a thorough control,
in SMT, only a limited amount of material is
transferred; hence, it is not possible to thor-
oughly investigate its composition without the
need for cultivation. Therefore, potentially
pathogenic microbes or viruses can be co-
transferred and unintentionally harm the
recipient [133]. Up till now, there is no estab-
lished long-term treatment of psoriasis with
bacterial substitution.

THE CLINICAL LINK
BETWEEN PSORIASIS AND IBD:
SINCE BOTH DISEASES COULD
ARISE AS AN ADVERSE EFFECT
OF BIOLOGIC TREATMENT

IBD is a chronic recurrent inflammation of the
gastrointestinal tract with two main forms:
Crohn’s disease (CD) and ulcerative colitis (UC).
IBD is a common comorbidity in patients with
psoriasis and the pathogenesis of both diseases
shows a similar pattern. In addition, IBD and
psoriasis occasionally occur with each other as
an adverse effect of the treatment of the
respective disease. However, the relationship
between psoriasis and IBD is still unclear. The
prevalence of IBD in patients with psoriasis is
about 1–2%, which is four times higher than the
prevalence of IBD in the general population
[134]. Conversely, the prevalence of psoriasis in
IBD is 3.6% in CD and 2.8% in UC [135]. Both
diseases are associated with increased intestinal
permeability, an aberrant immune response
against the microbiota, and activation of the
Th17 pathway [27, 136, 137]. Moreover,
according to genome-wide association studies
(GWAS), IBD and psoriasis also share a pattern
of susceptibility loci associated with the Th17
pathway, such as IL23R, IL12B, IL23A,
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TRAF3IP2, or innate immune responses
[2, 138, 139]. Interestingly, psoriasis–CD
patients are most often first diagnosed with CD,
while psoriasis–UC patients are just as likely to
be first diagnosed with UC as with psoriasis.
Eppinga et al. 2017 hypothesize that the lower
age of onset of CD and psoriasis–CD patients,
the more closely are psoriasis and CD associated
with genetic factors [140]. This is in contrast to
the incidence of UC, where this finding has not
been demonstrated [141]. Furthermore, patients
with psoriasis often have features of latent IBD
that could be masked due to the anti-inflam-
matory nature of psoriasis treatment [141].
Latent IBD features, such as elevated levels of
anti-Saccharomyces cerevisiae antibodies (ASCA),
may precede the manifestation of IBD in
patients with psoriasis. Juzlova et al. 2016
described that positivity for ASCA preceded
clinical manifestation by approximately
38 months in 10 out of 32 psoriatic patients
with Crohn’s disease (31%) [142]. The associa-
tion between psoriasis and IBD has been rein-
forced by the finding that one can appear as a
paradoxical adverse event of the treatment for
the other, as discussed later [143–145].

PARADOXICAL ADVERSE EVENTS
OF ANTI-TNFA THERAPY

Adverse events including cutaneous and
mucosal lesions have been described during
anti-TNFa treatment. These immune-mediated
inflammatory reactions represent a paradoxical
event considering that biologics, especially anti-
TNFa therapy, are commonly used in the man-
agement of immune-mediated inflammatory
diseases such as severe psoriasis or IBD
[114, 146–148]. Paradoxical events can be of
diverse nature. For example, they can manifest
as exacerbated skin lesions in patients with
psoriasis, psoriasiform dermatitis in patients
with IBD, or a new onset of CD or UC in
patients with psoriasis [114, 115, 148]. In par-
ticular, patients with psoriasis treated with
etanercept have an increased risk of developing
CD and UC [149]. The reason why etanercept as
opposed to other anti-TNF agents increases the
risk of developing IBD in patients with psoriasis

could lie in the different pattern of binding to
TNF molecules. As mentioned before, inflix-
imab binds specifically to all three binding sites
of TNFa, whereas etanercept binds to both TNFa
(to only two of the three binding sites) and
TNFb [112].

Paradoxical skin reactions affect up to 30%
of patients with different diseases treated with
anti-TNFa drugs, including patients treated for
psoriasis, IBD, or rheumatoid arthritis
[114, 115, 148]. Although paradoxical skin
reactions typically do not require therapy ces-
sation, 34% of the reactions are severe enough
to warrant discontinuation of anti-TNFa ther-
apy. The onset of lesion development can range
widely from a few days to 4 years following the
initiation of treatment [148]. The lesions occur
most frequently in women and patients with a
personal or familial history of inflammatory
skin disease, and the progression of the cuta-
neous lesions does not correlate with intestinal
disease activity [150, 151]. The formation of
paradoxical skin lesions is probably triggered by
increased reactivity of the immune system, as
simultaneous administration of other
immunosuppressants (methotrexate, corticos-
teroids) with anti-TNFa therapy decreases the
occurrence of these paradoxical events [152].
Unfortunately, skin adverse events may signifi-
cantly impair the quality of life in some patients
despite the improvement of other symptoms
[153, 154].

Around 20% of anti-TNFa-treated patients
with IBD develop skin adverse events (SkAE)
[155]. Classification of these manifestations is
not uniform, but psoriasiform and eczemati-
form lesions are the most common manifesta-
tions associated with anti-TNFa therapies in
patients with IBD [151, 156]. Even though the
psoriasiform or eczematiform lesions appear to
be morphologically and histologically similar to
characteristic classical psoriasis or eczema
manifestation, the underlying pathogenetic
mechanism seems to be different [157]. Other
paradoxical reactions, such as lichen planus-like
eruptions, lichen planopilaris, or scleroderma-
like changes are much less common [158–160].

While the etiology of paradoxical reactions
remains unclear, several possible mechanisms
may be involved, such as the deposition of
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immune complexes or shifts in cytokine pro-
duction [156, 161]. The lack of proof about
autoimmune origin of psoriasis does not
exclude the possibility of the participation of
autoimmune mechanisms in its pathogenesis,
as well as in the development of SkAE after anti-
TNFa treatment. This fact is supported by fre-
quently occurring associations of psoriasis with
various autoimmune diseases, including arthri-
tis, celiac disease, thyroiditis, alopecia areata,
and others [162]. These autoimmune diseases
are not always accompanied by symptoms;
hence, they are called subclinical forms of dis-
eases. Genetic and epigenetic mechanisms par-
ticipating in subclinical forms of diseases could
be the reason for involvement in induction of
paradoxical reactions to treatments targeting
TNFa and IL-17 cytokines. .

Disruption in cytokine balance following
TNFa inhibition seems to be one of the impor-
tant immunological mechanisms in the devel-
opment of paradoxical reactions. TNFa
inhibition can lead to increased production of
unopposed interferon-a (IFN-a) by plasmacy-
toid dendritic cells, which can in turn promote
T-cell homing to epidermis and cause inflam-
mation [156, 161]. In addition, serum levels of
IL-17A and IL-23 are higher in patients with IBD
who developed skin lesions under anti-TNFa
therapy compared with patients without such
lesions [163]. The skin lesions are infiltrated by
IL-17A/IL-22-secreting Th17 cells, IFN-c-secret-
ing Th1 lymphocytes, and IFN-a-secreting cells
[164]. Another mechanism significantly con-
tributing to the development of psoriasis-like
skin lesions may be dysbiosis, as changes in the
gut or skin microbiota composition and func-
tion represent key steps in the pathogenesis of
IBD or psoriasis [161, 165–167]. Shifts in the
skin microbiome are also associated with flares
of atopic eczema [168]. Therefore, by focusing
on the role of the gut–skin axis in anti-TNFa
therapies, we may be able to uncover the core
pathogenetic mechanisms of these serious
paradoxical adverse events and help to intro-
duce a better-focused therapy in the future.

ANTI-IL-17 THERAPY AS A POSSIBLE
TRIGGER OF IBD IN PATIENTS
WITH PSORIASIS

In recent years, IL-17 inhibitors (brodalumab,
ixekizumab, secukinumab) have been estab-
lished as effective and safe therapies for the
treatment of severe psoriasis and psoriatic
arthritis with a very rapid onset of action
[117, 118, 169]. Although IL-17 is a key con-
tributor to tissue repair on epithelial barriers
and treatment with IL-17 inhibitors has unde-
niably pronounced positive effects, some side
effects of this treatment have also been descri-
bed [29, 117]. For example, the dysregulation of
IL-17-producing cells, e.g., the blockade of IL-
17, negatively affects the integrity of the
intestinal barrier and exacerbates intestinal
inflammation. This often increases the risk of
fungal infections, especially upper respiratory
tract infections and Candida infections [170].
Likewise, genetic defects in IL-17RA or IL-17F
predispose the patients to chronic mucocuta-
neous candidiasis manifested as skin, nails, and
mucosal infections [171]. Even though it does
not influence the immune response, massive
colonization with Candida is common in
patients with psoriasis. For this reason, patients
should be screened for candidiasis before and
after treatment with IL-17 inhibitors [172].

Psoriasis and IBD share at least two common
inflammatory pathways, Th1 and Th17. Bio-
logics against TNFa or IL-12/IL-23 have been
successfully used in the management of both
diseases. Nevertheless, treatment with IL-17
inhibitors in IBD did not pass clinical trials
[173, 174]. Notably, Crohn’s disease clinical
trials with secukinumab and brodalumab failed
to demonstrate efficacy and the condition
worsened in some patients. An analysis of
adverse events from 2017, which integrated
data from seven randomized trials with ixek-
izumab in adult patients with psoriasis, showed
that IBD cases were uncommon and occurred
in\1% of the patients [175], and new case
studies still report manifestation of IBD in some
patients [176, 177]. However, a potential causal
relationship between IL-17 inhibition and IBD
onset in patients with psoriasis has not yet been

922 Dermatol Ther (Heidelb) (2023) 13:911–933



established. For now, it is recommended that
the use of IL-17 inhibitors be avoided in
patients with a personal history of or active IBD
[117].

Most cases of CD incidence in patients on
anti-IL-17 therapy described to date were
patients[40 years, which corresponds with the
average age of patients with psoriasis. However,
CD onset is most common in people aged 15–-
29 years in Europe [178]. Adolescents and
young adults in particular have an increased risk
of developing IBD during anti-IL-17 therapy or
even many months after treatment cessation. It
is crucial to clarify the role of IL-17 inhibitors in
the pathogenesis of IBD, especially given that
these new drugs can also be administered to
pediatric patients with psoriasis. The current
practice is merely to avoid IL-17 inhibitors in
patients with active or past IBD, with no infor-
mation about the potential risk of developing
IBD in asymptomatic patients. There are no
specific guidelines for physicians to facilitate
therapeutic decisions, but caution should be
exercised when prescribing IL-17 inhibitors to
patients with psoriasis, especially in those with
a family history of IBD.

Dysregulation of IL-17 production or func-
tion, e.g., by anti-IL-17 therapy, affects various
microbial phyla in the gut. This, in turn, can
promote intestinal dysbiosis and thus disrupt
the integrity of mucosal barriers and exacerbate
inflammation [37]. Treatment with IL-17 inhi-
bitors in patients with psoriasis leads to an
increase in Proteobacteria and a decrease in
Ruminococcus or Firmicutes in the gut, the
reduction of which correlates negatively with
the amount of SCFAs produced [93]. Similar
changes in the profile of the gut microbiota
were described in patients with IBD. Moreover,
one of the SCFA producers, Akkerman-
sia muciniphila, was found to be significantly
reduced in the gut microbiota of both psoriasis
and IBD patients [90, 179, 180]. Although
Akkermansia muciniphila degrades mucin, it is
considered a beneficial bacterium that main-
tains intestinal integrity primarily through the
production of SCFAs, some of which are essen-
tial for intestinal cell nutrition. New human
studies investigating the cumulative incidence
of risk factors of IL-17 inhibitors, as well as

studies in mice examining the role of IL-17 in
the pathogenesis of IBD or psoriasis are needed.

HOW TO CHOOSE THE MOST
EFFECTIVE THERAPY FOR PATIENTS
WITH PSORIASIS

Currently, physicians do not have predictive
markers that would help them to choose the
most effective and safest therapy for each indi-
vidual patient. The choice of the treatment for
the patient is thus mainly based on extensive
data from clinical studies and psoriatic reg-
istries. For example, in patients with latent
tuberculosis, the physicians rather choose ther-
apies other than anti-TNF, similarly to how they
avoid therapy with IL-17 blockers in patients
who have been diagnosed with inflammatory
bowel disease as these blockers can lead to IBD
worsening or re-exacerbation [181]. Similarly to
the selection of the most effective therapy,
there are currently no predictive markers of
paradoxical responses to biologic therapies to
prevent their development. During the treat-
ment itself, it is necessary to educate the patient
about possible side effects and monitor them
during regular check-ups.

These days we are talking about personalized
psoriasis treatment when decisions are made on
the following basis: (i) the patient’s state of
health (gender, age, comorbidities, impact on
quality of life, etc.), (ii) disease factors (type of
psoriasis, extent/activity of psoriasis, involve-
ment of difficult-to-treat locations, etc.), and
(iii) knowledge of available therapies (safety,
efficacy, drug survival, tolerability, effect on
comorbidities). This approach significantly
increases the chance of choosing the right
treatment for the patient, but it is not person-
alized medicine in the true sense of the word.
However, a standardized panel of biomarkers
that merges genotype and phenotype of each
patient would be more precise. Even though
biomarkers will most likely play a very impor-
tant role in the choice of treatment in the
future, current knowledge is still very limited
and that is why it is not reflected in clinical
guidelines yet [182].
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CONCLUSION

Patients with psoriasis suffer from impaired gut
barrier integrity and are therefore at high risk
for comorbidities such as IBD that disrupt their
already delicate health balance. Despite signifi-
cant advances in modern biological therapy for
psoriasis, there remain patients who do not
respond sufficiently to therapy or in whom the
paradoxical adverse events have been observed.
Therefore, it is crucial for clinicians to be able to
target patients who are most likely to respond to
the treatment without developing paradoxical
adverse events, yet there are no specific guide-
lines to follow. To date, clinical trials of these
biologics adopt the ‘‘one drug for all’’ strategy,
although the therapy may be beneficial only in
a subset of patients. Personalized medicine
should be the key to treatment efficacy, since
the mechanisms underlying primary or sec-
ondary nonresponse are multifactorial; never-
theless, current approaches are not yet a
personalized medicine in the true sense of word.
Factors underlying nonresponse to the treat-
ment include the genetic predisposition and
actual clinical status of the patient as well as
previous medication and treatment. By study-
ing how the gut and skin microbiota interact
with the immune system in the setting of bio-
logical therapy, we may uncover new patho-
genetic mechanisms of paradoxical skin
reactions in patients treated with anti-TNF or
anti-IL-17 biologics. The knowledge of patho-
genic mechanisms may not only yield new
biomarkers that will predict the adverse effects
but also potential therapeutic targets, improv-
ing future care for patients with chronic
inflammatory diseases treated with these drugs.
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