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ABSTRACT

Type 2 immunity evolved to combat helminth
infections by orchestrating a combined protec-
tive response of innate and adaptive immune
cells and promotion of parasitic worm destruc-
tion or expulsion, wound repair, and barrier
function. Aberrant type 2 immune responses are
associated with allergic conditions character-
ized by chronic tissue inflammation, including
atopic dermatitis (AD) and asthma. Signature
cytokines of type 2 immunity include inter-
leukin (IL)-4, IL-5, IL-9, IL-13, and IL-31, mainly
secreted from immune cells, as well as IL-25,

IL-33, and thymic stromal lymphopoietin,
mainly secreted from tissue cells, particularly
epithelial cells. IL-4 and IL-13 are key players
mediating the prototypical type 2 response; IL-4
initiates and promotes differentiation and pro-
liferation of naı̈ve T-helper (Th) cells toward a
Th2 cell phenotype, whereas IL-13 has a pleio-
tropic effect on type 2 inflammation, including,
together with IL-4, decreased barrier function.
Both cytokines are implicated in B-cell isotype
class switching to generate immunoglobulin E,
tissue fibrosis, and pruritus. IL-5, a key regulator
of eosinophils, is responsible for eosinophil
growth, differentiation, survival, and mobiliza-
tion. In AD, IL-4, IL-13, and IL-31 are associated
with sensory nerve sensitization and itch, lead-
ing to scratching that further exacerbates
inflammation and barrier dysfunction. Various
strategies have emerged to suppress type 2
inflammation, including biologics targeting
cytokines or their receptors, and Janus kinase
inhibitors that block intracellular cytokine sig-
naling pathways. Here we review type 2
inflammation, its role in inflammatory diseases,
and current and future therapies targeting
type 2 pathways, with a focus on AD.
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Key Summary Points

Aberrant type 2 immune responses are
associated with allergic conditions
characterized by chronic tissue
inflammation, including atopic
dermatitis.

Immune dysregulation in such diseases is
often highly complex and involves many
different cell types and inflammatory
mediators.

Studies of drugs targeting type 2 immune
mediators have helped clarify the biologic
mechanisms underlying type 2 immunity
while also providing tremendous
therapeutic advances for diseases
involving type 2 inflammation.

DIGITAL FEATURES

This article is published with digital features,
including an infographic, to facilitate under-
standing of the article. To view digital features
for this article, go to https://doi.org/10.6084/
m9.figshare.19609980.

INTRODUCTION

Immune-mediated diseases involve aberrant
responses to self-antigens and/or inappropriate
activation of cellular and cytokine responses
leading to chronic inflammation and tissue
damage [1]. Type 2 immunity originally evolved
to protect hosts from parasitic helminths or
toxins [2–5], but aberrant type 2 inflammation
underlies numerous chronic inflammatory
pathologies, including atopic dermatitis (AD)
and asthma. The pathways underlying type 2
inflammatory diseases are diverse and may vary
by age and ethnicity but often share common
mediators that can be therapeutically targeted.

Mechanistic characterization of these drug targets
will improve our understanding of the efficacy
and safety of therapeutic immunomodulation.
Here, we provide an overview of type 2 inflam-
mation, its role in inflammatory diseases, and
therapeutic approaches to disease control. This
article is based on previously conducted studies
and does not contain any new studies with
human participants or animals performed by any
of the authors.

IMMUNE RESPONSE
AND ASSOCIATED INFLAMMATION

Immune Pathways and Their Role
in Homeostasis

The immune system consists of the innate sys-
tem, which recognizes conserved pathogenic
features and provides initial defense mechanisms,
and the adaptive system, which acts with speci-
ficity and provides long-term immune memory
through effector T cells and antibody production
by B cells [1, 6]. These two branches are intrinsi-
cally coordinated. Antigen-presenting cells
(APCs), part of the innate immune system, pro-
cess and present antigen on major histocompati-
bility complex (MHC) molecules to activated
lymphocytes, members of the adaptive immune
system [7]. APCs also produce cytokines and dis-
play costimulatory signals facilitating lymphocyte
activation and differentiation, usually along one
of three main differentiation pathways: types 1, 2,
and 3 (Fig. 1) [8–11].

Type 1 immunity evolved to protect against
intracellular pathogens such as bacteria, proto-
zoa, and viruses and is characterized by group 1
innate lymphoid cells (ILC1s), T-helper (Th) 1
cells, and T-cytotoxic (Tc) 1 cells. Intercellular
communication facilitates the elimination of
infected cells through the release of proinflam-
matory cytokines including interferon (IFN)-c,
interleukin (IL)-1b, IL-12, and tumor necrosis
factor (TNF), promoting phagocytic activation
and cytolytic activity. ILC1s also induce B cells
to produce immunoglobulin (Ig) G, IgM, and
IgA (but not IgE) [7, 12].

Type 2 immunity evolved to ensure epithe-
lial barrier integrity and protection against
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helminth parasites and noxious environmental
substances [2–5]. Its main cellular components
are group 2 ILCs (ILC2s), Th2 cells, and Tc2 cells
that release signature cytokines, including IL-4,
IL-5, IL-9, and IL-13 [5]. These type 2 mediators
contribute to the recruitment of innate effector
cells such as eosinophils and mast cells and
promote B-cell isotype class switching to IgE
production [2, 7, 10, 12, 13]. Type 2 immune
mechanisms, together with mediators such as
histamine and prostaglandins, induce a coordi-
nated response of epithelia, sensory neurons,
and smooth muscle cells to expel parasites by
triggering an itch/scratch reflex followed by
wound repair [4, 5, 14]. Unlike most microor-
ganisms, helminths do not ‘‘outrun’’ the
immune system through rapid replication but
instead rely on downregulating host immunity,
leading to chronic infection [3]. Moreover,
helminths tend to be endemic, and repeat
exposure is common, increasing the need for a
robust memory response.

Type 3 immunity is driven by the group 3
ILCs (ILC3s), Th17, and Tc17 cells. These cells
are characterized by production of the IL-17 and
IL-22 families of cytokines and coordinated
neutrophilic activation that protects against
extracellular bacteria and fungi through tissue
inflammation, phagocytosis, and pathogen lysis
[7, 15, 16].

ROLE OF TYPE 2 INFLAMMATION
IN DISEASE

Immune dysregulation can lead to inappropri-
ate activation of inflammatory pathways upon
microbial and nonmicrobial stimuli. Aberrant
type 2 responses have been associated with
allergic conditions, including AD, asthma,
allergic rhinitis, and food allergy. Type 2
inflammatory pathways have also been impli-
cated in other disorders characterized by ele-
vated levels of eosinophils, mast cells, and/or
IgE, such as chronic rhinosinusitis with nasal
polyposis (CRSwNP), eosinophilic esophagitis,
chronic urticaria, bullous pemphigoid, and
prurigo nodularis [17–19].

Key Players in Type 2 Inflammation

In the absence of helminth infection, inappro-
priate stimulation of type 2 immunity is trig-
gered by allergens, irritants, noxious
microenvironmental cues (i.e., temperature,
pH), bacteria, viruses, and endogenous host
molecules and lacks a downmodulating effect
mediated by helminths [3, 20]. Allergens pre-
sented by APCs induce naı̈ve Th0 cell polariza-
tion to the Th2 phenotype, a process
orchestrated by IL-4 and leading to the pro-
duction of type 2 inflammatory cytokines
[10, 20, 21]. Because the type 2 immune
response evolved to combat helminths trans-
mitted through the skin and mucosal surfaces,
aberrant reactions to antigens are typically
found at the epidermal and epithelial barriers.
Epidermal or epithelial barrier dysfunction
often occurs in inflammatory diseases, includ-
ing AD, asthma, and chronic rhinitis. Compro-
mised barrier integrity facilitates entry of
allergens, irritants, and infectious agents, and
damaged or stressed epidermal and epithelial
cells release thymic stromal lymphopoietin
(TSLP), IL-25 (also known as IL-17E), and IL-33
(alarmins), triggering type 2 inflammatory
cytokine production by ILC2s and Th2 cells
[13, 22, 23].

Type 2 cytokines: Signature cytokines of
type 2 immunity include IL-4, IL-5, IL-9, IL-13,
and IL-31, mainly secreted from immune cells,
and IL-25, IL-33, and TSLP, mainly secreted
from nonimmune cells (Table 1) [13, 24–27].

IL-4 is produced by many cell types, includ-
ing activated Th2 cells, ILC2s, basophils, eosi-
nophils, mast cells, natural killer T cells, and
macrophages [40–46]. It plays a central role in
Th2 differentiation and drives isotype class
switching of B cells, mainly to IgE and IgG4
(human) or IgG1 (mouse) [47–50]. IL-4 also
promotes alternative activation of macro-
phages, eosinophil migration, and production
of other type 2 cytokines, indicating that it is a
key upstream immunomodulator and driver of
type 2 inflammation [51–53]. IL-4 facilitates two
major axes for type 2 inflammatory cell
recruitment to the skin. First, vasopressin-acti-
vated calcium-mobilizing receptor (VCAM) 1
upregulation of endothelial cells leads to
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perivascular infiltration of very late antigen-4-
expressing granulocytes (eosinophils, basophils,
and mast cells, but not neutrophils). Th2 cell
CCR4 expression, binding to C–C motif che-
mokine ligand 17 (CCL17, also known as thy-
mus and activation-regulated chemokine
[TARC]) and CCL22 (also known as macro-
phage-derived chemokine [MDC]) on endothe-
lial cells, skin-resident dendritic cells (DCs), and
Langerhans cells facilitates inflammatory cell
skin-homing [54, 55]. IL-4 drives these processes
at low picomolar concentrations given its high
affinity for its receptor [28, 56].

IL-13, which shares a receptor subunit with
IL-4, is also implicated in type 2 inflammation.
Some overlap in the inflammatory effects of IL-
13 and IL-4 occurs, and both have been impli-
cated in fibrosis and wound healing [57–61]. In
aberrant inflammatory states, both cytokines
contribute to barrier disruption by inhibiting

keratinocyte differentiation, promoting epider-
mal hyperplasia [62], and reducing expression
of epidermal structural proteins and antimicro-
bial peptides [62–68]. IL-13 also directly stimu-
lates tissue remodeling and production of
mucus in the respiratory epithelial barrier [39].
In vivo differences between IL-13 and IL-4
derive from their relative productions and
receptor expression in different cell types.
Notably, because they lack IL-13Ra1 expression,
naı̈ve T cells respond to IL-4 but not IL-13,
highlighting the unique role of IL-4 in Th2 cell
development [69].

IL-5 is the most potent mediator of eosino-
phil function. Produced by Th2 cells, ILC2s, and
mast cells, its receptor, IL-5Ra, is selectively
expressed on eosinophils, basophils, and some
mast cells [31, 45, 46, 70]. IL-5 controls eosi-
nophil growth, differentiation, migration, and
survival. IL-4 and IL-13 promote eosinophil

Fig. 1 Overview of types 1, 2, and 3 inflammation. This
diagram represents immune concepts that do not occur in
complete isolation. IFNc interferon-c, IL interleukin, ILC

innate lymphoid cell, NK natural killer, Th1/2 T helper
type 1/2 cell, TNF tumor necrosis factor
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trafficking to the site of inflammation, in part
by mediating production of IL-5 and chemoki-
nes, such as CCL26 (also known as eotaxin-3)
and CCL17, and induction of adhesion mole-
cules such as VCAM-1 in endothelial cells
[56, 71–73].

IL-9 is produced primarily by T cells but also
by mast cells, eosinophils, and ILC2s. It pro-
motes T-cell growth, proliferation, and survival,
B-cell IgE production, and mast cell prolifera-
tion and differentiation; it also stimulates
secretion of mucus by mucosal epithelial cells
[74]. IL-9 plays a critical role in type 2 immunity
against parasitic worm infection and has been
implicated in allergic inflammation [32, 74].

IL-31 is primarily produced by Th2 cells,
implying the requirement for the upstream
presence of IL-4. Some IL-31 production has
been observed by CD8? T cells, mono-
cytes/macrophages, DCs, keratinocytes, eosino-
phils, basophils, mast cells, and fibroblasts [25].
This cytokine plays a critical role in histamine-
independent pruritus [37] and can alter epider-
mal barrier function in vitro [75].

Type 2 alarmins: Type 2 alarmins IL-25, IL-33,
and TSLP are released by epidermal and
epithelial cells in response to external insults
and enhance innate and adaptive immune
responses by triggering downstream signaling
pathways.

IL-25 plays a prominent role in enhancing
production of type 2 cytokines (IL-4, IL-5, IL-13,
IL-33, and TSLP) from Th2 cells and ILC2s [76].
It may play an important role in AD and asthma
as levels of IL-25 are elevated in tissues biopsied
from these patients [77].

IL-33 plays a role in the development of
allergic diseases by acting on innate cell types
such as ILC2s, basophils, and mast cells, and is
elevated in patients with allergic airway diseases
[78]. Its receptor is found on memory Th2 cells,
suggesting a contribution of IL-33 to activation
of Th2 cells [79].

TSLP promotes cytokine production from
Th2 cells and ILC2s and plays a role in polariz-
ing DCs to induce a Th2 response [80–82]. TSLP-
activated DCs induce an inflammatory Th2
response through expression of the OX40
ligand (also known as CD252 or tumor necrosis
factor receptor superfamily member 4 [TNFSF4])

[83]. TSLP expression is high in acute and
chronic AD lesions, and expression of TSLP in
skin is correlated with AD severity [81, 84]. TSLP
release in keratinocytes can also trigger itch by
acting on TRPA1-positive sensory neurons [85].

Signaling Mechanisms Driving Type 2
Inflammation

The polarization of naı̈ve Th0 cells toward a Th2
phenotype is predominantly regulated by the
cytokine milieu. IL-4 causes Th0 cells in the
lymph nodes to bind (via T-cell receptors) to
antigens presented by MHC class II molecules
on APCs. The polarized and activated Th2 cells
release IL-4, IL-5, IL-9, IL-13, and IL-31 and
migrate to germinal centers. In the germinal
centers, in the presence of IL-4 and IL-13, fol-
licular helper T cells situate in near B cells to
induce isotype class switching and differentia-
tion to antigen-specific, IgE-producing plasma
cells. IgE travels via circulation and binds to its
antigen and FceRI receptors on basophils and
mast cells [86]. IL-4 and IL-13 can directly
upregulate FceRI expression at the cell surface,
which may prime FceRI-expressing innate cells
for activation [56]. Bound IgE on basophils and
mast cells confers a selective response to the
target antigen [86]. When activated, basophils
and mast cells degranulate and release his-
tamine, proteoglycans (e.g., heparin), prote-
olytic enzymes, leukotrienes, and cytokines to
further drive vasodilation and inflammation
[87].

The IL-4Ra receptor chain is involved in both
IL-4 and IL-13 signaling and is critical to the
type 2 response. It can form two types of IL-4R
complexes. When IL-4 binds to IL-4Ra, it
recruits either the common gamma chain (cc)
to form the type I receptor or IL-13Ra1 to form
the type II receptor. IL-13 binds to IL-13Ra1 and
recruits IL-4Ra, forming the type II receptor
[39, 88]. Myeloid cells express both types of
receptors; nonhematopoietic cells predomi-
nantly express type II receptors, and lympho-
cytes mainly express type I receptors [39]. IL-
4Ra is also expressed on sensory neurons, and
activation of neuronal IL-4Ra plays a critical
role in chronic itch [89]. IL-4 can activate
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Table 1 Type 2 inflammatory cytokines

Cytokine Source cell Receptor Major
signaling
pathway

Target cell Downstream effect, including
pathologic effect occurring under
dysregulated conditions

IL-4

[13, 28–30]

Th2 cells

Basophils

Eosinophils

Mast cells

NK cells

ILC2s

B cells

Fibroblasts

Monocytes

Epithelial cells

Smooth

muscle cells

IL-4Ra and cc

IL-4Ra and

IL-13Ra1

STAT6 Hematopoietic cells

Th cells

B cells

Eosinophils

Epithelial cells

(including

keratinocytes)

Smooth muscle cells

Fibroblasts

(lymphocytes,

myeloid cells, no-

hematopoietic

cells)

Mast cells

Basophils

T-cell differentiation to Th2 and

survival

Class switching to IgE

B-cell proliferation

Effector cytokine of type 2

inflammation

Eosinophilia

IgE production

Production of type 2 cytokines/

chemokines (IL-5, IL-9, IL-13,

CCL17, CCL11/24/26)

Upregulation of MHC class II

production

Mast cell proliferation, activation,

recruitment, and survival

Basophil activation and recruitment

Polarization of macrophages to an

M2 phenotype for wound repair

Downregulation of filaggrin

expression

Barrier dysfunction

Inflammation

Inhibition of epidermal

differentiation

Reduction of lipid production

Inhibition of AMP

Itch

IL-5 [13, 31] Th2 cells

ILC2s

Mast cells

IL-5Ra and bc STAT1/

3/5

Basophils

Eosinophils

Mast cells

Eosinophil proliferation, maturation,

migration, recruitment, and

survival

Basophil proliferation, maturation,

activation, migration, and survival
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Table 1 continued

Cytokine Source cell Receptor Major
signaling
pathway

Target cell Downstream effect, including
pathologic effect occurring under
dysregulated conditions

IL-9 [24, 32] T cells

ILC2s

Mast cells

Eosinophils

Neutrophils

Osteoblasts

NK cells

IL-9Ra and cc STAT1/

3/5

MAPK

Lymphocytes

Mast cells

Eosinophils

Macrophages

Neutrophils

Epithelial cells

Mast cell production

Degranulation

T-cell proliferation and Th2

cytokine production

Ig production and class switch (IgE)

Mast cell proliferation

Production of mucus (and

potentially hypersecretion of

mucus)

Eosinophilia

IL-13

[13, 28, 30]

Th2 cells

Basophils

Eosinophils

Mast cells

NK cells

ILC2s

Epithelial cells

Smooth

muscle cells

Fibroblasts

Monocytes

B cells

IL-4Ra and

IL-13Ra1

IL-13Ra2

STAT6 Hematopoietic cells

B cells

Eosinophils

Monocytes

Epithelial cells

(including

keratinocytes)

Smooth muscle cells

Fibroblasts

Effector cytokine of type 2

inflammation

Eosinophilia

IgE production

Class switching to IgE

Production of mucus (and

potentially hypersecretion of

mucus)

Smooth muscle contractility

Epithelial hyperresponsiveness

Polarization of macrophages to an

M2 phenotype for wound repair

Downregulation of filaggrin

expression

Barrier dysfunction

Inflammation

Goblet cell hyperplasia

Itch
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Table 1 continued

Cytokine Source cell Receptor Major
signaling
pathway

Target cell Downstream effect, including
pathologic effect occurring under
dysregulated conditions

IL-25

[27, 33–35]

Epithelial cells IL-17RA and

IL-17RB

STAT5

Act1

Th2 cells

ILC2s

Mast cells

Eosinophils

Basophils

DCs

Production of type 2 cytokines (IL-4,

IL-5, IL-13, IL-33, TSLP) from

Th2 and ILC2s

Promotes Th2 polarization and

inflammation

Macrophage differentiation

IgE production

Decreases filaggrin

Hypersecretion of mucus

Eosinophilia

Airway inflammation/

hyperresponsiveness

IL-31

[25, 36, 37]

Th2 cells

(primary

source)

CD8? T cells

Mast cells

Mature

dendritic

cells

Basophils

Keratinocytes

Macrophages

Eosinophils

Fibroblasts

IL31RA and

OSMRb

STAT1/

3/5

PI3K/

AKT

MAPK

Epidermal

keratinocytes

Dorsal root ganglia

Basophils

Eosinophils

Mast cells

Macrophages

Proinflammatory cascade/

inflammation

Chemotaxis/cell migration

Regulates cell proliferation

Tissue remodeling

Epidermal barrier function

Decreasing filaggrin expression

Itch

Hyperkeratosis

Inhibition of terminal differentiation

Alters barrier protein expression
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human sensory neurons, and sensory neuron-
specific genetic deletion of IL-4ra in mice
attenuates both itch and skin inflammation,
further suggesting that IL-4Ra critically medi-
ates chronic itch. Moreover, activation of neu-
ronal IL-4Ra sensitizes sensory neurons to
multiple other pruritogens. IL-4 was shown to
significantly amplify scratching behavior to low
doses of pruritogens such as histamine [90].

These data suggest that type 2 cytokines may act
as master regulators of chronic itch by intensi-
fying itch responses to multiple pruritogens
present in inflamed skin [89]. Once IL-4 and IL-
13 bind to the receptor, they initiate an intra-
cellular signaling cascade involving mainly sig-
nal transducer and activator of transcription
(STAT) 6, which translocates to the nucleus and

Table 1 continued

Cytokine Source cell Receptor Major
signaling
pathway

Target cell Downstream effect, including
pathologic effect occurring under
dysregulated conditions

IL-33

[33, 36, 38]

Epithelial cells

Endothelial

cells

Fibroblast-like

cells

Myofibroblasts

ST2 (member

of Toll-like/

IL-1RSF)

and IL-1RAcP

TRAF6

IRAK4

AP-1

Mast cells

ILC2s

Eosinophils

Tregs

Basophils

DCs

Proinflammatory cascade/

inflammation

Enhances IFNc, IL-5, and IL-13

production

Inhibition of AMP

Stimulates Th2 cytokines from

ILC2s

Downregulation of filaggrin

Airway hyperresponsiveness

Airway remodeling

Eosinophilia

TSLP

[29, 30, 39]

Keratinocytes/

skin

epithelium

IL-7Ra and

TSLPR

STAT5 DCs (LCs)

T cells

ICL2 cells

B cells

Mast cells

Basophils

Eosinophils

Promotes type 2 responses

Promotes Th2 cytokine production

from Th2 and ICL2 cells and Th2

polarization

Inhibits Treg function

AKT, protein kinase B, AMP, adenosine monophosphate, AP-1 activator protein 1, bc common beta chain, cc common
gamma chain, CCL C–C motif chemokine ligand, COPD chronic obstructive pulmonary disease, DC dendritic cell, IBD
inflammatory bowel disease, IFNc interferon-gamma, Ig immunoglobulin, IL interleukin, IL-1RAcP IL-1 receptor accessory
protein, ILC innate lymphoid cell, IRAK interleukin-1 receptor associated kinase, LC Langerhans cell, MAPK mitogen-
activated protein kinase,MHC major histocompatibility complex, NK natural killer, OSMRb oncostatin M receptor b,
P13K phosphatidylinositol 3-kinase, RA rheumatoid arthritis, SLE systemic lupus erythematosus, STAT signal transducer
and activator of transcription, Th cell T helper cell, TRAF TNF receptor associated factors, Treg T regulatory cell, TSLP
thymic stromal lymphopoietin
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induces transcription of type 2 response genes
[39].

A key type 2 cytokine signaling pathway is
the Janus kinase (JAK)-STAT pathway. Dimer-
ization of cytokine receptors upon binding with
cytokines induces auto- and trans-phosphory-
lation of the noncovalently associated intracel-
lular JAKs. There are four JAK molecules (JAK1,
JAK2, JAK3, and tyrosine kinase-2 [TYK2]), and
the type of JAK involved depends on the com-
ponents of the receptor complex (in the case of
IL-4 and IL-13 signaling: JAK1 for IL-4Ra, JAK3
for cc, and JAK2 or TYK2 for IL-13Ra1). Their
redundant nature accounts for the role of JAKs
in a wide variety of biologic processes, including
immunity, inflammation, cell division, devel-
opment, tumor formation, and cell death [91].

Atopic Dermatitis

AD is a chronic, relapsing, pruritic, systemic
inflammatory disease affecting up to 20% of
children and 2–8% of adults worldwide [92, 93].
It often begins in early childhood [93, 94].
Recent research has expanded our understand-
ing of the pathogenesis of AD, which is thought
to involve genetic and environmental factors
that predispose an individual to epidermal bar-
rier dysfunction and type 2 inflammation
[95, 96]. There is considerable heterogeneity
within AD [29, 97]; however, type 2 inflamma-
tion is the principal driving mechanism (Fig. 2)
[98–100]. Type 2 inflammation leads to defects
in the epithelial barrier, allowing entry of
allergens/pathogens, where they are taken up
by Langerhans cells and other APCs [101]. Dis-
ruption to the epithelial barrier also stimulates
the release of alarmins (e.g., IL-25, IL-33, TSLP)
from keratinocytes. Alarmins induce produc-
tion of type 2 mediators such as IL-4 and IL-13
by innate immune cells, thereby shaping the
immune response toward the type 2 pathway,
and the subsequent recruitment of mast cells,
basophils, eosinophils, alternatively activated
macrophages, and allergen-specific IgE into the
dermal layers [100, 102, 103]. Continued acti-
vation of type 2 immunity leads to chronic
inflammation with emergence of memory Th2
cells, sensitization of sensory neurons to a range

of pruritogens, an amplified itch–scratch cycle,
and skin barrier disruption resulting in a clinical
picture characterized by erythema, induration,
papulation, excoriation, and in more chronic
stages, lichenification [19]. The T-cell receptor
OX40 (also known as CD134 or tumor necrosis
factor receptor superfamily member 4
[TNFRSF4]) and the OX40 ligand contribute to
Th2 memory cell formation and are thought to
play a role in AD pathogenesis [104, 105]. Th2
cells are increased in young children with AD,
suggesting that systemic components of
inflammation may predispose nonlesional skin
to a pathologic response upon allergen exposure
[106]. Genetic risk factors may predispose
patients to AD; many patients have a loss-of-
function mutation in FLG, but this alone is
insufficient to develop disease [93, 107].

Barrier protein expression is regulated by
both external and internal stimuli, including IL-
4, IL-13, and IL-31. In AD, excessive IL-4, IL-13,
and IL-31 levels downregulate the expression of
several skin barrier proteins, including filaggrin
(FLG) [64, 108], loricrin [66, 109], and involu-
crin [65, 67, 68]. Dysfunction of the epidermal
barrier can itself further promote type 2
inflammation through the production of alar-
mins. Alarmins IL-33 and IL-25 are believed to
trigger ILC2 activation and overexpression of
IL-13 in the skin; this leads to the recruitment of
activated Th2 cells via induction of Th2 cell-
recruiting chemokines such as CCL17 and fur-
ther increases IL-4/IL-13 expression within the
skin. This pathway is believed to play a critical
role in chronic inflammation in AD [110]. IL-4
and IL-13 also induce the production of peri-
ostin, a matricellular protein that plays a role in
chronic inflammation, skin fibrosis, and pruri-
tus [111]. Periostin promotes the production of
inflammatory cytokines by keratinocytes,
amplifying chronic inflammation [112].

Lesional skin in AD exhibits significantly
more Th2 cells, ILC2s, and basophils than
healthy skin [113, 114], and serum IgE levels are
often increased in patients with AD. Basophils
in AD skin are a key producer of peripheral IL-4
[115–117]. The basophil response has been
shown to precede the ILC2 response, and the IL-
4 produced by basophils induces the prolifera-
tion and activation of cutaneous ILC2s in a
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Fig. 2 Pathologic inflammation in AD (A), and IL-4 as a
key driver of Th2 differentiation and activation (B).
CCL17 C–C motif chemokine ligand 17, DC dendritic
cell, Ig immunoglobin, IL interleukin, ILC innate

lymphoid cell, LTC4 leukotriene C4, MHC-II major
histocompatibility complex II, TCR T-cell receptor, TSLP
thymic stromal lymphopoietin, VCAM-1 vasopressin-acti-
vated calcium-mobilizing receptor 1
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manner independent of IgE or the Th2 induc-
tion that occurs in the lymph nodes, under-
scoring the role of peripheral IL-4 in AD
pathogenesis [115].

Recent genomic studies support widespread
dysregulation of immune and barrier function
genes in AD [118–121]. Transcriptome profiling
from tape-stripped skin samples indicate
upregulation of genes associated with the Th2
response, including IL-4 and IL-13, and down-
regulation of genes associated with barrier
function in lesional versus nonlesional skin
[119–121]. In children with early-onset AD, the
genes encoding the IL-4 receptor and the che-
mokine CCL17 were upregulated compared
with healthy skin [121].

One of the cardinal symptoms of AD is
debilitating itch, which can lead to scratching
and excoriation that disrupt the epithelial bar-
rier, perpetuate the inflammatory response, and
can lead to epidermal thickening and lichenifi-
cation [19, 122]. Pruritus is regulated by a range
of immune mediators and leads to neurocuta-
neous anatomical alterations. In patients with
AD, lesions have increased sensory nerve den-
sity in the epidermis and dermis [123], and
altered expression of neuropeptides, neu-
rotrophins, and neurotransmitters is seen in the
skin and nerves of the dermis. Increased
expression of PGP9.5, amphiregulin, nerve
growth factor (NGF), brain-derived neu-
rotrophic factor (BDNF), and substance P have
been observed, with a contrasting decrease in
semaphorin 3A expression [124]; these media-
tors are associated with nerve fiber penetration
of the epidermis in patients with AD.

Basophils and mast cells release inflamma-
tory mediators, including histamine and tryp-
tase, that contribute to itch [102, 123].
Histamine elicits a range of proinflammatory
and pruritic effects, primarily via histamine 1
and histamine 4 receptors. Histamine regulates
production of NGF and semaphorin 3A in ker-
atinocytes, promotes IL-31 release from Th2
cells, and directly activates sensory neurons
[125]. Recent studies also reveal a critical role
for basophils in acute itch flares in AD. Follow-
ing activation by allergen-specific IgE, basophils
produce IL-4 and promote itch through mast
cell-independent leukotriene C4-CysLTR2

signaling [126, 127]. Chronic itch in AD appears
to be a distinct entity from acute itch, with
signaling via a variety of nonhistaminergic
nerve fiber pathways, including IL-4Ra and IL-
31R [89, 128].

IL-31 is a key mediator of pruritus and is
increased in lesional skin in patients with AD.
IL-31 not only stimulates sensory nerves but
also promotes sensory nerve fiber elongation
and branching [129]. It regulates brain-derived
natriuretic peptide, upregulating its release in
the skin and acting as a neuroimmune link to
drive the sensory pathways that result in itch.
IL-31 receptor signaling involves JAK1 and JAK2
[25, 130, 131]. The primary source of IL-31 is
Th2 cells. IL-4, but not IL-13, upregulates the
histaminic H4 receptor (H4R) on CD4? Th2
cells, and, in turn, H4R activation on T cells
upregulates IL-31 production [132]. More
recently, IL-4 and IL-13 were shown to directly
stimulate sensory neurons and promote itch
[89, 133]. The gene for IL-4Ra is widely expres-
sed across neuronal subsets, and IL-4 enhances
responsiveness to pruritogens, including IL-31,
histamine, and chloroquine [89]. By promoting
neural hypersensitivity, IL-4Ra may therefore
play a role in the prolonged or outsized reac-
tions to pruritogens seen in patients with AD.

Although the pathogenesis of AD is pre-
dominantly a type 2 immune response, types 1
and 3 immune responses also contribute to
disease, especially in chronic stages. The type 3
cytokines IL-17 and IL-22 are upregulated in the
skin of patients with AD, mainly in patients
with relatively low IgE levels [97]. IL-17 reduces
expression of FLG and involucrin [134]. Th1 cell
activation appears to occur more in the chronic
phase of AD after prolonged inflammation at
the epithelial barrier. Early-onset AD in children
is characterized by relatively strong activation
of the Th2 axis and increased Th17 cytokine
levels compared with adult-onset AD [106, 135].
Asian patients typically have a higher expres-
sion of Th17 and Th22 cytokines and lower
activation of Th1 cytokines in AD skin lesions
than European–American patients; however,
Th2 cytokines are upregulated consistently
regardless of ethnicity or disease stage
[136, 137].
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INHIBITION OF TYPE 2
INFLAMMATION

Overview

Targeted immune-modulating therapies pro-
vide a specific, effective treatment approach
that is less prone to adverse events (AEs) than
broad-spectrum immunosuppressant therapy.
Biologic therapies have been developed for
conditions mediated by type 1 and/or type 3
immunity, such as rheumatoid arthritis (RA),
psoriasis, Crohn disease, hidradenitis suppura-
tiva, and ankylosing spondylitis. Therapies for
conditions mediated by type 2 inflammation
have been similarly developed, with therapies
for asthma and AD leading the way. Licensed
biologics or biologics in advanced clinical stages
targeting type 2 cytokines in AD include
lebrikizumab (IL-13), tralokinumab (IL-13),
mepolizumab (IL-5), and reslizumab (IL-5);
those targeting type 2 cytokine receptors
include dupilumab (IL-4Ra), benralizumab (IL-
5Ra), and nemolizumab (IL-31RAa); and IgE-
targeting therapies include omalizumab and
ligelizumab (Fig. 3). The clinical efficacy of
these biologics has significantly advanced our
understanding of the pathogenic role of type 2
cytokines in diseases such as AD, asthma, and
CRSwNP, and has spurred the development of
biologics targeting other mediators associated
with type 2 inflammation, such as alarmins; for
example, IL-33 (astegolimab, etokimab, ite-
pekimab, MEDI-3506), IL-33R (melrilimab), and
TSLP (tezepelumab), which are at various stages
of development.

Some biologics, including those that target
TNF, IL-17, and IL-12/-23, have been associated
with an increased risk of opportunistic and/or
serious bacterial, fungal, or viral infections
[138]. This finding may be attributed to the role
of type 1 or type 3 immunity and IFNc (which
has antimicrobial properties and signals via
JAK1 and JAK2) in preventing bacterial, fungal,
and viral infections [139]. In theory, targeting
type 2 inflammation could increase the risk of
helminth infections, although no evidence
currently exists.

Biologics demonstrating lack of efficacy may
also be useful for understanding the precise
mechanisms underlying type 2 inflammatory
diseases and their treatment. For example,
although peripheral blood eosinophil numbers
are typically elevated in patients with AD, and
eosinophil numbers appear to correlate with
disease activity [140], reducing peripheral blood
eosinophil numbers through IL-5 inhibition
(mepolizumab) failed to yield clinically signifi-
cant improvements in AD [141, 142]. These
findings suggest that IL-5-mediated elevations
in eosinophil levels are not likely a primary
source of the inflammatory cascade in AD.
Similarly, although biologics targeting IgE
(omalizumab and ligelizumab) have shown
some clinical efficacy in AD, treatment efficacy
has been inconsistent, suggesting that elevated
IgE is not a predominant clinical factor in AD
[143].

Biologic Therapy

Dupilumab: The central and pleiotropic role of
IL-4 and IL-13 in type 2 inflammatory condi-
tions make these cytokines attractive therapeu-
tic targets, with beneficial downstream effects
for patients [30, 144]. Dupilumab is a fully
human monoclonal antibody against IL-4Ra,
which inhibits both IL-4 and IL-13 signaling
and is approved for patients with type 2
inflammatory diseases, including AD, asthma,
and CRSwNP [145, 146]. In multiple, random-
ized, placebo-controlled phase 3 clinical trials,
dupilumab improved signs, symptoms, and
quality of life (QoL) in adults and adolescents
with moderate-to-severe AD and in children
(aged C 6 years) with severe disease [147–152].
Dupilumab also demonstrated acceptable safety
and long-term efficacy, with continued
improvements in AD signs and symptoms for
up to 4 years in adults with AD [153, 154]. The
most common AEs associated with dupilumab
are listed in Table 2, including conjunctivitis
and injection-site reactions.

Previous analyses have shown that treatment
with dupilumab normalizes the AD transcrip-
tome by downregulating markers of type 2
inflammation (IL-13, IL-31, CCL13, CCL17,
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CCL18 [also known as pulmonary and activa-
tion-regulated chemokine, PARC], CCL22,
CCL26, periostin) and Th17/Th22 activity (IL-
17A, IL-22) while normalizing gene products
associated with barrier function, such as FLG
[183–185]. Another study suggests that dupilu-
mab might suppress ILC2 and Th2 cell popula-
tions [186].

In phase 3 trials in asthma, dupilumab
reduced the rate of severe exacerbations and
improved lung function as evidenced by
increased forced expiratory volume in the first
second compared with control in patients with
uncontrolled, moderate-to-severe asthma and
glucocorticoid-dependent severe asthma
[187, 188]. In two phase 3 trials in adults with
CRSwNP that was uncontrolled despite prior
treatment with systemic corticosteroids, sur-
gery, or both, dupilumab treatment signifi-
cantly reduced polyp size, roentgenographic

sinus opacification, and severity of symptoms
compared with controls [189]. These findings
suggest the potential for dupilumab to curtail
AD progression in children and adolescents,
although further evaluation is required
[190, 191].

Two different analyses of multiple, random-
ized, placebo-controlled trials of dupilumab in
adults with moderate-to-severe AD demon-
strated that dupilumab reduced the risk of seri-
ous and severe infections as well as nonherpetic
skin infections, and did not increase the overall
infection rates, compared with controls. Clini-
cally important herpes viral infections (eczema
herpeticum, herpes zoster) were less common
with dupilumab than placebo [192–194]. Dupi-
lumab also reduced overall infections and skin
infections in children and adolescents with
moderate-to-severe AD [195], and it reduced
upper and lower respiratory infections and anti-

Fig. 3 Biologics that inhibit type 2 molecules. AD atopic
dermatitis, ADCC antibody-dependent cellular cytotoxic-
ity, ABPA allergic bronchopulmonary aspergillosis, AFR
allergic fungal rhinosinusitis, BP bullous pemphigoid,
CCL17 C–C motif chemokine ligand 17, COPD chronic
obstructive pulmonary disorder, CRSsNP chronic rhinos-
inusitis without nasal polyposis, CRSwNP chronic rhinos-
inusitis with nasal polyposis, CIU chronic idiopathic
urticaria, CSU chronic spontaneous urticaria, EGPA
eosinophilic granulomatosis with polyangiitis, EoE

eosinophilic esophagitis, FeNO fractional exhaled nitric
oxide, HES hypereosinophilic syndrome, IFNc interferon-
gamma, IgE immunoglobulin E, IL interleukin, MCP-4
monocyte chemoattractant protein-4, NP nasal polyps,
OSMRb oncostatin-M specific receptor subunit b,
PC20 provocative concentration causing a 20% drop in
FEV1 from baseline, PN prurigo nodularis, TSLP thymic
stromal lymphopoietin, TSLPR thymic stromal lym-
phopoietin receptor
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Table 2 Common adverse events

Therapy Adverse events reported in prescribing
information (‡ 5% incidence)

Adverse events reported in patients with AD in
phase 3 primary manuscripts (‡ 5% incidence)

Abrocitinib AD: nasopharyngitis, nausea, headache [155, 156] Acne, AD, headache, nasopharyngitis, nausea,

URTI, vomiting [95, 157]

Baricitinib AD: herpes simplex, increased LDL cholesterol

RA: increased LDL cholesterol, URTI [158, 159]

Diarrhea, elevated blood CPK, headache, herpes

simplex, nasopharyngitis [160]

Benralizumab Asthma: headache, pharyngitis [161] N/A

Delgocitinib Not approved Contact dermatitis, nasopharyngitis [162, 163]

Dupilumab AD: blepharitis, conjunctivitis, ISRs

Asthma: ISRs

CRSwNP: ISRs [145, 146]

AD exacerbation, asthma, bronchitis, headache,

influenza, nasopharyngitis, oral herpes, sinusitis,

skin infections, URTI, vomiting

[147, 148, 150, 152, 164]

Fezakinumab Not approved URTI [165]

Lebrikizumab Not approved Conjunctivitis, fatigue, headache, herpes viral

infections, infections, ISRs, nasopharyngitis, skin

infections, URTI [166, 167]

Mepolizumab Asthma: back pain, fatigue, headache, ISRs [168] N/A

Nemolizumab Not approved Abnormal cytokines, ISRs, musculoskeletal and

connective-tissue symptoms, nasopharyngitis, skin

infections, worsening of AD [169]

Omalizumab Asthma: pain, arthralgia

Nasal polyps: headache, ISRs

CSU: headache, nasopharyngitis [170]

AD aggravation, AD exacerbation, asthma

exacerbation, headache, infected AD, iron

deficiency, rash, runny nose, skin infection, URTI,

urticaria, viral infection, wheezing [171]

Reslizumab No adverse events reported at C 5% incidence

[172]

N/A

Ruxolitinib Myelofibrosis: bruising, dizziness, flatulence,
headache, UTI, weight gain [173]

Nasopharyngitis [174]

Tofacitinib UC: nasopharyngitis, elevated cholesterol levels,

headache, URTI, increased blood CPK, rash,

diarrhea, herpes zoster [175]

N/A

Tralokinumab AD: conjunctivitis, URTI, ISRs [176, 177] Conjunctivitis, headache, pruritus, URTI, viral

URTI [178, 179]
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infective medication use in adults and adoles-
cents with moderate-to-severe asthma and
adults with severe CRSwNP [196]. Dupilumab
laboratory safety data also support the long-
term use of dupilumab in children, adolescents,
and adults without the need for routine labo-
ratory monitoring [164, 197, 198].

The efficacy of dupilumab in AD, asthma,
and CRSwNP supports the central roles of IL-4
and IL-13 in inflammatory disease pathology
[30, 199]. Trials are ongoing in other conditions
sharing elements of type 2 immune dysregula-
tion (Fig. 3).

Tralokinumab and lebrikizumab: Tralok-
inumab is an anti–IL-13 recombinant human-
ized IgG4k monoclonal antibody that binds to
IL-13, thereby inhibiting signaling via the IL-
13Ra1 and IL-13Ra2 receptors. Tralokinumab is
approved in the USA and European Union for
the treatment of moderate-to-severe AD in
adults [176, 177]. In three phase 3 trials (ECZ-
TRA 1, ECZTRA 2, and ECZTRA 3) in adults with
moderate-to-severe AD, tralokinumab improved
AD signs and symptoms and QoL and was well
tolerated up to 52 weeks [178, 179]. In two
phase 3 trials evaluating tralokinumab in
patients with severe, uncontrolled asthma
(STRATOS 1 and 2), the primary endpoints were
not met [200], suggesting that inhibition of IL-
13 signaling alone is insufficient to treat
patients with severe asthma. Table 2 lists the

most common AEs associated with
tralokinumab.

Lebrikizumab, a humanized IgG4j mono-
clonal antibody, binds to IL-13 at an epitope
distinct from that of tralokinumab, preventing
heterodimerization of the IL-4Ra and IL-13-IL-
13Ra1 complex [30, 166]. Lebrikizumab is cur-
rently in phase 3 trials in patients with AD after
demonstrating efficacy and an acceptable safety
profile in phase 2 trials [166, 167]. In two phase
3 trials (LAVOLTA I and II), lebrikizumab failed
to show a consistent reduction in asthma
exacerbations in patients with uncontrolled
asthma [201]. The most common AEs associated
with lebrikizumab are listed in Table 2.

Taken together, the clinical data indicate
that inhibiting IL-13 signaling may provide an
efficacious treatment option for patients with
AD, but treatment failure in asthma underscores
the significance of IL-4 in the pathophysiologic
nature of type 2 inflammatory diseases.

Nemolizumab: As described above, IL-31 is a
key driver of itch in patients with AD. Nemoli-
zumab is a humanized IgG2j anti-IL-31 receptor
A monoclonal antibody, which prevents IL-31
binding and subsequent downstream signaling.
In a small phase 3 trial in Japanese patients with
AD, nemolizumab in combination with topical
agents resulted in clinically significant
improvements in pruritus and some improve-
ments in AD signs, QoL, and sleep compared
with controls; AD exacerbations were observed

Table 2 continued

Therapy Adverse events reported in prescribing
information (‡ 5% incidence)

Adverse events reported in patients with AD in
phase 3 primary manuscripts (‡ 5% incidence)

Upadacitinib AD: acne, headache, herpes simplex, increased blood

CPK, URTI

RA: increased blood CPK, URTI [180, 181]

Acne, elevated blood CPK, headache,

nasopharyngitis, URTI [182]

N/A indicates an absence of published phase 3 clinical trial data in AD
AD atopic dermatitis, CPK creatine phosphokinase, CRSwNP chronic rhinosinusitis with nasal polyposis, CSU chronic
spontaneous urticaria, ISR injection-site reaction, LDL low-density lipoprotein, N/A not applicable, RA rheumatoid
arthritis, UC ulcerative colitis, URTI upper respiratory tract infection, UTI urinary tract infection

1516 Dermatol Ther (Heidelb) (2022) 12:1501–1533



both in placebo and in nemolizumab groups
[169]. Common AEs associated with nemolizu-
mab are listed in Table 2.

Mepolizumab, reslizumab, and benralizumab: A
potent mediator of eosinopoiesis, IL-5 is a logi-
cal target for type 2 inflammatory conditions
[31]. Mepolizumab, reslizumab, and benral-
izumab are humanized monoclonal antibodies
that block IL-5 signaling. Although mepolizu-
mab and reslizumab directly bind to IL-5, ben-
ralizumab binds to its receptor (IL-5Ra),
inducing antibody-dependent cell-mediated
cytotoxicity. Based on phase 3 trial data, all
three agents are approved for use in patients
with severe asthma with an eosinophilic phe-
notype [202–210]. Clinically meaningful
responses were not observed following res-
lizumab treatment in patients without elevated
eosinophil levels [211], suggesting that the
efficacy of IL-5 inhibition is primarily a conse-
quence of reducing eosinophil levels. Although
none of these agents are approved for use in AD
(mepolizumab failed to report meaningful
improvements in AD) [141, 142], and mepoli-
zumab has been licensed for eosinophilic gran-
ulomatosis with polyangiitis, investigation of
their use in other eosinophil-driven conditions
is underway. Table 2 lists the most common AEs
associated with mepolizumab, reslizumab, and
benralizumab.

Omalizumab and ligelizumab: Omalizumab, a
humanized anti-IgE antibody, binds to serum
IgE, inhibiting its downstream effects. It is
approved for use in asthma, chronic sponta-
neous urticaria, nasal polyps, and seasonal
allergic rhinitis [170]. Two phase 3 trials support
the use of omalizumab as an adjunctive therapy
in patients with severe asthma uncontrolled by
conventional therapy [212, 213]. Omalizumab
has demonstrated some efficacy in a range of
other type 2 inflammatory diseases, including
AD [171], CRSwNP [214], and food allergies
[215, 216]. Omalizumab has also demonstrated
efficacy in the treatment of moderate-to-severe
chronic spontaneous urticaria, as did recently
ligelizumab (another humanized anti-IgE anti-
body) in controlling symptoms [217]. For the
most common AEs associated with omal-
izumab, see Table 2.

Fezakinumab: Fezakinumab targets IL-22, a
Th22 cytokine that plays a role in skin barrier
function [165]. Treatment with fezakinumab
was shown to affect multiple pathways related
to inflammation and barrier function, although
the effects were limited to patients with high IL-
22 expression at baseline [218], thereby high-
lighting the population specificity of some bio-
logics [96]. In a small, randomized phase 2 trial,
fezakinumab improved signs and symptoms of
moderate-to-severe AD with few common AEs
(Table 2).

Astegolimab, etokimab, and itepekimab: Aste-
golimab is a human IgG2 monoclonal antibody
that binds to the IL-33 receptor [219]. Phase 2
trials of astegolimab in patients with AD are
underway. Another anti-IL-33 monoclonal
antibody, itepekimab, is under investigation for
chronic obstructive pulmonary disease [220].
Itepekimab was previously under investigation
for the treatment of asthma and AD. However,
its efficacy in treating asthma was lower than
that of dupilumab, and it is no longer being
investigated for the treatment of AD due to lack
of efficacy [221, 222]. Etokimab, which binds
directly to IL-33, is no longer in clinical devel-
opment [223, 224].

Tezepelumab: TSLP is released from the
epithelium following stress or allergen exposure
and is an early promoter of polarization toward
Th2 phenotype, the production of type 2
cytokines by ILC2s, mast cells, basophils, and
eosinophils [26, 225]. Tezepelumab is a mono-
clonal antibody that binds directly to TSLP to
prevent receptor binding. In a phase 2a trial in
patients with AD, the addition of tezepelumab
to topical corticosteroids did not significantly
improve skin lesions compared with placebo
and topical corticosteroids [152]. Tezepelumab
also failed to show efficacy in a recent phase 2b
study in patients with AD [226] and has been
discontinued for further development in AD
[227].

In patients with moderate-to-severe asthma,
tezepelumab significantly reduced asthma
exacerbations compared with placebo, regard-
less of baseline eosinophil count [228] and
improved lung function, asthma control, and
health-related QoL [229]. However, in adults
with oral corticosteroid (OCS)-dependent
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asthma, tezepelumab did not reduce OCS use
without the loss of asthma control [230] but did
increase the probability of a reduction in OCS
use in patients with high baseline blood eosi-
nophil counts [231].

The inconsistent efficacy of biologics target-
ing alarmins in treating AD suggests that alar-
mins may not play a predominant clinical role
in eliciting AD pathophysiology but may play a
greater role in other type 2 diseases such as
asthma.

JAK Inhibitors

More than 50 cytokines signal via intracellular
JAK signaling pathways [232] and abnormal
JAK–STAT signaling is associated with immune
disorders [233], making JAKs a target for treat-
ing immune-related diseases. JAK inhibitors
have the potential to inhibit signaling from a
range of cytokines involved in type 1, type 2,
and type 3 pathways (Fig. 4) [234–237].

JAK inhibitors were initially approved for use
in RA [159, 180, 239] and have been evaluated
for the treatment of type 2 immune diseases
such as AD. Tofacitinib is a pan-JAK inhibitor
that preferentially inhibits JAK1 and JAK3, and
is approved for use in RA, psoriatic arthritis, and

UC [239, 240]. However, safety concerns that
have emerged during trials of tofacitinib for
other indications may limit the utility of
tofacitinib in treating AD. More selective JAK
inhibitors in the treatment of AD have revealed
a more acceptable safety profile [160].

Delgocitinib has wide-reaching actions
against Th1, Th2, and Th17 responses and
inhibitory effects against JAK1, JAK2, JAK3, and
TYK2; it is approved in Japan as a topical agent
to treat AD [241, 242]. In a phase 3 trial of
topical delgocitinib in Japanese patients with
moderate or severe AD affecting 10–30% of the
body surface area, delgocitinib resulted in
greater and more rapid improvements in skin
signs and pruritus by week 4 compared with the
vehicle. Long-term efficacy was demonstrated
in two uncontrolled studies of 28 and 52 weeks’
duration, respectively [162, 163]. Further study
in pediatric patients is ongoing. Common AEs
associated with delgocitinib are shown in
Table 2.

Ruxolitinib is an inhibitor of JAK1 and JAK2.
Oral administration is associated with
immunosuppression and increased infection
risk [243]. Topical ruxolitinib is approved in the
USA for the short-term and noncontinuous
treatment of mild-to-moderate AD in non-im-
munocompromised patients aged at least

Fig. 4 JAK signaling pathways in type 2 inflammation and
JAK inhibitors. Adapted from Schwartz et al. [238]. For
simplicity, the depicted receptor subunits do not reflect the
extent of differentiation in domain structures of the
various JAK cytokine receptors. EPO erythropoietin, G-

CSF granulocyte colony-stimulating factor, GH growth
hormone, GM-CSF granulocyte macrophage colony-stim-
ulating factor, IFN interferon, IL interleukin, JAK Janus
kinase, LIF leukemia inhibitory factor, OSM oncostatin M,
TPO thrombopoietin
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12 years whose disease is not adequately con-
trolled with topical prescription therapies or
when those therapies are not advisable.
Approval was based on results from two phase 3
trials (TRuE-AD1 and TRuE-AD2), which inves-
tigated topical ruxolitinib cream (0.75% twice
daily [BID] and 1.5% BID) in adults and ado-
lescents with mild-to-moderate AD. Both trials
met the primary endpoint of Investigator’s
Global Assessment Treatment Success for both
formulations at week 8 [244]. Additional
52-week data demonstrated that topical ruxoli-
tinib is effective at maintaining treatment effect
up to 52 weeks with no AEs suggestive of a
relationship to systemic exposure observed, and
no meaningful changes or trends in hemato-
logic parameters [245]. Common AEs associated
with ruxolitinib are listed in Table 2.

Some serious AEs have been reported with
pan-JAK inhibitors, including cytopenias
(which may arise due to disrupted JAK-mediated
signaling of hematopoietic growth factors),
gastrointestinal tract perforation (which may
arise due to altered JAK signaling for IL-6, IL-22,
IL-10, and IL-9, all of which are involved in
intestinal barrier function), and malignancy
(which may result from T-cell and NK cell dys-
regulation) [238]. Although these events are
uncommon (generally\5% incidence), they
tend to occur at frequencies larger than those
observed with biologics
[159, 180, 238, 239, 246, 247].

At the appropriate dose, baricitinib selec-
tively inhibits JAK1- and JAK2-mediated sig-
naling. Baricitinib is approved by the European
Union and Japan to treat moderate-to-severe AD
in adults [158]. In two phase 3 trials in adults
with moderate-to-severe AD (BREEZE-AD 1 and
2), baricitinib showed significant improvements
in AD skin signs and symptoms at the higher
dose (4 mg once daily) for a 16-week period.
Improvements in itch began as early as week 1
at 4 mg and week 2 at 2 mg. Both doses reduced
nighttime awakenings and skin pain, and
improved QoL. Table 2 lists common AEs asso-
ciated with baricitinib.

Two next-generation JAK inhibitors, which
are believed to be more JAK1 selective at certain
lower doses, are upadacitinib and abrocitinib
[157, 238, 248–250]. JAK1 inhibition blocks

signaling pathways for interferons and a range
of cytokines, including IL-4, IL-13, IL-31, TSLP,
and IFN-c.

The central antiviral response is mediated by
IFNa and IFNb [251], both of which signal via
JAK1 and TYK2. Another central antiviral cyto-
kine, IFN-c, has antibacterial and antiprotozoan
activity and signals via JAK1 and JAK2 [139].
The development and function of natural killer
cells capable of killing virus-infected cells
depend on IL-15 and IL-7, both of which signal
through JAK1- and JAK3-associated receptors
[252]. Thus, inhibition of JAK kinases may
account for the increased risk of infection,
including herpes zoster infection, observed in
patients treated with JAK inhibitors [253–260].
Herpes zoster is seen more frequently with JAK
inhibitors in patients from Asian regions
[257, 259, 260], with crude incidence rates of
herpes zoster events (expressed per 100 patient-
years) of 9.2 (Japan/Korea), 8.9 (India), 2.7
(Western Europe), and 3.3 (USA/Canada/Aus-
tralia) in patients treated with tofacitinib [256]
and comparable incidence rates in Asian
patients treated with baricitinib (Japan: 10.7;
Taiwan: 13.0; Korea: 13.1) [258]. This trend has
also been noted in patients with plaque psoria-
sis [261] and in patients with AD treated with
upadacitinib [262].

Upadacitinib is approved in the USA, Euro-
pean Union, and Japan for the treatment of AD
in adults and adolescents [180, 181]. Table 2
shows the most common AEs associated with
upadacitinib. A recent phase 3 trial comparing
upadacitinib (30 mg) and dupilumab (300 mg)
found that upadacitinib efficacy in reducing AD
signs was demonstrated earlier than dupilumab
(by week 16) and with greater efficacy compared
with dupilumab at week 16, but with no statis-
tical difference at week 24 [263]. Recent data
from open-label studies of patients switching
from dupilumab to upadacitinib have demon-
strated improved efficacy without complete
washout of dupilumab, which may suggest
enhanced efficacy when these agents are com-
bined [263].

Abrocitinib is approved in the USA for
treatment of adults with moderate-to-severe AD
[155] and in the UK and Japan for the treatment
of moderate-to-severe AD in adults and
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adolescents [156]. In a phase 3 trial comparing
abrocitinib with dupilumab and placebo in
adults with moderate-to-severe AD, abrocitinib
demonstrated a greater reduction in signs and
symptoms of AD compared with placebo at
week 12. The 200 mg (but not 100 mg) dose
significantly reduced itch by week 2 compared
with dupilumab [95]. Moreover, although sig-
nificantly more patients achieved a 90%
improvement in Eczema Area and Severity
Index at week 4 and week 16 with abrocitinib
compared with dupilumab, no differences were
observed at week 26 [264]. In patients with AD
aged 12 years and older (JADE MONO 1 and 2),
abrocitinib showed rapid and significant
improvements by week 12 compared with pla-
cebo. The most common AEs associated with
abrocitinib are listed in Table 2.

Overall, by broadly impacting cytokine sig-
naling, JAK inhibitors act rapidly to dampen
itch and effectively reduce AD lesions, but
longer-term head-to-head comparative studies
show that a more targeted approach with a
biologic such as dupilumab reaches the same
goal [95]. Drawing a direct correlation between
JAK selectivity and safety profile has proved
challenging, which may be because JAK selec-
tivity is tissue selective and dose dependent; at
higher doses, selective JAK inhibitors begin to
affect other JAKs [265]. The safety profile of
semiselective JAK1 inhibitors in patients with
RA suggests that they may also inhibit JAK2 to
some extent, particularly at higher doses. For
example, dose-dependent thrombocytopenia
was observed in clinical trials of abrocitinib for
AD and psoriasis [249, 266], suggesting that
abrocitinib may inhibit JAK2, which is involved
in hematopoiesis, at higher doses. Indeed,
abrocitinib is expected to inhibit JAK1, JAK2,
and TYK2 in vivo [267, 268]. Tofacitinib, which
preferentially inhibits JAK1 and JAK3, increased
hemoglobin levels at 5 mg, but the effect was
diminished at 10 mg [269]. This suggests that
tofacitinib may start to inhibit JAK2 at higher
doses [270].

To date, studies of JAK inhibitors in type 2
inflammatory disease are mostly limited to AD.
Longer studies are required to better understand
the role of JAK inhibitors in these diseases.
Although selective inhibition of certain JAKs

may hypothetically maximize efficacy while
minimizing AEs compared with pan-JAK inhi-
bitors, the selectivity of targeted JAK inhibitors
demonstrated in vitro may be challenging to
maintain in vivo [271].

DISCUSSION AND FUTURE
PERSPECTIVES

Dysregulation of type 2 immunity can lead to a
number of chronic diseases such as AD and
asthma. Immune dysregulation in these dis-
eases is often highly complex and involves
many different cell types and inflammatory
mediators. Despite the multifaceted nature of
type 2 inflammatory disease pathophysiology,
clinical studies of targeted therapies, such as
biologic therapies, suggest that only a few
components play a clinically significant role.
For example, the relative success of tralok-
inumab in patients with AD, but not asthma,
suggests that IL-13 plays a clinically significant
role in AD but, by itself, a lesser role in asthma
pathophysiology. The clinical efficacy of dupi-
lumab with targeting both IL-4 and IL-13 in
multiple type 2 inflammatory diseases suggests
that IL-4 and IL-13 are critical target molecules.
Similarly, targeting IgE or TSLP is effective in
asthma, but modulating these targets has not
yielded consistent results in AD
[152, 212, 213, 220, 222, 228, 229, 272].
Although pan-JAK inhibitors have demon-
strated efficacy in treating some inflammatory
diseases, the broad cytokine inhibition elicited
by JAK inhibitors is associated with a number of
serious AEs that may limit their therapeutic
potential in other populations. More recently,
JAK inhibitors with greater selectivity (and a
more acceptable safety profile) have demon-
strated rapid efficacy in AD. Evaluations in lar-
ger populations over time in a wider range of
type 2 inflammatory diseases are necessary to
better understand the impact of JAK inhibition
on type 2 inflammatory diseases. Studies of
drugs targeting type 2 immune mediators have
helped clarify the biological mechanisms
underlying type 2 immunity while also provid-
ing tremendous therapeutic advances for dis-
eases involving type 2 inflammation.
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Many additional targets for modulation of
type 2 immunity have been identified, and
development of novel agents will no doubt
continue to advance our understanding of
type 2 inflammatory diseases.
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