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Abstract
In this paper, our focus is on exploring the relative controllability of systems governed
by linear fractional differential equations incorporating state delay. We introduce a
novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation
of the Mittag-Leffler function, along with a determining function and an analog of the
Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for
assessing the relative controllability of fractional differential equationswith state delay.
Moreover, we articulate necessary and sufficient conditions for relative controllability
criteria concerning linear fractional time-delay systems, expressed in terms of a new
α-Gramian matrix and define a control which transfer the system from any initial state
to any final state within a given time. The theoretical findings are exemplified through
the presentation of illustrative examples.
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Fractional delay systems · Delayed α-exponential function · Delayed Mittag-Leffler
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1 Introduction

In this research paper, our focus is on investigating the controllability of linear time
delay differential equations. It is important to differentiate between the notions of
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function controllability and controllability in Euclidean space (relative controllability)
for these equations. This distinction arises because although the solutions of these
equations are trajectories in Euclidean space, the natural “state space” is actually a
function space. For the purposes of this study, we limit our discussion to controllability
in Euclidean space. Furthermore, unlike in the case of ordinary differential equations,
it is necessary to also distinguish between the concepts of complete controllability and
null controllability when it comes to controllability in Euclidean space.

Chyung and Lee initially explored the concept of complete controllability in
Euclidean space, focusing on a linear controlled hereditary system described by
multi-delay differential equations [1]. In 1967, Kirillova and Curakova [2] introduced
algebraic criteria for the null controllability of linear autonomous time-delay differ-
ential equations in Euclidean space. Building upon this work, Gabasov and Curakova
[3] demonstrated that the conditions derived in [2] are not only necessary but also
sufficient for achieving complete controllability, see also [4, 5]. Weiss [6] extended
the understanding of controllability by obtaining an algebraic sufficient condition for
time-varying differential-difference equations, encompassing the findings of Buckalo
[7] as a special case. Recently, Choudhury [8] published results closely related to those
presented by Gabasov and Curakova [3].

In recent decades, the field of fractional calculus has experienced significant
advancements due to its broad range of applications in various scientific and engi-
neering domains. Mathematical tools derived from fractional calculus have proven to
be highly effective in describing numerous real-world phenomena. These applications
encompass diverse areas such as fluid dynamics, archeology, electrode-electrolyte
polarization, transmission modeling, control theory of continuous/discrete dynamical
systems, electrical networks, optics, signal processing, and more.

The controllability analysis for fractional linear delay systems is typically based
on fractional calculus and control theory. Fractional calculus extends the concept of
derivatives and integrals to non-integer orders, allowing the modeling and analysis
of systems with fractional dynamics. Fractional delay systems introduce additional
complexity due to the presence of fractional orders in the system’s dynamics.

The controllability of fractional linear delay systems depends on various factors,
including the system’s structure, the fractional orders of the delays, and the available
control inputs. Fractional order delays can lead to rich and intricate dynamics, and
analyzing controllability in such systems can be challenging. Techniques such as
fractional differential equations, fractional Laplace transforms, and fractional control
theory are commonly used to analyze the controllability properties of fractional linear
delay systems.

It is important to note that the field of fractional calculus and fractional control
theory is still an active area of research. Developing efficient analysis techniques and
control strategies for fractional linear delay systems is an ongoing topic of investi-
gation, and different approaches may be employed depending on the specific system
characteristics and requirements.

In recent times, numerous researchers have focused on examining the controllability
of various systems that are described by integro-differential equations with fractional
order. To delve deeper into this topic, we suggest interested readers to explore the
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works of several authors [9–25], as well as the additional sources mentioned in those
references.

We are going to study the relative controllability of a linear fractional system with
delay

{
C Dα

0+ y (t) = Ay (t) + By (t − h) + Cu (t) , t ∈ (0, T ] , h > 0,
y (0) = y0, y (t) = ϕ (t) , −h ≤ t < 0.

(1.1)

Here C Dα
0+ is the Caputo fractional derivative, 0 < α ≤ 1, A, B are d × d constant

matrices,C is an d×r constantmatrix.We assume that the initial conditionϕ (t) is con-
tinuous on the interval [−h, 0] and an admissible control u ∈ L p ([0, T ] ,Rr ) , p > 1.

In 2015,Mur andHenriquez [22] extended the results on null controllability of [2] to
the Caputo fractional time-delay linear system. They obtained algebraic criteria for the
null controllability of linear autonomous fractional time-delay differential equations
(1.1) in Euclidean space. We extend to system (1.1) the algebraic criterion of relative
controllability established in [3] for the classical differential system associated to (1.1).

The proof of algebraic criterion for the relative controllability for linear differential
systems, known as Kalman’s criterion, relies on two important results.

– The first result is the integral representation formula for the solution of a Cauchy
problem in a nonhomogeneous system. This formula expresses the solution x(t)
as the sum of two terms: the exponential of the system matrix A multiplied by
the initial condition x0, and an integral involving the matrix exponential and the
control input u(s). The matrix exponential, denoted as exp(At), is defined as a
power series involving the matrix A. It starts with the identity matrix I , and each
term in the series is a power of A divided by the corresponding factorial.

– The second result is the Cayley-Hamilton theorem, which states that for a given
constant n × n matrix A, every power of A from the nth power onward can be
expressed as a linear combination of a finite number ofmatrices: the identitymatrix
I , A, A2, and so on up to An−1.

These two results are significant in the research on controllability and serve as
motivation for further exploration. In this study we use the following analogues of
these two results to obtain an algebraic criterion for the relative controllability of
fractional system (1.1):

– representation of solution expressed using delayed Mittag-Leffler matrix function
Y A,B
h,α,αand delayed α-exponential matrix function X A,B

h,α,α , which are defined by
means of determining function Qk+1 ( jh) in [26], see Theorem 1. It is important
to emphasize that the studies conducted in [15, 22] focused on the solution rep-
resentations for the Caputo fractional delay differential equations (1.1). However,
the explicit forms of Y A,B

h,α,α and X A,B
h,α,α were not provided in that paper. Conse-

quently, we are unable to utilize this representation for deriving the Kalman-type
criterion;

– analogue of theCayley-Hamilton theorem for the determining function Qk+1 ( jh),
which is proved in Lemma 4.

Another criterion for the relative controllability for fractional linear time-delay
systems is a necessary and sufficient condition in terms of the Gramian matrix. The
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expected Gramian matrix is

W (0, T ) =
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

(
X A,B
h,α,α (T − r)

)ᵀ
dr .

Since delayed α-exponential matrix function X A,B
h,α,α has singularities at the points

0, h, 2h, ..., W (0, T ) does not converges and is not well-defined. To neutralize the
singular points we introduce a new α-Gramian matrix

Gα (0, T ) :=
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

(
Y A,B
h,α,α (T − r)

)ᵀ
dr ,

see Definition 7, which is well-defined for all 0 < α ≤ 1, but is not symmetric
matrix, see Lemma 6. Using a newly defined α-Gramian matrix Gα (0, T ) we prove
a necessary and sufficient condition for the relative controllability.

The main contributions of this article are as follows:

– We employ a method based on the delayed α-exponential matrix function X A,B
h,α,α ,

as outlined in Lemma 3, which deals with the sequential Riemann-Liouville
derivative of this function. Additionally, we establish an analogue of the Cayley-
Hamilton theorem for the determining function Qk+1 ( jh). Utilizing these tools,
we demonstrate a Kalman-type algebraic criterion for the fractional linear time-
delay systems, where the fractional order 0 < α ≤ 1 ranges between 0 and 1.

– We introduce a condition for relative controllability of linear fractional time-delay
systems (1.1), which is characterized by a newly introduced α-Gramian matrix,
denoted as Gα (0, T ). This condition is both necessary and sufficient for assessing
relative controllability. Using Gramian matrix we define a control which transfer
the system from any initial state to any final state within a given time.

This paper is organized in four sections. In Section 2 we study properties of the
determining function and prove analogue of the Cayley-Hamilton theorem. In Sec-
tion 3, we prove Kalman type algebraic criterion for the fractional linear delay system
in terms of determining function. Moreover, we introduce an α-Gramian matrix and
prove a new criterion in terms of α-Gramian matrix Gα (0, T ). Finally, in Section 4
we apply our results to study the relative controllability of some concrete systems.

2 Determining function and Cayley-Hamilton theorem

We first recall some definitions and lemmas.

Definition 1 [27] Let 0 < α < 1. The Riemann-Liouville fractional integral I α
T− y is

defined by

I α
T− y (t) = 1

Γ (α)

∫ T

t
(r − t)α−1 y (r) dr , t < T .
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The Riemann-Liouville fractional derivatives RL Dα
0+ y and RL Dα

T− y are defined by

RL Dα
0+ y (t) = 1

Γ (1 − α)

d

dt

∫ t

0
(t − r)−α y (r) dr , t > 0,

RL Dα
T− y (t) = − 1

Γ (1 − α)

d

dt

∫ T

t
(r − t)−α y (r) dr , t < T ,

respectively. The Caputo fractional derivative C Dα
0+ y is defined by

C Dα
0+ y (t) = 1

Γ (1 − α)

∫ t

0
(t − r)−α d

dr
y (r) dr , t > 0.

Lemma 1 [27] If α ≥ 0 and γ > −1, then

(
RL Dα

T− (T − s)γ
)

(t) = Γ (γ + 1)

Γ (γ − α + 1)
(T − t)γ−α , α ≥ 0, γ > −1,

(
RL Dα

T− (T − s)α−1
)

(t) = 0.

Next, we present a specific form of the fundamental matrix that will be valuable for
future sections. The Mittag-Leffler function, which is an extension of the exponential
function, plays a crucial role in this context. The purely delayed Mittag-Leffler matrix
function,which incorporates delays, is defined in the reference [28].Additionally,more
recent research, as cited in [26, 29] has focused on the study of delayed perturbations of
Mittag-Leffler type matrix functions. This paper introduces and examines the delayed
perturbation of Mittag-Leffler type matrix function and α-exponential matrix function
through the use of a determining matrix equation for Qk ( jh) :

Qk+1 ( jh) = AQk ( jh) + BQk ( jh − h) ,

Q0 ( jh) = Qk (−h) = Θ, Q1 (0) = I ,

k = 0, 1, 2, ..., j = 0, 1, 2, ..., (2.1)

where I is an identity, Θ is a zero matrix. It is obvious that Qk+1 ( jh) satisfies the
following equation:

Qk+1 ( jh) = Qk ( jh) A + Qk ( jh − h) B,

and Qk+1 ( jh) = Θ for j ≥ k + 1 > 1.
Thematrix family {Qk+1 ( jh) : k, j ∈ N ∪ {0}} ⊂ R

d×d plays a role as a kernel for
the delayed perturbation of Mittag-Leffler matrix function and delayed α-exponential
matrix function.

Apply the Laplace transform in

{
C Dα

0+Y (t) = AY (t) + BY (t − h) , t ∈ (0, T ] , h > 0,
Y (0) = I , Y (t) = Θ, −h ≤ t < 0.
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It is shown in [22] that

λαŶ (λ) − λα−1 I = AŶ (λ) + e−λh BŶ (λ) .

Then

Ŷ (λ) = λα−1
(
λα − A − e−λh B

)−1
,

where Ŷ (λ) is the Laplace transform of Y (t). Let X (t) be the inverse Laplace trans-
form of

X̂ (λ) =
(
λα − A − e−λh B

)−1
.

Then

Y (t) = L−1
{
λα−1

(
λα − A − e−λh B

)−1
}

,

X (t) = L−1
{(

λα − A − e−λh B
)−1
}

.

Here L−1 is the inverse Laplace transform. In [26, 29], the explicit formulas for Y (t)
and X (t) are given and it is shown that

Y (t) = Y A,B
h,α,1 (t) , X (t) = X A,B

h,α,α (t) ,

see Definitions 2 and 3.

Definition 2 Letα, β > 0, t ∈ R≥0 = [0,∞). Delayed perturbation of two parameter
Mittag-Leffler type matrix function Y A,B

h,α,β generated by A, B is defined by

Y A,B
h,α,β (t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
i=0

Qi+1 (0)
t iα

Γ (iα + β)
+

∞∑
i=1

Qi+1 (h)
(t − h)iα

Γ (iα + β)

+... +
∞∑
i=m

Qi+1 (mh)
(t − mh)iα

Γ (iα + β)
,

where mh < t ≤ (m + 1) h, m ∈ N ∪ {0} .

We can derive the following important properties of Y A,B
h,α,β (t) and

{Qk+1 ( jh) : k, j ∈ N ∪ {0}} :
– If j ≥ k + 1 for k > 0, then Qk+1 ( jh) = Θ . Therefore, a matrix family

{Qk+1 ( jh) : k, j ∈ N ∪ {0}} ⊂ R
d×d is a lower triangular matrix.

– For arbitrary (commutative or non-commutative) real matrices A, B ∈ R
d×d , a

matrix family {Qk+1 ( jh) : k, j ∈ N ∪ {0}} ⊂ R
d×d is satisfying Qk+1 ( jh) =

AQk ( jh) + BQk ( jh − h)) for k, j ∈ N ∪ {0}.
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– For arbitrary commutative real matrices A, B ∈ R
d×d , i.e., AB = BA, a matrix

family {Qk+1 ( jh) : k, j ∈ N ∪ {0}} ⊂ R
d×d satisfies Qk+1 ( jh) = (k

j

)
Ak− j B j ,

k, j ∈ N ∪ {0}.
– If B = Θ , then for anyN∪{0}, Qk+1 ( jh) =

{
Ak, j = 0,

Θ, j ∈ N.
andY A,B

h,α,β becomes

a Mittag-Leffler matrix function: Y A,B
h,α,β (t) =

∞∑
i=0

Ai t iα

Γ (iα + β)
= Eα,β (Atα)

for t ≥ 0, see [27, p.53].

– If A = Θ , then for any k, j ∈ N ∪ {0}, Qk+1 ( jh) =
{
B j , k = j,

Θ, k �= j
and

Y A,B
h,α,β becomes the pure delayed Mittag-Leffler matrix function Y A,B

h,α,β (t) =
∞∑
k=0

Bk (t − kh)kα+
Γ (kα + β)

for t ≥ 0, where (t)+ := max (0, t).

– Y A,B
h,α,β (·) is a continuous function on [0,∞) .

Next we define delayed α-exponential matrix function X A,B
h,α,α , which is delayed

counterpart of eα,α (Atα) = tα−1Eα,α (Atα) , see [27, p.50].

Definition 3 [29] Let α > 0, t ∈ R≥0. Delayed α-exponential matrix function X A,B
h,α,α

generated by A, B is defined by

X A,B
h,α,α (t) := tα−1

∞∑
i=0

Qi+1 (0)
t iα

Γ (iα + α)

+ (t − h)α−1
∞∑
i=1

Qi+1 (h)
(t − h)iα

Γ (iα + α)

+ ... + (t − mh)α−1
∞∑
i=m

Qi+1 (mh)
(t − mh)iα

Γ (iα + α)
,

where mh < t ≤ (m + 1) h, m ∈ N ∪ {0} .

Remark 1 By definition the function X A,B
h,α,α (·), 0 < α < 1, is continuous on

R≥0\ {mh : m ∈ N ∪ {0}}.
Let us introduce the following notations:

Y k
h,α,β (t − kh) :=

∞∑
i=k

Qi+1 (kh)
(t − kh)iα+
Γ (iα + β)

,

Xk
h,α,α (t − kh) := (t − kh)α−1 Y k

h,α,α (t − kh)

= (t − kh)α−1
∞∑
i=k

Qi+1 (kh)
(t − kh)iα+
Γ (iα + α)

.
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994 N. I. Mahmudov

Now we introduce a shift operator T h (h ∈ R) which takes a function f on R to its
translation fh :

T h f (t) = eh
d
dt f := f (t + h) .

Say, if f (t) = tk then e−mh d
dt f = f (t − mh) = (t − mh)k .

Using the shift operator we can give an equivalent definition of Y A,B
h,α,β and X A,B

h,α,α.

As it is shown in [26], Definitions 2, 3 and 4 are equivalent.

Definition 4 [26, 29] DelayedMittag-Leffler typematrix functions Y A,B
h,α,β and delayed

α-exponential matrix function X A,B
h,α,αgenerated by A, B are defined by

Y A,B
h,α,β (t) :=

∞∑
k=0

(
A + Be−h d

dt

)k (t)αk+
Γ (αk + β)

,

X A,B
h,α,α (t) :=

∞∑
k=0

(
A + Be−h d

dt

)k (t)αk+α−1+
Γ (αk + α)

, t ∈ R≥0,

where (t)+ := max (0, t).

It is clear that

∥∥∥Y A,B
h,α,β (t)

∥∥∥ ≤
∞∑
k=0

(
‖A‖ + ‖B‖ e−h d

dt

)k (t)αk+
Γ (αk + β)

≤
∞∑
k=0

(‖A‖ + ‖B‖)k tαk

Γ (αk + β)

= Eα,β

(
(‖A‖ + ‖B‖) tα) . (2.2)

Definition 5 A function y : [−h, T ] → R
d is said to be a solution of (1.1) if y is

continuous on [0, T ] , conditions y (0) = y0, y (t) = ϕ (t) , −h ≤ t < 0, are
satisfied, and the equation

y (t) = Y A,B
h,α,1 (t) ϕ (0) +

∫ min(0,t−h)

−h
X A,B
h,α,α (t − s − h) Bϕ (s) ds

+
∫ t

0
X A,B
h,α,α (t − s)Cu (s) ds (2.3)

is valued for 0 < t ≤ T .

Theorem 1 [29] Let 0 < α ≤ 1 and p > 1
α
. For any admissible control u ∈

L p ([0, T ] ,Rr ), there exists a unique continuous solution y on (0, T ] to (1.1).
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By taking α = 1 the system (1.1) reduces to a classical order delay system and
solution representation (2.3) coincides with the classical one, see [30, 31].

Let us present two lemmas that will be used in the proof of the main results.

Lemma 2 The function X A,B
h,α,α (T − t) satisfies the following equation

RL Dα
T− X

A,B
h,α,α (T − t) = AX A,B

h,α,α (T − t) + BX A,B
h,α,α (T − t − h) ,

lim
t→T− I 1−α

T−
(
X A,B
h,α,α (T − s)

)
(t) = I .

Proof Taking theRiemann-Liouville fractional derivative Dα
T− and using the formulas

(
RL Dα

T− (T − s)γ
)

(t) = Γ (γ + 1)

Γ (γ − α + 1)
(T − t)γ−α , α ≥ 0, γ > −1,

and

(
RL Dα

T− (T − s)α−1
)

(t) = 0,

we have

RL Dα
T− X A,B

h,α,α (T − t)

= RL Dα
T−

∞∑
k=0

∑
0≤i≤k

Qk+1 (ih)
(T − t − ih)kα+α−1+

Γ (kα + α)

=
∞∑
k=1

∑
0≤i≤k

Qk+1 (ih)
(T − t − ih)kα−1+

Γ (kα)

=
∞∑
k=0

∑
0≤i≤k+1

Qk+2 (ih)
(T − t − ih)kα+α−1+

Γ (kα + α)

= A
∞∑
k=0

∑
0≤i≤k+1

Qk+1 (ih)
(T − t − ih)kα+α−1+

Γ (kα + α)

+ B
∞∑
k=0

∑
0≤i≤k+1

Qk+1 (ih − h)
(T − t − ih)kα+α−1+

Γ (kα + α)

= AX A,B
h,α,α (T − t) + B

∞∑
k=0

∑
0≤i≤k

Qk+1 (ih)
(T − t − h − ih)kα+α−1+

Γ (kα + α)

= AX A,B
h,α,α (T − t) + BX A,B

h,α,α (T − t − h)

=
(
A + Beh

d
dt

)
X A,B
h,α,α (T − t) .
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Next, we prove the second equality:

lim
t→T− I 1−α

T−
(
X A,B
h,α,α (T − s)

)
(t)

= 1

Γ (1 − α)
lim

t→T−

∫ T

t
(r − t)−α

( ∞∑
k=0

(
A + Be−h d

dt

)k (T − r)αk+α−1+
Γ (αk + α)

)
dr

= 1

Γ (1 − α)
lim

t→T−

∫ T

t
(r − t)−α

∞∑
k=0

Qk+1 (0)
(T − r)kα+α−1

Γ (kα + α)
dr

= 1

Γ (1 − α)

∞∑
k=0

Qk+1 (0) lim
t→T−

∫ T

t

(r − t)−α (T − r)kα+α−1+
Γ (kα + α)

dr

=
∞∑
k=0

Qk+1 (0) lim
t→T−

(T − t)kα

Γ (kα + 1)
= Q1 (0) = I .

��
For jh < T − s ≤ ( j + 1) h, define

X j (T − s) := RL Dmα
T−X A,B

h,α,α (T − s) =
j∑

i=0

Qm+1 (ih) X A,B
h,α,α (T − s − ih) .

Lemma 3 We have

RL Dmα
T−X A,B

h,α,α (T − s) =
m∑
i=0

Qm+1 (ih) X A,B
h,α,α (T − s − ih) , (2.4)

lim
t→(T− jh)−

I 1−α

(T− jh)−
(
X j (T − s) − X j−1 (T − s)

)
(t) = Qm+1 ( jh) , (2.5)

where RL Dmα
T− X A,B

h,α,α is the sequential Riemann-Liouville fractional derivative of
order m.

Proof Case m = 0 is obvious. Case m = 1, is proved in Lemma 2

RL Dα
T− X

A,B
h,α,α (T − t) =

(
A + Beh

d
dt

)
X A,B
h,α,α (T − t)

= Q2 (0) X A,B
h,α,α (T − t) + Q2 (1) X A,B

h,α,α (T − t − h) .

We use mathematical induction (2.4). Assume that it is true for m = n, then for
m = n + 1 we have

RL D(n+1)α
T− X A,B

h,α,α (T − t)

= (RL Dα
T−) RL Dnα

T− X
A,B
h,α,α (T − t)
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= RL Dα
T−

n∑
i=0

Qn+1 (ih) X A,B
h,α,α (T − s − ih)

=
n∑

i=0

Qn+1 (ih) RL Dα
T− X

A,B
h,α,α (T − s − ih)

=
n∑

i=0

Qn+1 (ih)
[
AX A,B

h,α,α (T − s − ih) + BX A,B
h,α,α (T − s − h − ih)

]

=
n∑

i=0

Qn+1 (ih) AX A,B
h,α,α (T − s − ih)

+
n+1∑
i=1

Qn+1 (ih − h) BX A,B
h,α,α (T − s − ih)

=
n+1∑
i=0

[
Qn+1 (ih) A + Qn+1 (ih − h) B

]
X A,B
h,α,α (T − s − ih)

=
n+1∑
i=0

Qn+2 (ih) X A,B
h,α,α (T − s − ih) .

In order to prove (2.5) we use (2.4). Using the equality

X j (T − s) − X j−1 (T − s) = Qm+1 ( jh) X A,B
h,α,α (T − s − jh) ,

we get

lim
t→(T− jh)−

I 1−α

(T− jh)−
(
X j (T − s) − X j−1 (T − s)

)
(t)

= 1

Γ (1 − α)
Qm+1 ( jh)

× lim
t→(T− jh)−

∫ T− jh

t
(r − t)−α

(
X A,B
h,α,α (T − r − jh)

)
dr

= 1

Γ (1 − α)
Qm+1 ( jh) lim

t→(T− jh)−

∫ T− jh

t
(r − t)−α

×
( ∞∑

k=0

Qk+1 (0)
(T − r − jh)kα+α−1+

Γ (kα + α)

)
dr

= 1

Γ (1 − α)
Qm+1 ( jh)

∞∑
k=0

Qk+1 (0)

× lim
t→(T− jh)−

∫ T− jh

t

(r − t)−α (T − r − jh)kα+α−1+
Γ (kα + α)

dr
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= Qm+1 ( jh)

∞∑
k=0

Qk+1 (0) lim
t→(T− jh)−

(T − t − jh)kα

Γ (kα + 1)

= Qm+1 ( jh) Q1 (0) = Qm+1 ( jh) .

��
Next lemma is analogue of Cayley-Hamilton theorem for the determining function

Qk+1 ( jh) . Similar result can be found, for example, in [32].

Lemma 4 For any p, d ≤ p < ∞, the following equality holds:

rank {Qk+1 (lh)C : k = 0, 1, ..., d − 1}
= rank {Qk+1 ( jh)C : k = 0, 1, ..., p; j = 0, 1, ..., l} .

Proof It can be easily shown that (see [26])

(A + sB)k =
k∑
j=0

s j Qk+1 ( jh) .

The characteristic equation of matrix A + sB has the form

Δ(λ) := det (λI − A − sB)

= λn + p1 (s) λn−1 + ... + pn (s) = 0. (2.6)

The coefficients pk (s) in (2.6) depend on the variable s and are written in the form

pi (s) =
i∑

j=0

pi j s
j .

Therefore

Δ(A + sB) =
d∑

i=0

pi (s) λn−i =
d∑

i=0

i∑
j=0

pi j (A + sB)d−i s j = 0. (2.7)

Taking into account that p00 = 1, we can represent the above equation in the form

(A + sB)d +
d∑

i=1

i∑
j=0

pi j (A + sB)d−i s j = 0.

It follows that

d∑
j=0

s j Qd+1 ( jh)C +
d∑

i=1

i∑
j=0

pi j

d−i∑
l=0

sl Qd−i+1 (lh)Cs j = 0.
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Comparing the coefficients of s j and having in mind that Qd+1 ( jh) = Θ , j ≥ d + 1
and Qd+1 (s) = Θ , s < 0, we get

Qd+1 (lh)C = −
d∑

i=1

i∑
j=0

pi j Qd−i+1 ((l − j) h)C, 0 ≤ l ≤ n.

Therefore,matricesQd+1 (lh)C are linearly dependent on thematricesQd−i+1 ( jh)C
for j = 0, 1, ..., l.

Thus, the lemma is proven for p = d. The validity of the lemma in the general case
can be proved by induction for p. ��

It should be stressed out that if j = 0, d = r , and C = I then Qk+1 (0) = Ak and
Lemma 4 becomes the Cayley-Hamilton theorem:

rank
{
Ak : k = 0, 1, ..., d − 1

}
= rank

{
Ak : k = 0, 1, ..., p

}

for p ≥ d.

3 Relative controllability

3.1 Controllability˛-Gramian

We introduce the following concept of controllability.

Definition 6 The system (1.1) is said to be relatively controllable on [0, T ] if for
every y0 ∈ R

d , ϕ ∈ C
(
[−h, 0] ,Rd

)
and for every yT ∈ R

d there exists a control
u ∈ L p ([0, T ] ,Rr ), p > 1

α
, such that y (T , y0, ϕ, u) = yT .

The representation formula (2.3) leads us to introduce the mapping CT
0 :

L p ([0, T ] ,Rr ) → R
d given by

CT
0 u :=

∫ T

0
X A,B
h,α,α (T − r)Cu (r) dr .

In what follows, without loss of generality, we assume that mh < T ≤ (m + 1) h for
some m ∈ N∪ {0} and we denote q the conjugate exponent of p: 1

p + 1
q = 1.

Lemma 5 Let 0 < α ≤ 1 and p > 1
α
. The linear operator

CT
0 : L p ([0, T ] ,Rr ) → R

d is bounded.

Proof Indeed, for any u ∈ L p ([0, T ] ,Rr ) and 1
p + 1

q = 1, using the inequality (2.2)
we have

∥∥∥CT
0 u
∥∥∥ ≤

∫ T

0

∥∥∥X A,B
h,α,α (T − r)

∥∥∥ ‖C‖ ‖u (r)‖ dr
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≤ ‖C‖
∫ T

0

∞∑
k=0

k∑
i=0

‖Qk+1 (ih)‖ (T − r − ih)kα+α−1+
Γ (kα + α)

‖u (r)‖ dr

≤ ‖C‖
∞∑

k=0

k∑
i=0

‖Qk+1 (ih)‖ T kα

Γ (kα + α)

∫ T

0
(T − r − ih)α−1+ ‖u (r)‖ dr

≤ ‖C‖
∞∑
k=0

(‖A‖ + ‖B‖)k T kα

Γ (kα + α)

∫ T

0
(T − r − kh)α−1+ ‖u (r)‖ dr

≤ ‖C‖
∞∑
k=0

(‖A‖ + ‖B‖)k T kα

Γ (kα + α)

×
(∫ T

0
(T − r − kh)

q(α−1)
+ dr

) 1
q
(∫ T

0
‖u (r)‖p dr

) 1
p

= ‖C‖
∞∑
k=0

(‖A‖ + ‖B‖)k T kα

Γ (kα + α)

×
(

(T − r − kh)
q(α−1)+1
+

q (α − 1) + 1

) 1
q (∫ T

0
‖u (r)‖p dr

) 1
p

≤ ‖C‖ Eα,α

(
(‖A‖ + ‖B‖) T α

)

×
(

(T − r)q(α−1)+1
+

q (α − 1) + 1

) 1
q (∫ T

0
‖u (r)‖p dr

) 1
p

.

Here q (α − 1) + 1 = pα−1
p−1 > 0. ��

Theorem 2 The system (1.1) is relatively controllable at time T if and only if
ηᵀX A,B

h,α,α (T − r)C = 0, r ∈ [0, T ] \ {0, h, 2h, ...,mh} , implies that η = 0.

Proof (
⇒) Assume that system (1.1) is relatively controllable at time T and

ηᵀX A,B
h,α,α (T − r)C = 0, r ∈ [0, T ] \ {0, h, 2h, ...,mh} .

Let u ∈ L p ([0, T ] ,Rr ). Then

ηᵀ
∫ T

0
X A,B
h,α,α (T − r)Cu (r) dr = 0.

Since u was arbitrarily chosen, this implies that η ∈ (ImCT
0

)⊥ = (Rd
)⊥ = {0}.

(⇐
) Conversely, assume that system (1.1) is relatively not controllable, that is,

exists η �= 0 such that η ∈ (ImCT
0

)⊥
. Proceeding as above we have

ηᵀ
∫ T

0
X A,B
h,α,α (T − r)Cu (r) dr = 0
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for all u ∈ L p ([0, T ] ,Rr ). Let Vl ⊂ (T − (l + 1) h, T − lh) be measurable set
and u0 ∈ R

r . We define ul (s) = χVl (s) u0, where χVl stands for the characteristic
function of Vl . Then

ηᵀ
∫
Vl
X A,B
h,α,α (T − r)Cu (r) dr = 0.

Applying the mean value theorem, we deduce that

ηᵀX A,B
h,α,α (T − r)C = 0, a.e. r ∈ (T − (l + 1) h, T − lh) .

Since the function ηᵀX A,B
h,α,α (T − r)C is continuous on (T − (l + 1) h, T − lh) and

u0 ∈ R
r was arbitrarily chosen, we obtain that

ηᵀX A,B
h,α,α (T − r)C = 0, r ∈ [0, T ] \ {0, h, 2h, ...,mh} .

��
A necessary and sufficient condition for relative controllability in terms of the

Gramian matrix typically involves analyzing the properties of this matrix, such as its
positive definiteness. Thus, by examining the properties of the controllability Gramian
matrix, one can derive necessary and sufficient conditions for relative controllability
in the context of fractional linear time-delay systems. This criterion provides valuable
insights into the controllability properties of such systems, aiding in their analysis and
control design.

Consider nondelayed system (1.1), the case when B = Θ :
{

C Dα
0+ y (t) = Ay (t) + Cu (t) , t ∈ (0, T ] , h > 0,
y (0) = y0, y (t) = ϕ (t) , −h ≤ t < 0.

In this case

X A,B
h,α,α (T − r) = (T − r)α−1 Eα,α

(
A (T − r)α

)
.

In nondelayed case, in the literature [23, 24] there are the following definitions of the
Gramian matrix

W (0, T ) =
∫ T

0
(T − r)2(α−1) Eα,α (T − r)CCᵀ (Eα,α (T − r)

)ᵀ
dr ,

W1 (0, T ) =
∫ T

0
(T − r)1−α

[
(T − r)2(α−1) Eα,α (T − r)C

× Cᵀ (Eα,α (T − r)
)ᵀ]

dr ,

W2 (0, T ) =
∫ T

0
(T − r)2(1−α)

[
(T − r)2(α−1) Eα,α (T − r)C

× Cᵀ (Eα,α (T − r)
)ᵀ]

dr .
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W (0, T ) is well-defined for 1
2 < α ≤ 1,W1 (0, T ) andW2 (0, T ) are well-defined for

every α ∈ (0, 1]. The addition of (T − r)1−α and (T − r)2(1−α) play a neutralizer of
singularity at r = T forW1 (0, T ) andW2 (0, T ), respectively, and is sufficient for the
convergence of Gramians W1 (0, T ) and W2 (0, T ). But in the delayed system (1.1),
it is not the case. At first glance, analogues ofW (0, T ) ,W1 (0, T ) ,W2 (0, T ) for the
system (1.1) would be

W (0, T ) =
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

(
X A,B
h,α,α (T − r)

)ᵀ
dr ,

W1 (0, T ) =
∫ T

0
(T − r)1−α X A,B

h,α,α (T − r)CCᵀ
(
X A,B
h,α,α (T − r)

)ᵀ
dr ,

W2 (0, T ) =
∫ T

0
(T − r)2(1−α) X A,B

h,α,α (T − r)CCᵀ
(
X A,B
h,α,α (T − r)

)ᵀ
dr ,

since X A,B
h,α,α (T − r) = (T − r)α−1 Eα,α (A (T − r)α), in nondelayed case. The fol-

lowing example shows that, the addition of (T − r)1−α and (T − r)2(1−α) does not
play a neutralizer of singularities at r = T − h, r = T − 2h, ....

Example 1 Consider the following simple control problem:

C D
1
10
0+x (t) = x (t) + x (t − 1) + u (t) , 0 < t ≤ T = 2,

x (t) = 1, −1 ≤ t ≤ 0.

In this case, A = 1, B = 1, C = 1, α = 1
10 , h = 1, Qk+1 ( jh) =

(
k
j

)
. The matrix

X1,1
1, 1

10 , 1
10

(2 − r) has the following form

X1,1
1, 1

10 , 1
10

(2 − r) =
∞∑
k=0

k∑
j=0

(
k
j

)
(2 − r − j)

1
10 k− 9

10

Γ
( 1
10k + 1

10

)

=
∞∑
k=0

(2 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

) +
∞∑
k=1

(1 − r)
1
2 k− 9

10

Γ
( 1
10k + 1

10

) .

It is clear that

W (0, 2) =
∫ 2

0

( ∞∑
k=0

(2 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

) +
∞∑
k=1

(1 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

)
)2

dr

=
∫ 2

0

(2 − r)− 18
10

Γ
( 1
10

) dr + ...,

W1 (0, 2) =
∫ 2

0
(2 − r)

9
10

( ∞∑
k=0

(2 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

) +
∞∑
k=1

(1 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

)
)2

dr
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=
∫ 2

0
(2 − r)

9
10

(1 − r)− 16
10

Γ 2
( 2
10

) dr + ...,

W2 (0, 2) =
∫ 2

0
(2 − r)

18
10

( ∞∑
k=0

(2 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

) +
∞∑
k=1

(1 − r)
1
10 k− 9

10

Γ
( 1
10k + 1

10

)
)2

dr

=
∫ 2

0
(2 − r)

18
10

(1 − r)− 16
10

Γ 2
( 2
10

) dr + ....

and all expected Gramian matrices W (0, 2) , W1 (0, 2), W2 (0, 2) diverge. The terms
(T − r)1−α and (T − r)2(1−α) remove singularity of the first series only and for the

second series we need another neutralizer, say (T − r − h)1−α = (1 − r)
9
10 .

Following the example provided, let us introduce a novel Gramian matrix, called
the α-Gramian matrix, that is applicable for all values within the range 0 < α ≤ 1.

Definition 7 We define the controllability α-Gramian of the control problem (1.1) as
the nonsymmetric d × d matrix

Gα (0, T ) = W1 (0, T ) :=
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

(
Y A,B
h,α,α (T − r)

)ᵀ
dr

=
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

×
(

m∑
l=0

(T − r − lh)1−α+ Xl
h,α,α (T − r − lh)

)ᵀ
dr .

Remark 2 It is important to emphasize that Gα (0, T ) is not symmetric matrix,
although it becomes symmetric matrix when B = Θ or α = 1. Since the integral
part of the solution of (1.1) contains X A,B

h,α,α (T − r) in order to define a control, see
(3.3), that transfers the system from any point y0 to arbitrary point yT , it is necessary
to define the Gramian matrix as nonsymmetric. This Gramian matrix specification is
the only acceptable option for the control system (1.1).

Lemma 6 For 0 < α ≤ 1 the α-Gramian Gα (0, T ) is well defined.

Proof Indeed,

‖Gα (0, T )‖

≤
∫ T

0

∥∥∥X A,B
h,α,α (T − r)CCᵀ

(
Y A,B
h,α,α (T − r)

)ᵀ∥∥∥ dr

=
∫ T

0

m∑
j=0

(T − r − jh)α−1 Y j
h,α,α (T − r − jh)CCᵀ

(
Y A,B
h,α,α (T − r)

)ᵀ
dr

≤
∥∥∥Y A,B

h,α,α (T )

∥∥∥ ‖C‖2
∫ T

0

m∑
j=0

(T − r − jh)α−1 dr
∥∥∥Y j

h,α,α (T )

∥∥∥
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≤
∥∥∥Y A,B

h,α,α (T )

∥∥∥ ‖C‖2
m∑
j=0

(T − r − jh)α

α

∥∥∥Y j
h,α,α (T )

∥∥∥

≤ T α

α

∥∥∥Y A,B
h,α,α (T )

∥∥∥ ‖C‖2
m∑
j=0

∥∥∥Y j
h,α,α (T )

∥∥∥ .

��
Now, we present out first main result: a necessary and sufficient condition for the

relative controllability in terms of α-Gramian matrix.

Theorem 3 Let 0 < α ≤ 1. The system (1.1) is relatively controllable at time T if and
only if

Gα (0, T ) =
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

(
Y A,B
h,α,α (T − r)

)ᵀ
dr

is nonsingular.

Proof (
⇒)Assume that system (1.1) is relatively controllable and that theα-Gramian
Gα (0, T ) is singular. Then there exists η ∈ R

d\ {0} such that

ηᵀGα (0, T ) η = ∫ T0 ηᵀX A,B
h,α,α (T − r)CCᵀ

×
(

m∑
l=0

(T − r − lh)1−α+ Xl
h,α,α (T − r − lh)

)ᵀ
ηdr = 0. (3.1)

Let ω (r) = ηᵀX A,B
h,α,α (T − r)C an ωl (r) = Cᵀ

(
Xl
h,α,α (T − r − lh)

)ᵀ
η. Then

from (3.1), it follows that

0 =
m∑
l=0

∫ T

0
(T − r − lh)1−α+ ω (r) ωl (r) dr

≥
m∑
l=0

∫ T

0
(T − r − mh)1−α+ ω (r) ωl (r) dr

=
∫ T

0
(T − r − mh)1−α+ ω (r)

m∑
l=0

ωl (r) dr

=
∫ T

0
(T − r − mh)1−α+ ‖ω (r)‖2 dr

=
∫ T−mh

0
(T − r − mh)1−α ‖ω (r)‖2 dr .

Therefore ω (r) = 0, almost everywhere on [0, T − mh]. Since

ω (r) = ηᵀX A,B
h,α,α (T − r)C
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is continuous on [0, T − mh) , ω (r) = 0 on [0, T − mh) .

Similarly,

0 =
m∑
l=0

∫ T

0
(T − r − lh)1−α+ ω (r) ωl (r) dr

=
m∑
l=0

∫ T

T−mh
(T − r − lh)1−α+ ω (r) ωl (r) dr

=
m∑
l=0

∫ T

T−mh
(T − r − lh)1−α+ ω (r) ωl (r) dr

≥
m∑
l=0

∫ T

T−mh
(T − r − (m − 1) h)1−α+ ω (r) ωl (r) dr

=
∫ T−(m−1)h

T−mh
(T − r − (m − 1) h)1−α+ ω (r)

m∑
l=0

ωl (r) dr

=
∫ T−(m−1)h

T−mh
(T − r − (m − 1) h)1−α+ ‖ω (r)‖2 dr .

Therefore ω (r) = 0, on (T − mh, T − mh + h). Repeating we have ω (r) = 0, on

[0, T − mh) ∪m
l=1 (T − (m − l + 1) h, T − (m − l) h) = [0, T ] \ {h, 2h, ...,mh} .

Therefore,ω (r) = 0, almost everywhere on [0, T ]. From the relative controllability
of the system (1.1), it follows that for the initial state y0 = 0 and the final state yT = η,
there exists a control function u which steers the solution y from 0 to η, during the
time interval [0, T ]. Hence, from (3.1) we have

η =
∫ T

0
X A,B
h,α,α (T − r)Cu (r) dr ,

and

‖η‖2 = ηᵀη =
∫ T

0
ηᵀX A,B

h,α,α (T − r)Cu (r) dr =
∫ T

0
ω (r) u (r) dr . (3.2)

Since ω (r) = 0, almost everywhere on [0, T ], (3.2) implies that η = 0, which is a
contradiction with η �= 0.

(⇐
) Let yT ∈ R
d be the desired final state. If Gα (0, T ) is invertible, then the

control function

û (r) = Cᵀ
(
Y A,B
h,α,α (T − r)

)ᵀ
(Gα (0, T ))−1

×
(
yT − Y A,B

h,α,1 (T ) y0 −
∫ 0

−h
X A,B
h,α,α (T − s − h) Bϕ (s) ds

)
(3.3)
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is well defined and belongs to L p ([0, T ] ,Rr ) , even it is continuous on [0, T ]. More-
over, inserting the control û into (1.1) we get

y (T ) = Y A,B
h,α,1 (T ) y0 +

∫ 0

−h
X A,B
h,α,α (T − r − h) Bϕ (r) dr

+
∫ T

0
X A,B
h,α,α (T − r)CCᵀ

(
Y A,B
h,α,α (T − r)

)ᵀ
dr (Gα (0, T ))−1

×
(
yT − Y A,B

h,α,1 (T ) y0 −
∫ 0

−h
X A,B
h,α,α (T − s − h) Bϕ (s) ds

)

= Y A,B
h,α,1 (T ) y0 +

∫ 0

−h
X A,B
h,α,α (T − r − h) Bϕ (r) dr

+ Gα (0, T ) (Gα (0, T ))−1

×
(
yT − Y A,B

h,α,1 (T ) y0 −
∫ 0

−h
X A,B
h,α,α (T − s − h) Bϕ (s) ds

)

= yT .

Hence, the control û steers the solution of the system (1.1) to the desired value yT . ��

3.2 Kalman-type criterion

Finally, we prove our second main result: the Kalman-type criterion for the relative
controllability.

Theorem 4 Let 0 < α ≤ 1. A necessary and sufficient condition for the system (1.1)
to be relatively controllable on [0, T ] is that the matrix

Q̂d (T ) = {Q1 ( jh)C, Q2 ( jh)C, ..., Qd ( jh)C : jh ∈ [0, T ]}

has rank d :

rank Q̂d (T ) = d.

Proof a) Sufficiency:
Suppose that

rank {Q1 ( jh)C, Q2 ( jh)C, ..., Qd ( jh)C : jh ∈ [0, T ]} = d,

but Im LT
0 �= R

d , that is the system (1.1) is not relatively controllable on [0, T ]. Then
by Theorem 2 there exists 0 �= η ∈ R

d such that

ηᵀX A,B
h,α,α (T − r)C = 0, on r ∈ [0, T ] \ {0, h, 2h, ...,mh} . (3.4)
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It follows that

ηᵀ
[
lim

t→T− I 1−α
T−

(
X A,B
h,α,α (T − s)

)
(t)

]
C = ηᵀQ1 (0)C = ηᵀC = 0.

By Lemma 3 (3.4) implies that

ηᵀ
[

lim
t→(T− jh)−

I 1−α

(T− jh)−
(
X j (T − s) − X j−1 (T − s)

)
(t)

]
C

= ηᵀQm+1 ( jh)C = 0,

for m = 0, 1, 2..., j = 0, 1, 2, .... Thus the vector η is orthogonal to all columns of
Q̂n (T ) , which is a contradiction. Hence ImCT

0 = R
d .

b) Necessity:
First we show that controllability implies that

Q̂∞ (T ) = {Q1 ( jh)C, Q2 ( jh)C, ..., Qn ( jh)C, ... : jh ∈ [0, T )} ,

rank Q̂∞ (T ) = d.

This means that the number of linearly independent columns in the sequence

{Q1 ( jh)C, Q2 ( jh)C, ..., Qn ( jh)C, ... : jh ∈ [0, T )}
is equal to d. Suppose the contrary that there exists 0 �= η ∈ R

d such that

ηᵀQi+1 ( jh)C = 0, i = 0, 1, 2..., jh ∈ [0, T ) .

The function X A,B
h,α,α (T − r)C is piecewise analytic on [0, T ], i.e. analytic except at

isolated points of [0, T ] , which are T , T − h, T − 2h, etc. On the other hand the
function X A,B

h,α,α (T − r)C vanishes for r > T . It follows that

ηᵀX0
h,α,α (T − r)C =

∞∑
j=0

ηᵀQ j+1 (0)C
(T − r)α j+α−1

Γ (α j + α)
= 0, a. e. on [0, T ] .

So

ηᵀX A,B
h,α,α (T − r)C = 0, a. e. on [T − h, T ] .

Repeating this, we obtain

ηᵀX A,B
h,α,α (T − r)C = ηᵀ

[
X0
h,α,α (T − r) + X1

h,α,α (T − r)
]
C

=
∞∑
j=0

ηᵀQ j+1 (0)C
(T − r)α j+α−1

Γ (α j + α)
+

∞∑
j=1

ηᵀQ j+1 (h)C
(T − r − h)α j+α−1

Γ (α j + α)

= 0, a. e. on [0, T − h] .
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It follows that

ηᵀX A,B
h,α,α (T − r)C = 0, a. e. on [T − 2h, T − h] .

Repeating these, we have that there exists 0 �= η ∈ R
d such that

ηᵀX A,B
h,α,α (T − r)C = 0, a. e. on [0, T ] .

This is a contradiction. This means that the relative controllability implies that rank
Q̂∞ (T ) = d.

It remains to show that rank Q̂∞ (T ) = d implies that rankQ̂d (T ) = d, which
follows from Lemma 4. Indeed, by Lemma 4 the matrices Qm+1 ( jh) for m + 1 ≥ d
are linearly dependent on the matrices Qi+1 (lh) for i = 0, ..., d − 2, l = 0, 1, ..., j .

rank {Qm+1 ( jh)C : m = 0, 1, ..., d − 1}
= rank {Qm+1 (lh)C : p ≥ d m = 0, 1, ..., p; l = 0, 1, ..., j} .

��
In the next two corollaries we consider two special cases separately: (i) nondelayed

case B = Θ, (ii) purely delay case A = Θ .

Corollary 1 [23] Let 0 < α ≤ 1. Assume that in the system (1.1) B = Θ . A necessary
and sufficient condition for complete Euclidean space controllability on [0, T ] is that
the matrix

{
C AC ... Ad−1C

}

has rank d.

Theorem 4 presents a novelty, even in the context of purely delayed fractional linear
systems.

Corollary 2 Let 0 < α ≤ 1. Assume that in the system (1.1) A = Θ . A necessary and
sufficient condition for complete Euclidean space controllability on [0, T ] is that the
matrix

{
C BC ... Bd−1C

}

has rank d.

Proof According to Theorem 4, it is enough to show that

Q̂d (T ) =
{
C BC ... Bd−1C

}
.
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Indeed, since in the system (1.1) A = Θ , the determining equation becomes

Qk+1 ( jh) =
{
Bk, k = j,
Θ, k �= j .

and

Q̂d (T ) = {Q1 ( jh) , Q2 ( jh) , ..., Qd ( jh) : jh ∈ [0, T ]}
=
{
C BC ... Bd−1C

}
.

��

It should be noted that comparable result were achieved in [10], when the value of
α = 1.

4 Examples

Example 2 Let us have the differential equation of third degree with a constant delay:

{
Dα
0+ y (t) = Ay (t) + By (t − h) + Cu (t) , t ∈ (0, T ] , h > 0,

y (0) = y0, y (t) = ϕ (t) , −h ≤ t < 0,

where

A =
⎛
⎝ 1 0 0

1 1 0
0 0 1

⎞
⎠ , B =

⎛
⎝ 1 2 3

0 1 2
0 0 1

⎞
⎠ , C =

⎛
⎝ 0
0
1

⎞
⎠ .

We want to know whether this system is relatively controllable. Let us check the
necessary and sufficient condition. First, we will find the matrix Q̂3 (T ):

Q̂3 (T ) =
{
C AC BC A2C (AB + BA)C B2C ... A2B2C

}

=
⎛
⎝ 0 3 0

0 2 0
1 2 1

6 10 ... 10
7 4 ... 24
2 4 ... 1

⎞
⎠ .

We have rank Q̂3 (T ) = 3 , so the system is relatively controllable.

Example 3 Let us have the differential equation of third degree with a constant delay:

{
Dα
0+ y (t) = Ay (t) + By (t − h) + Cu (t) , t ∈ (0, T ] , h > 0,

y (0) = y0, y (t) = ϕ (t) , −h ≤ t < 0,
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where

A =
⎛
⎝1 0 0
1 1 0
0 0 1

⎞
⎠ , B =

⎛
⎝ 1 2 3
0 1 2
0 0 1

⎞
⎠ , C =

⎛
⎝ 1 0 0
0 1 0
0 0 0

⎞
⎠ .

First, we will find the matrix Q̂3 (T ):

Q̂3 (T ) =
{
C AC BC A2C (AB + BA)C B2C ... A2B2C

}

=
⎛
⎝ 1 0 0
1 1 0
0 0 0

1 2 0
0 1 0
0 0 0

1 0 0
2 1 0
0 0 0

4 4 0
2 4 0
0 0 0

1 4 0
0 1 0
0 0 0

...

1 4 0
2 9 0
0 0 0

⎞
⎠ .

We have rank Q̂3 (T ) = 2, so sufficient condition is not implemented so we can not
conclude if the system is relatively controllable.

Example 4 Consider the time-invariant system (1.1). Choose α = 1
3 , A =(

0 1
0 0

)
, B = Θ, C =

(
2
1

)
, T = 1, h = 0. Now we apply Theorem 3 to

prove that the system (1.1) is controllable. First,

Gα (0, 1) =
∫ 1

0
X A,B
0, 13 , 13

(1 − r)CCᵀ
(
Y A,B
0, 13 , 13

(1 − r)

)ᵀ
dr

=
∫ 1

0

∞∑
i=0

Ai (1 − s)i
1
3− 1

3

Γ
(
i 13 + 1

3

) CCᵀ
∞∑
i=0

(
Aᵀ)i (1 − s)i

1
3

Γ
(
i 13 + 1

3

)ds.

By computation,

∞∑
i=0

Ai (1 − s)i
1
3

Γ
(
i 13 + 1

3

) = 1

Γ
( 1
3

) I + 1

Γ
( 2
3

) A (1 − s)
1
3 ,

I =
(
1 0
0 1

)
, CCᵀ =

(
2
1

)
(2 1) =

(
4 2
2 1

)
,

∞∑
i=0

(
Aᵀ)i (1 − s)i

1
3− 1

3

Γ
(
i 13 + 1

3

) = (1 − s)− 1
3

Γ
( 1
3

) I + 1

Γ
( 2
3

) Aᵀ,

Gα (0, 1) =
∫ 1

0

(
(1 − s)− 1

3

Γ
( 1
3

) I + 1

Γ
( 2
3

) Aᵀ
)

×
(
4 2
2 1

)(
1

Γ
( 1
3

) I + (1 − s)
1
3

Γ
( 2
3

) A

)
ds
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=
∫ 1

0

(1 − s)− 1
3

Γ 2
( 1
3

)
(
4 2
2 1

)
+ 1

Γ
( 2
3

)
Γ
( 1
3

)
(
4 1
1 0

)

+ 3 (1 − s)
1
3

4Γ 2
( 2
3

)
(
1 0
0 0

)
ds

=
⎛
⎜⎝

6

Γ 2
(
1
3

) + 4

Γ
(
2
3

)
Γ
(
1
3

) + 3

5Γ 2
(
2
3

) 3

Γ 2
(
1
3

) + 1

Γ
(
2
3

)
Γ
(
1
3

)
3

Γ 2
(
1
3

) + 1

Γ
(
2
3

)
Γ
(
1
3

) 3

4Γ 2
(
1
3

)

⎞
⎟⎠

=
(
1.3885 0.6131
0.6131 0.1045

)
.

It is obvious that Gα (0, 1) is nonsingular and

(Gα (0, 1))−1 =
(−0.4529 2.6581
2.6581 −6.0200

)
.

Thus by Lemma 3, the system is relatively controllable. The control

u(s) = Cᵀ
(
Y A,B
0, 13 , 13

(1 − r)

)ᵀ
(Gα (0, 1))−1

(
y1 − Y A,B

0, 13 ,1
(1) y0

)

=
(

2

Γ
( 1
3

) + (1 − s)
1
3

Γ
( 2
3

) ,
1

Γ
( 1
3

)
)(−0.4529 2.6581

2.6581 −6.0200

)⎛⎜⎝
3 − 1

Γ
(
1
3

)
3 − 1

Γ
(
1
3

)

⎞
⎟⎠

transfers the system form y0 to the point y1.
On the other hand,

rankQ̂2 (T ) = rank (C AC) = rank

(
2 1
1 0

)
= 2.

Thus by Theorem 4, the system is relatively controllable.

Example 5 Consider the time-invariant system (1.1). Choose α = 2
3 , A =⎛

⎝−1 −4 −2
0 6 1
1 7 1

⎞
⎠ , B = Θ, C =

⎛
⎝ 2
0
1

⎞
⎠ . Now we apply Theorem 4 to prove that

the system (1.1) is controllable.

rankQ̂3 (T ) = rank
(
C AC A2C

)
= rank

⎛
⎝ 2 −4 6
0 −1 7
1 1 −12

⎞
⎠ = 3.

By Theorem 4, the system is relatively controllable.
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Fig. 1 Graph of solution y(t) to the system (4.1) with u = 0
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Fig. 2 Graph of solution y(t) to the system (4.1) with u(r)
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Example 6 Consider the following system:

C D
1
5
0+x (t) = x (t) + x (t − 0.5) + u (t) , 0 < t ≤ T = 1,

x (t) = 1, −1 ≤ t ≤ 0. (4.1)

In this case, A = 1, B = 1, C = 1, α = 1
5 , h = 0.5, Qk+1 ( jh) =

(
k
j

)
. The

matrices X1,1
1, 1

10 , 1
10

(1 − r) , Y 1,1
1
2 , 15 , 15

(1 − r) and Y 1,1
1
2 , 15 ,1

(1 − r) have the following form

X1,1
1
2 , 15 , 15

(1 − r) =
∞∑
k=0

k∑
j=0

(
k
j

) (1 − r − 1
2 j
) 1
5 k− 1

5
+

Γ
( 1
5k + 1

5

) ,

Y 1,1
1
2 , 15 , 15

(1 − r) =
∞∑
k=0

k∑
j=0

(
k
j

) (1 − r − 1
2 j
) 1
5 k
+

Γ
( 1
5k + 1

5

) ,

Y 1,1
1
2 , 15 ,1

(1 − r) =
∞∑
k=0

k∑
j=0

(
k
j

) (1 − r − 1
2 j
) 1
5 k
+

Γ
( 1
5k + 1

) .

In this case, α-Gramian is defined as

Gα (0, 1) =
∫ 1

0
X1,1

1
2 , 15 , 15

(1 − r) Y 1,1
1
2 , 15 , 15

(1 − r) dr ,

the control which transfers the system form y (0) = 1 to y (1) = 5 is defined as

u (r) = Y 1,1
1
2 , 15 , 15

(1 − r) (Gα (0, 1))−1

×
(
5 − Y 1,1

1
2 , 15 ,1

(1) −
∫ 0

−0.5
X1,1

1
2 , 15 , 15

(0.5 − s) ds

)
,

and y (t) is the trajectory of (4.1) with control starts from the initial point 1 and reaches
the final point 5 in [0, 1].

y (t) = Y 1,1
1
2 , 15 ,1

(1) +
∫ 0

−0.5
X1,1

1
2 , 15 , 15

(t − 0.5 − s) ds

+
∫ t

0
X1,1

1
2 , 15 , 15

(t − r) Y 1,1
1
2 , 15 , 15

(1 − r) dr (Gα (0, 1))−1

×
(
5 − Y 1,1

1
2 , 15 ,1

(1) −
∫ 0

−0.5
X1,1

1
2 , 15 , 15

(0.5 − s) ds

)
.

Next we give the numerical simulation of the state with and without control function
for the system (4.1).
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Fig. 1 represents the trajectory of (4.1) with u = 0.
Fig. 2 represents the trajectory of (4.1) with control u(r) starts from the initial point

1 and reaches the final point 5 in [0, 1].

5 Conclusions and future directions

In this paper, our focus was on exploring the relative controllability of systems
governed by linear fractional differential equations incorporating state delay.We intro-
duced a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed
perturbation of the Mittag-Leffler function, along with a determining function and an
analog of theCayley-Hamilton theorem,we established an algebraicKalman-type rank
criterion for assessing the relative controllability of fractional linear differential equa-
tions with state delay. Moreover, we articulated necessary and sufficient conditions
for relative controllability criteria concerning linear fractional time-delay systems,
expressed in terms of a new Gramian matrix. Furthermore, practical examples were
provided to demonstrate the proposed criteria for controllability, and controls were
designed accordingly.

In our future endeavors, we aim to explore the Lyapunov-type, finite-time and
exponential stability, and relative controllability of Caputo-type fractional order time-
delay linear/nonlinear deterministic/stochastic systems.
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