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Abstract
In this paper, we characterize the chaos in the Duffing equation with negative linear
stiffness and a fractional damping term given by a Caputo fractional derivative of
order α ranging from 0 to 2. We use two different numerical methods to compute the
solutions, one of them new. We discriminate between regular and chaotic solutions by
means of the attractor in the phase space and the values of the Lyapunov Characteristic
Exponents. For this, we have extended a linear approximation method to this equation.
The system is very rich with distinct behaviours. In the limits α to 0 or α to 2, the
system tends to basically the same undamped systemwith a behaviour clearly different
from the classical Duffing equation.

Keywords Fractional calculus (primary) · Nonlinear oscillations and coupled
oscillators for ordinary differential equations · Chaos · Lyapunov Exponents

Mathematics Subject Classification 26A33 (primary) · 34C15 · 34H10 · 34D08

1 Introduction

The classical theory of dynamical systems has long been away to understand how vari-
ous phenomena evolve over time.Natural and engineered systemsmayexhibit complex
and nonlocal behavioursthat cannot be accurately described solely by integer-order
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derivatives. Systems in different fields (such as electrochemistry, chemistry, biology,
physics, and viscoelasticity) can be successfully described by fractional differential
equations (see, for instance, [23] and references therein). These equations extend the
concept of ordinary differential equations to include fractional derivatives that have
the property of capturing memory effects and long-range dependencies.

Duffing equation is a paradigmatic model among systems of nonlinear dynamics
that exhibit chaos [7, 13, 14, 17, 32, 38]. It can be used to present a diversity of physical
systems. It can be consider as a benchmark for studying chaos in a low-dimensional
dynamical system. It has been extended to the fractional case. Depending on which
fractional derivative is used (Riemann-Liouville, Caputo, Grünwald-Letnikov, etc.)
and what integer order it replaces, different systems are obtained which are not in
principal equivalent [5, 16, 26, 27, 33, 37, 39].

In the study we present in this paper we have chosen a fractional Duffing equation
with specific regularity conditions, that ensure the existence and unicity of solutions
[19], replacing the first-order derivative in the Duffing equation by a Caputo fractional
derivative of order α ranging within the two intervals (0, 1) and (1, 2). This system
has the particularity of corresponding to feasible physical systems.

In previous works, some of us started to study the effects of chaos in this very
same fractional equation. We presented a way to estimate the Lyapunov Characteristic
Exponents (LCEs), in order to establish the chaoticity or regularity of the solutions [21]
and the onset of chaos as a function of the parameters.We also analyzed the controlling
effect of anharmonic external perturbations and the existence of geometric resonances
that suppress the chaotic behaviour [19]. The present work is a continuation of these.
Specifically, in [21], we pointed out a complexity of the behaviour of the solutions for
a certain range of the fractional order of derivation that needed further clarification
and in this present work we carry out a more thorough study.

Once the fractional model is set, a numerical method has to be used to approximate
it and, in practice, one ends studying a discrete system, close to the continuous one.
This supposes that not only the choices related to the fractional derivatives but, also,
the choice of a numerical technique may be relevant. Different methods may been
considered (see, for instance, [6, 34]).

In our case, we use a numerical scheme based on the conservative Strauss-Vázquez
method (SV method) [20], to approximate the non-fractional terms, and the Odibat
representation [28, 29] for the fractional derivative. This method improves the one we
used in our previous studies.

Besides, these studies were limited to the case with a fractional derivative of order
α ∈ (0, 1) and in this present work we extend to include also the range α ∈ (1, 2).

Equations with fractional derivatives present a computational challenge due to the
non-locality. It is thus worth to use different numerical methods and contrast the
agreement of their results. In our case, we use this new method (SV + Odibat method)
and the one used in our previous work. Since that method was only valid in the range
0 < α < 1, we have suitably extended it to the range 1 < α < 2.

The extension to values of α ∈ (1, 2) is also motivated by the fact that as α → 2−,
the fractional model becomes closer to a limit systemwhere no damping and no saddle
point exist. And that system can be seen as equivalent, at least for some range of the
parameters, to the one obtained in the opposite limit, when α → 0+. In this way,
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the fractional equations can be seen as an interpolation between the Duffing equation
(limit α = 1) and an undamped, forced system.

The chaotic behaviour in the limit systems is due to the perturbation caused by the
external forcing on a Hamiltonian. In these limit cases, chaos is present in the central
region of the phase space independently of the parameter’s values with a chaotic
region tending to fill a two-dimensional area of the phase space. This is quite different
to the phenomenology of Duffing equation where the chaos is directly related to the
perturbation of the stable and unstable manifolds around the saddle point. In this work,
we study the behaviour of the fractional system near these limits.

Understanding chaotic behaviour is a complex task and different methods and
approaches have been used to study its properties. See for instance [4, 18, 35, 36,
40] and, more recently, [8]. In our work we estimate the LCEs by means of two dif-
ferent techniques: the fiduciary orbit and a linearization. This second method cannot
be applied in the range (1, 2) as is done for (0, 1) and the extension requires some
adaptations, using several tools that differ from the previous technique.

With all these tools, we have sampled the different behaviours exhibited by the
solutions of the fractional system, which appear to have a rich phenomenology: tran-
sition between regular and chaotic regimes inside the solution, bifurcation in time, and
intermittency.

We also study the appearance of chaos by estimating its threshold and examining
how the system parameters influence this threshold.

This paper is structured as follows: in Section 2 we present the fractional Duffing
equation we consider. Section 2.1 presents the numerical methods used, Section 2.2
the analytic construction of the LCEs in the range α ∈ (0, 1). In Section 2.3, this is
extended to the range α ∈ (1, 2). The corresponding numerical results are presented
in Section 3. In Section 4, we examine the underlying models for the limiting cases
when α goes to 0+ and when α goes to 2−. In Section 5 we present our conclusions
and we discuss the results obtained.

2 Fractional Duffing’s equation

We design by “classical” (as opposed to “fractional”) the Duffing equation given by:

ẍ + γ ẋ − x + x3 = f0 cos(ωt). (2.1)

The standard initial value problem is:

x(0) = x0, ẋ(0) = v0, (2.2)

where x0 and v0 are real constants. The dots in (2.1) and (2.2) denote the derivationwith
respect to time. The parameters γ , f0, ω correspond, respectively, to: the amplitude
of the damping, the amplitude of the periodic driving force and its angular frequency.
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As is well known [14] this corresponds to a Hamiltonian system, given by

H(x, ẋ) = 1

2
ẋ2 − 1

2
x2 + 1

4
x4, (2.3)

perturbed by a dissipation and an external periodic forcing.
As an alternative to this classical model, we consider the fractional Duffing equa-

tion corresponding to the same forced Hamiltonian but, now, with a fractional-order
damping:

ẍ + γ (Ct0D
α
t x)(t) − x + x3 = f0 cos(ωt), (2.4)

where (Ct0D
α
t x)(t) is the Caputo fractional derivative of order α with lower limit t0. Its

general expression, for 0 ≤ n − 1 < α < n, n ∈ N is:

(Ct0D
α
t x)(t) = 1

Γ (n − α)

t∫

t0

x (n)(τ )

(t − τ)α+1−n
dτ, t > t0, (2.5)

where x (n) is the derivative of x of order n and Γ is Euler Gamma function. It is
important to stress that this is not merely a mathematical model, since it can be viewed
as the same mechanical or electromechanical device represented by Duffing equation
but immersed in a viscoelastic medium. Compared to other fractional Duffing models,
this equation has the advantage of a regular solution (at least C2) whose existence
can be ensured [19]. Modeling with the Caputo fractional derivative [23] has the
advantage that initial value problems involve only derivatives of integer order. In our
case, a standard initial value problem such as equation (2.4) with initial conditions
(2.2) is suitable to ensure existence and unicity of the solution [21]. In this sense,
we consider the space of the initial data as the phase space for this model. Since we
choose t = 0 as our initial time, this fixes the value t0 as 0 in (2.5), and we represent
that derivative by Dα

t x(t), in order to simplify the notation.
We will consider two separate cases: 0 < α < 1 (ceiling of α equal 1: �α� = 1)

and 1 < α < 2 (�α� = 2). Besides, we will study the limit cases α = 0 and α = 2.
For α = 1, the equation becomes the classical Duffing equation (2.1).

2.1 Numerical methods

To compute the solutions of the system, we have chosen two numerical methods that
differently approximate the fractional derivative. A combined SV + Diethelm method
and a combinedSV+Odibatmethod. In both cases, an SVapproach is used to represent
the non-fractional terms, while the Caputo derivative is represented by either Diethelm
[11] or Odibat approximation [28]. The two numerical methods are outlined below.

2.1.1 SV + Diethelmmethod for �˛� = 1 and �˛� = 2

In the case �α� = 1 we have used the same method as in [21]. It is limited to values of
α ∈ (0, 1) and has a truncation errorO(�t2−α). We consider a discrete time-mesh of
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step-size �t , with tn = t0 + n�t , and represent by xn the numerical approximation to
the solution x at time tn . Diethelm’s representation of the Caputo fractional derivative
is given by [11]:

Dα
t x(tn) = 1

�tαΓ (2 − α)

n∑
k=0

ck,n (xn−k − x0) + O(�t2−α), (2.6)

where the coefficients ck,n are:

⎧⎨
⎩
c0,n = 1, k = 0,
ck,n = (k + 1)1−α − 2k1−α + (k − 1)1−α, 0 < k < n,

cn,n = (1 − α)n−α − n1−α + (n − 1)1−α, k = n.

(2.7)

Since the term for k = n in the sum is zero, we obtain:

Dα
t x = 1

hαΓ (2 − α)

(
xn − x0 +

n−1∑
k=1

ck,n (xn−k − x0)

)
. (2.8)

After substituting (2.8) in equation (2.4), the expression of the numerical method is:

xn+1 − 2xn + xn−1

�t2
+ γ

�tαΓ (2 − α)

(
xn − x0 +

n−1∑
k=1

ck,n (xn−k − x0)

)

− xn+1 + xn−1

2
+ x3n+1 + x2n+1xn−1 + xn+1x2n−1 + x3n−1

4

= f0
cos(ωtn+1) + cos(ωtn−1)

2
. (2.9)

This procedure is not self-starting sincewemust, initially, know both x0 and x1. The
initial value x0 is directly derived from the initial data (2.2). The other is computed, for
instance, using aTaylor expansion of x(t) around t0 = 0, particularized at t = t1 = �t ,
with truncation error O(�t4):

x(t1) = x1 = x0 + �tv0 + �t2

2! ẍ0 + �t3

3!
...
x 0. (2.10)

To determine
...
x 0 we may assume that the initial data satisfy the equation. Differenti-

ating equation (2.4) at time zero we obtain:

{
ẍ0 = x0 − x30 + f0,...
x 0 = v0 − 3x20v0.

(2.11)

The details of this can be found in [19].
Diethelm’s approximation (2.8) is limited to the case �α� = 1 and we extend

it to the case �α� = 2 transforming Eq.(2.4) into a system such that all fractional
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derivatives involved have orders that fall within the specified range (0, 1) [1, 10].
Using the property of the Caputo derivatives [23]:

Dα = Dβ+1 = DβD1, α = 1 + β, (2.12)

we introduce an auxiliary variable, v = D1x , and we have:

{
D1x = v,

D2x = −γ Dβv + x − x3 + f0 cos(ωt),
(2.13)

with initial values
x(0) = x0, v(0) = v0. (2.14)

Now, β = α − 1 ∈ (0, 1), and we may apply the previous approach, with the benefit
that the coefficients are the same as before. The numerical scheme that corresponds
to the second equation of system (2.13) is:

xn+1 − 2xn + xn−1

�t2
= − γ

�tβΓ (2 − β)

(
vn − x0 +

n−1∑
k=1

ck,n (vn−k − v0)

)

+ xn+1 + xn−1

2

− x3n+1 + x2n+1xn−1 + xn+1x2n−1 + x3n−1

4

+ f0
cos(ωtn+1) + cos(ωtn−1)

2
. (2.15)

The discretization of the first equation is quite relevant andmay give rise to an unstable
method. For instance:

xn+1 − xn−1

2�t
= vn+1 + vn−1

2
, (2.16)

has a behaviour similar to that of the leap-frogmethod for partial differential equations
and shows a splitting of the solution among alternating values that is unstable. A stable
representation is obtained using the backwards finite difference of order 2:

vn = 3xn − 4xn−1 + xn−2

2�t
, (2.17)

which has a local truncation error O(�t2).
To start the method we need now, besides x0 and v0, both x1 and v1. For the first

one we use (2.10) and (2.11) as before, for the latter one we use a similar construction:

v1 = v0 + �v̇0 + �t2

2! v̈0 + �t3

3!
...
v 0. (2.18)

123



Rich phenomenology of the solutions in a fractional Duffing equation

We obtain v̈0 and
...
v 0 differentiating the second equation of system (2.13) at time zero,

assuming, again, that the solution satisfies the equation at the initial time:

⎧⎨
⎩

v̇0 = x0 − x30 + f0,
v̈0 = v0 − 3x20v0,...
v 0 = (1 − 3x20 )v̇0 − 6x0v20 − ω2 f0.

(2.19)

2.1.2 SV + Odibat method for �˛� = 1 and �˛� = 2

In the previous Section 2.1.1, we used Diethelm’s approach to estimate the fractional
derivative in (2.4). This method has a O(�t2−α) truncation error. In this Section to
represent the fractional derivative we use the alternative technique of Odibat [28],
which has a truncation error O(�t2). As a result, our new combined SV + Odibat
numerical method has truncation error O(�t2). To check the consistency of our sim-
ulations, we have employed both numerical methods and compared the results. The
discrete equation for this method is:

xn+1 − 2xn + xn−1

�t2
+ γ (Dα

t xn) − xn+1 + xn−1

2

+ x3n+1 + x2n+1xn−1 + xn+1x2n−1 + x3n−1

4
= f0

cos(ωtn+1) + cos(ωtn−1)

2
.

(2.20)

For �α� = 1, Odibat approximation of Caputo fractional derivative Dα
t xn [28] for the

discrete case is given by:

Dα
t xn = �t1−α

Γ (3 − α)

xn+1 − xn−1

2�t

+ �t1−α

Γ (3 − α)

×
⎛
⎝Cn,0(α, 1)ẋ0 +

n−1∑
j=1

Cn, j (α, 1)
x j+1 − x j−1

2�t

⎞
⎠ . (2.21)

We substitute (2.21) in (2.20) to find:

xn+1 − 2xn + xn−1

�t2
− xn+1 + xn−1

2

+ γ�t1−α

Γ (3 − α)

⎛
⎝Cn,0(α, 1)ẋ0 +

n−1∑
j=1

Cn, j (α, 1)
x j+1 − x j−1

2�t
+ xn+1 − xn−1

2�t

⎞
⎠

+ x3n+1 + x2n+1xn−1 + xn+1x2n−1 + x3n−1

4
= f0

cos(ωtn+1) + cos(ωtn−1)

2
,

(2.22)
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with coefficients Cn, j (α, 1):

⎧⎪⎪⎨
⎪⎪⎩

Cn,0(α, 1) = (n − 1)2−α − (n − 2 + α)n1−α,

Cn, j (α, 1) = (n − j)2−α

[(
1 − 1

n − j

)2−α − 2 +
(
1 − 1

n − j

)2−α
]

,

j = 1, . . . , n − 1.

(2.23)

For �α� = 2, the Odibat representation of the fractional derivative Dα
t xn at time tn is

now [28]:

Dα
t xn = �t2−α

Γ (4 − α)

xn+1 − 2xn + xn−1

�t2

+ �t2−α

Γ (4 − α)

(
Cn,0(α, 2)ẍ0 +

n−1∑
j=1

Cn, j (α, 2)
x j+1 − 2x j + x j−1

�t2

)
.

(2.24)

We substitute (2.24) in (2.20) to find:

xn+1 − 2xn + xn−1

�t2
− xn+1 + xn−1

2
+ γ�t2−α

Γ (4 − α)

xn+1 − 2xn + xn−1

�t2

+ γ�t2−α

Γ (4 − α)

⎛
⎝Cn,0(α, 2)ẍ0 +

n−1∑
j=1

Cn, j (α, 2)
x j+1 − 2x j + x j−1

�t2

⎞
⎠

+ x3n+1 + x2n+1xn−1 + xn+1x2n−1 + x3n−1

4
= f0

cos(ωtn+1) + cos(ωtn−1)

2
.

(2.25)

The coefficients correspond in this case to:

⎧⎪⎪⎨
⎪⎪⎩

Cn,0(α, 2) = (n − 1)3−α − (n − 3 + α)n2−α

Cn, j (α, 2) = (n − j)3−α
[(

1 − 1

n − j

)3−α − 2 +
(
1 − 1

n − j

)3−α]
,

j = 1, . . . , n − 1.

(2.26)

2.2 LCEs for the fractional Duffing equation, case �˛� = 1

The Lyapunov Characteristic Exponents measure the expansion or contraction of the
phase space locally around a given orbit. They are a quantitative and qualitative tool
that characterizes the chaoticity of bounded solutions.

The basic approaches to estimate them are the fiduciary orbit technique [2, 9], that
gives the maximum LCE, and the linearization technique [3] that allows to estimate
all the LCEs, and not just the largest one, using the Jacobian matrix of the linearized
system.
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For a dynamical system, once the matrix M
(
x(t)

)
is found from the evolution

equation [15]: { dM

dt
= JM,

M
(
x0

) = I ,
(2.27)

the LCEs are given by the logarithm of the eigenvalues of the following matrix [15]:

Λx := lim
t→∞

[
M

(
x(t)

)tr
M

(
x(t)

)]1/2t
. (2.28)

We estimate these values at each time step and consider their asymptotic behaviour
as time increases. We consider the solution regular when λmax is negative; whereas, if
it is positive, the solution is chaotic.

We present, here, an adaptation of the linearization technique to compute all the
LCEs [21]. We analyze the linearized system for this case and build an effective
Jacobian matrix.

To simplify the notation, we introduce the potential U :

U (x) = −1

2
x2 + 1

4
x4. (2.29)

With this, we express our equation as:

ẍ + γ Dα
t x +U ′(x) = f0 cos(ωt). (2.30)

To compute the LCEs, we need to model the behaviour of two close solutions. Let
be a reference solution (x, v) of (2.30), with v = ẋ , and let us consider some other
solution (y, u), u = ẏ, close to the previous one. The difference between both solutions
is governed by the system:

{
ẋ − ẏ = v − u,

v̇ − u̇ = −U ′(x) +U ′(y) − γ Dα
t (x − y), 0 < α < 1.

(2.31)

After linearization, and posing δ = x − y and η = v − u, we obtain:

{
δ̇ = η,

η̇ = −U ′′(x)δ − γ Dα
t δ.

(2.32)

We substitute now the Caputo fractional derivative to obtain:

⎧⎪⎪⎨
⎪⎪⎩

δ̇ = η,

η̇ = −U ′′(x)δ − γ

Γ (1 − α)

t∫

0

η(τ)

(t − τ)α
dτ, 0 < α < 1.

(2.33)

We suppose both solutions to be very close, such that the linearization gives a valid
approximation, but, also, they may be considered to be identical (up to the numerical
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precision we are going to use) for a given range of time [0, t1] and that they only
differ effectively after that specific time t1. Due to a continuity argument, functions
with small variations, such as the difference between close solutions, will have a small
fractional derivative and, thus, we may consider that the integral in (2.33) provides a
small contribution. Thus, in good approximation, we have:

t∫

0

η(τ)

(t − τ)α
dτ ≈

t∫

t1

η(τ)

(t − τ)α
dτ, 0 < α < 1, (2.34)

and, with this, we estimate:

⎧⎪⎪⎨
⎪⎪⎩

δ̇ = η,

η̇ = −U ′′(x)δ − γ

Γ (1 − α)

t∫

t1

η(τ)

(t − τ)α
dτ, 0 < α < 1.

(2.35)

Let us consider the Taylor expansion of η(τ) around t :

η(τ) = η(t) + (τ − t)η̇(t) + (τ − t)2

2
η̈(t) + O((τ − t)3). (2.36)

After substitution in (2.35) and integration in τ , the linearized system becomes:

⎧⎨
⎩

δ̇ = η,

η̇ = −U ′′(x)
C

δ − γ
�t1−α

CΓ (2 − α)
η,

(2.37)

with �t = t − t1, discarding higher order terms.
The coefficient C is:

C = 1 − γ�t2−α(1 − α)

Γ (3 − α)
, 0 < α < 1. (2.38)

The corresponding Jacobian matrix for system (2.37), J1, is:

J1 =
(

0 1
−U ′′(x)

C −γ
�t1−α

CΓ (2−α)

)
. (2.39)

We consider it to be the effective Jacobian matrix for the linearized fractional system
and we have used it to estimate the two LCEs of the system, λ1 and λ2. Whenever the
trace of the Jacobian matrix is constant, as in this case, we have that it is equal to the
sum of all LCEs:

λ1 + λ2 = trace(J1) = −γ
�t1−α

CΓ (2 − α)
, 0 < α < 1. (2.40)
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We have checked the numeric conservation of the sum of the LCEs in our simulations
computing the relative error of the sum of the estimates for both LCEs with respect to
the trace of J1.

To estimate the dimension of the strange attractor in the chaotic regime in the plane
xv, we use the Lyapunov (or Kaplan–Yorke) dimension [24] that corresponds in our
case to:

DL = 1 + λ1

|λ2| , (2.41)

where λ1 > 0 and λ2 < 0.

2.3 LCEs for the fractional Duffing equation, case �˛� = 2

We extend now the linear approximation to the case α ∈ (1, 2), similarly to the
previous case. The Caputo fractional derivative of δ changes, and is now:

Dα
t δ(t) = 1

Γ (2 − α)

∫ t

0

δ′′(τ )

(t − τ)α−1 dτ, 1 < α < 2. (2.42)

We substitute (2.42) in (2.32) and use δ′′(τ ) = η′(τ ) to obtain:

⎧⎪⎪⎨
⎪⎪⎩

δ̇ = η,

η̇ = −U ′′(x)δ − γ

Γ (2 − α)

t∫

0

η′(τ )

(t − τ)α−1 dτ, 1 < α < 2.
(2.43)

Considering the same assumptions as in the precedent case, we substitute t = t1 +�t
in (2.43):

⎧⎪⎪⎨
⎪⎪⎩

δ̇ = η,

η̇ = −U ′′(x)δ − γ

Γ (2 − α)

t1+�t∫

t1

η′(τ )

(t − τ)α−1 dτ, 1 < α < 2.
(2.44)

Using the Taylor expansion to approximate η′(τ ) around t for time step �t small
enough, we have:

η̇ = −U ′′(x)δ − γ

Γ (2 − α)
η̇(t)

t1+�t∫

t1

(t1 + �t − τ)1−αdτ

+ γ

Γ (2 − α)
η̈(t)

t1+�t∫

t1

(t1 + �t − τ)2−αdτ + · · · (2.45)
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After the integration, we obtain:

η̇ = −U ′′(x)δ − γ�t2−α

Γ (3 − α)
η̇(t) + γ (2 − α)�t3−α

Γ (4 − α)
η̈(t) + O(�t4−α). (2.46)

The main difference with the previous case comes from the fact that we cannot
“close” the equations since we cannot express η̈ as a function of the other variables.
To solve this we resort to approximate the second order derivative by finite differences.
Given the truncation error in our approximation of η̇, a suitable approximation for η̈

is given by the three points finite difference:

η̈(t) = η(t) − 2η(t − �t) + η(t − 2�t)

�t2
+ O(�t). (2.47)

As both solutions can be considered identical (up to numerical precision) over an
interval of time t ∈ [0, t1), η is zero for all times in this interval, and we have:

η(t − n�t) = 0, ∀ n ≥ 2. (2.48)

Using this assumption, the finite difference of η̈ (2.47) becomes:

η̈(t) = η(t) − 2η(t − �t)

�t2
+ O(�t). (2.49)

In order to express η̈ as a function of η and η̇, we need now to express η(t − �t) as
a function of those variables. Once again we use a finite difference with a suitable
truncation error. In this case a four-point formula:

η̇(t) = −2η(t − 3�t) + 9η(t − 2�t) − 18η(t − �t) + 11η(t)

6�t
+ O(�t3)

= −18η(t − �t) + 11η(t)

6�t
+ O(�t3), (2.50)

that gives us:

η(t − �t) = 11

18
η(t) − �t

3
η̇(t) + O(�t4). (2.51)

With all this have:

η̈(t) = η(t) − 2η(t − �t)

�t2
+ O(�t)

= 1

�t2
η(t) − 2

�t2

[
11

18
η(t) − �t

3
η̇(t) + O(�t4)

]
+ O(�t)

= −2

9�t2
η(t) + 2

3�t
η̇(t) + O(�t), (2.52)
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and, substituting into (2.46), we finally obtain:

η̇ = −U ′′(x)δ(t) − γ�t2−α

Γ (3 − α)
η̇(t) + 2γ (2 − α)�t2−α

3Γ (4 − α)
η̇(t)

−2γ (2 − α)�t1−α

9Γ (4 − α)
η(t) + O(�t4−α). (2.53)

In order to use the same framework of the previous case, we rewrite (2.44) as:

⎧⎨
⎩

δ̇ = η,

η̇ = −U ′′(x)
C

δ + B

C
η, 1 < α < 2,

(2.54)

where the coefficients C and B are, in this case:

⎧⎪⎪⎨
⎪⎪⎩
C = 1 + γ (5 − α)Δt2−α

3Γ (4 − α)
,

B = −2γ (2 − α)�t1−α

9Γ (4 − α)
.

(2.55)

The corresponding effective Jacobian matrix for system (2.54), J2, is:

J2 =
(

0 1
−U ′′(x)

C
B
C

)
. (2.56)

As the trace of the Jacobian matrix is constant in this case too, we have that it is equal
to the sum of the two LCEs:

λ1 + λ2 = trace(J2) = B

C
, 1 < α < 2. (2.57)

To show the validity of the approximations that we have assumed to obtain J1
(2.39) and J2 (2.56), we have computed the LCEs by the effective Jacobian matrices
and compared the maximum value with the results of the fiduciary orbit technique [9].
The results are presented in Section 3 and show a very good agreement.

3 Numerical results

We have solved numerically the fractional equations for two cases (0 < α < 1)
and (1 < α < 2) using both methods presented in Section 2.1. From the numerical
solutions we have estimated the LCEs with the Jacobian matrices (2.39) and (2.56),
as well as the maximum one by the fiduciary orbit technique.

Throughout all computations the results obtained by the two numerical methods
agree up to the corresponding truncation errors. In some specific chaotic cases this
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gives rise to some qualitative discrepancies which are due to the extreme sensibility
to the initial conditions. It will be commented at some point below in Section 3.1.

We have also solved the two non-fractional limit cases corresponding to α = 0,
α = 2 using the Strauss-Vázquez numerical method [20]. When comparisons were
necessary, we have solved the “classical” Duffing equation with the same numerical
method presented in [19].

3.1 Phenomenology of solutions

As is done in the classicalDuffing equation, to visualize the resultswe have represented
the orbits in the xv-plane, that we consider to be our phase space, and the stroboscopic
map of period T = 2π/w in time, that gives the solution at time multiples of that
period, which is the period of the external forcing. In some cases we present only
the x-component of both the solution and of the stroboscopic map. When necessary,
we have also presented either the solutions or their stroboscopic maps in a (false) 3D
projection, to clearly see the evolution in time.

In the classical Duffing equation there is, basically, a competition between the
amplitude of the external forcing f0 and the coefficient of the dissipation γ . Melnikov
method marks the boundary that separates the regular regime from the chaotic one
[14]: chaos may appear only for values of the parameters such that

f0
γ

>
4

3

cosh(πω/2)√
2πω

. (3.1)

In the fractional model we may look for different values of the parameters to see if
a similar threshold exists. The numerical simulations are intended to investigate the
effect of the amplitude f0 and the order of the fractional derivativeα,with the frequency
ω and the damping coefficient γ taking constant values, ω = 1 and γ = 0.25,
respectively.

The system is very rich, it can exhibit very different behaviours. In our study,
we have considered different values for f0 and α to present these distinct types of
behaviours. We enumerate in what follows the main features.

1. There are regular solutions, where the curves in the phase plane appear to tend
rapidly to a closed curve. When the stroboscopic map is plotted, we see that the
points tend to a fixed point (period T ) or a discrete set of a few fixed points (higher
periodicity with multiples of T ). Although the fractional equation cannot have
periodic solutions [19, 25, 30], the attractor in the regular case appears to be a
periodic curve which is not a solution. This is a clear difference with classical case
where the attracting periodic curve is also a solution. For instance, we show in
Fig. 1 a regular solution that tends towards a T -periodic curve, with the points in
the stroboscopic map tending towards a unique fixed point in the phase plane.
In Fig. 2, we present a regular solution that tends towards a 3T -periodic curve. We
see clearly how the three sets of points in the stroboscopic map tend to three fixed
points as time increases.
It is interesting to note that the regular attractor is not, in general, unique. For
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 Solution in phase space
 Stroboscopic map

(a) Representation in phase space of
solution that tends towards a periodic
limit case
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0.0152
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0.0155

0.0156

0.0157

0.0158

(b) Stroboscopic map as a sequence of
points that tends to be a single one as
time extends

Fig. 1 Phase space and stroboscopic map for a regular solution that tends towards a T -periodic curve with
α = 0.5, f0 = 0.1, x0 = v0 = 0

Fig. 2 Phase space and stroboscopic map of a regular solution that tends towards a 3T -periodic curve with
α = 0.8, f0 = 2, x0 = v0 = 0

fixed values of all the parameters, depending on the initial conditions the solu-
tions can exhibit diverse behaviours and converge towards distinct closed curves.
This phenomenon underscores the system’s sensitivity to its starting state and the
importance of considering a wide range of initial conditions when studying the
dynamics. Consequently, even small deviations in the initial conditions can lead
to significantly different outcomes.
This sensitivity to the initial conditions, that is to be expected in a chaotic regime,
is here present in the case of regular solutions. In Fig. 3 we show four regular
attractors, with some different periodicities, for fixed values of the parameters but
different initial conditions.

2. There are chaotic solutions, clearly identified by presenting a quick convergence
to a strange attractor in the stroboscopic map, similar to the one obtained in the
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Fig. 3 Multiplicity of limit
cycles in the regular regime: for
different initial conditions, we
find four different limit cycles of
different periodicities: T : red
and blue curve, 4T : green and
pink curve, with the same set of
parameters: α = 0.6,
f0 = 0.2409
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(a) α = 0.1,f0 = 0.17
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(b) α = 0.6, f0 = 0.3
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(c) α = 1.3,f0 = 0.3
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(d) α = 1.9,f0 = 0.2

Fig. 4 Strange attractors of the fractional Duffing equation for several values of α

classical model for the same values of the parameters.We present several examples
of the strange attractor in Fig. 4 for different values of α and f0.
As we mentioned before, solutions with the same parameters have the potential to
converge towards distinct attractors. This happens also when chaotic solutions are
present. For some values of the parameters, and depending on the initial conditions,
there is a coexistence of regular solutions that tend to different regular attractors
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Fig. 5 Time series for chaotic and regular solutions for α = 0.1, f0 = 0.16 for two different initial
conditions. In (b) the solution tends to a regular attractor after a chaotic transient

and chaotic solutions that tend to a unique strange attractor. We illustrate this in
Fig. 5, where we only show the x-component of the solution, the behaviour of v

being similar.
3. There is, though, a range of regular solutions that present a long chaotic transient:

for some time, quite long in some cases, the stroboscopic map shows a “cloud”
of points that resembles a strange attractor but after that the solution clearly tends
towards a periodic curve. In Fig. 6(a), we illustrate this with a solution that, after
a very long transient tends to a closed curve of period 8T in the phase plane. In
Fig. 6(b), we present the stroboscopic map pf the solution restricted to the chaotic
transient, and in Fig. 6(c) we present the stoboscopic map of the solutino in the
regular regime, with the points tending towards to a limit set of 8 points.
For a clearer view of this behaviour in Fig. 6(d), we present the evolution of the
points in false 3D projection adding, thus, the time evolution.
This behaviour also appears to be very sensitive to the initial conditions: two
solutions starting from close initial data may present transients of very different
lengths as shown in Fig. 7 for α = 0.25, f0 = 0.229.
We notice a chaotic transient for the initial conditions x0 = 0.001, v0 = 0.0098
(red points) but once we add the small quantity ε = (2π/700)8 to the previous
initial conditions as a perturbation the transient is extended in the order of 105

time steps (black points).
The chaotic transient can even present an intermittent behaviour, with a chaotic
regime alternating several times with a regular one, and eventually reaching a
regular phase that can be different to the previous regular ones. We illustrate this
in Fig. 8.

4. We have just mentioned above the case of solutions presenting a chaotic transient
that regularize, afterwards, somehow switching from approaching a chaotic attrac-
tor to finally tending towards a regular one. Similarly, we have observed solutions
switching from regular attractors: solutions that start close to a regular, periodic,
curve but after some time evolve towards a different one. The stroboscopic map
in such cases shows what resembles a bifurcation in time. We illustrate this with

123



S. Hamaizia et al.

-0.5 0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

3

4

Chaotic transient
Post transient

(a) Stroboscopic map for a solu-
tion with a long chaotic transient.
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(b) Stroboscopic map from
t = 2π/700 to t = 5013.9819
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(c) Stroboscopic map from t =
5020.2651 to t = 6283.1853

(d) Stroboscopic map and time
for a solution with a long chaotic
transient, α = 0.3, f0 = 3, x0 =
1.23, v0 = 1.21.

Fig. 6 The solution becomes regular after a long chaotic transient and tends towards a closed curve of
period 8T ( and a limit set of 8 points in the stroboscopic map), α = 0.3, f0 = 3, x0 = 1.23, v0 = 1.21

two examples in Figs. 9 and 10.
This switching between two regular attractors can occur through a chaotic-like
transition. We illustrate this in Fig. 11, where the solution starts near a T -periodic
curve to finally approach a 3T curve.
Finally, the transition can also be from a regular attractor to a chaotic one, as
shown in Fig. 12. This last case is, somehow, the reverse situation of the long
chaotic transient described in the previous point.

5. Last, but not least,wehave found intermittent behaviours in somechaotic solutions:
The system exhibits a periodic-like pattern during extended time intervals but with
distinct lengths interrupted by chaotic bursts, their occurrence being seemingly
random. Each burst has a distinct and finite duration before disappearing, leading
to the initiation of a new laminar phase. This pattern repeats itself in a cyclicmanner
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Fig. 7 Stroboscopic map of different chaotic transients for α = 0.25, f0 = 0.229 shows that two solutions
with nearby initial conditions, display transients of different lengths
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Fig. 8 Stroboscopic map with intermittent chaotic transient for α = 1.1, f0 = 0.25

[31]. In some cases, the regular-like phases of the solution oscillate around just
one of the centers (±1, 0) of the underlying classical Hamiltonian system as in
Fig. 13.
In other cases, the regular-like phases that can be around any of the two centers,
passing from one to the other, occasionally, as in Fig. 14.
We have also found cases where the regular-like phases of the solution oscillate
around both centers of the underlying classical Hamiltonian system. We present
such a case in Fig. 15.

From all our computations we have obtained a numerical estimation of the threshold
separating the regular regime from that where chaotic solutions are found, depending
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Fig. 9 Phase space and Stroboscopic map of the transition from a T -periodic attractor to a 2T attractor,
α = 1.1, f0 = 0.2, x0 = 0, v0 = 0.5

Fig. 10 Phase space and Stroboscopic map of the transition from a 2T -periodic attractor to a 4T attractor,
α = 1.2, f0 = 0.19, x0 = 0.5, v0 = 0.5

Fig. 11 Phase space and
Stroboscopic map of the
transition from a T-periodic
attractor to a 3T attractor via a
chaotic-like transition for
α = 1.1, f0 = 0.2, x0 = 0.5,
v0 = 0.5

on the values of α and f0, keeping γ fixed. In Fig. 16, we present the resulting curve
of α versus f0/γ . This curve separates the two states of solution, chaotic and regular,
where, in the region above it, the solution may exhibit chaotic behaviour, whereas
below the curve, the solution is regular.
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Fig. 12 Switching from regular attractor to a chaotic one, for α = 1.1, f0 = 0.4, x0 = 1.05, v0 = 1.06

Fig. 13 Intermittency with oscillations around one center (−1, 0), for α = 1.25, f0 = 0.2271,
x0 = 0.00101, v0 = 0.002

In the classical Duffing equation, the analytic value of the threshold of chaos given
by (3.1) appears for f0/γ ≈ 0.75 [14]. Numerically, the value of the threshold appears
to be at f0/γ = 1.06, which satisfies the Melnikov criteria but is significant above.
In the fractional case we recover the numerical value of the threshold of the classical
case for the values of α near 1, as shown in Fig. 16.
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Fig. 14 Intermittency with oscillations around any of the two centers (±1, 0), for α = 1.35, f0 = 0.2119,
x0 = v0 = 0
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Fig. 15 Intermittency with oscillations around the two centers, α = 0.1, f0 = 0.778, x0 = 1, v2 = 0

3.2 LCEs

As we mentioned before, we have estimated the maximum LCE with two different
techniques: the linearization using the approximated Jacobi matrix and the fiduciary
orbitmethod.The linearizationmethodgives us the twoexponentsλ1 andλ2 (λ1 ≥ λ2),
and the fiduciary orbit approach gives an independent estimation of λ1, that we denote
by λmax.

In the study made in [21] a small quantitative gap was observed between the esti-
mation of the values of the maximum LCE obtained by the two methods.
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Fig. 16 Numerical threshold for chaos: above the curve the solution can be chaotic and below it, the solution
is regular
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(a) Estimation of LCEs for a chaotic solu-
tion, f0 = 0.3
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(b) Estimation of LCEs for a regular solu-
tion, f0 = 0.15

Fig. 17 Estimation of LCEs shows the agreement between λ1 and λmax for both behaviours: chaotic and
regular solution for α = 0.5, x0 = 0.8, v0 = 0

In the present study,we succeeded in reducing this gap, due to our numericalmethod
SV + Odibat method being more accurate.

We discriminate regular and chaotic solutions by means of the LCEs, considering
the solutions to be regular if both exponents λ1 and λ2 are negative or zero, and chaotic
if the maximum one is positive. We illustrate this in Fig. 17 for regular and chaotic
solutions with α below 1 and in Fig. 18 for 1 < α ≤ 2.

The agreement between the exponent λ1 derived through the linearization method
and λmax which is approximated with a totally different method (the fiduciary orbit
method), supports the good estimation of the Jacobian matrix in both cases.

Besides, as an indication of possible computing errors, we have checked the con-
servation laws (2.40), (2.57) and found always a good agreement. We calculate the
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(a) LCEs for a chaotic solution, f0 = 0.29
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(b) LCEs for a regular solution, f0 = 0.12

Fig. 18 Estimation of Lyapunov Characteristic Exponents (LCEs) illustrates the consistency between λ1,
and λmax for both behaviours: chaotic and regular solutions, for for α = 1.1, x0 = v0 = 0
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(a) Solution: blue corresponds to the solu-
tion giving an estimate of λ1 > 0 and red
to λ1,2 < 0
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(b) Estimation of the LCEs

Fig. 19 Estimation of the LCEs for a solution with a long regular phase, α = 1.1, f0 = 0.4, x0 = 1.05,
v0 = 1.06

relative error of the sum of the LCEs with respect to the trace of J1 and J2 for different
time-steps:

∣∣∣ |λ1 + λ2 − trace(J )|
trace(J )

∣∣∣,

where we found it smaller than 5 · 10−5.
In cases of intermittent behaviour the LCEs agree with the chaoticity of solutions.

In cases where a long regular phase finally ends in a chaotic behaviour, the exponents
may tend to zero but grow afterwards when the chaos is present, as in Fig. 19.

For regular solutions with a long chaotic initial transient, the LCEs are computed
only after this transient. The LCEs tend to negative values as time increases.
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(b) 1 < α < 2

Fig. 20 Estimates of the Lyapunov dimension DL versus α

Having estimated both Lyapunov exponents we can compute the Lyapunov dimen-
sion DL given by (2.41). In Fig. 20, we present DL as a function of α for the threshold
values in Fig. 16.

4 Limiting cases

The fractional equation has three non fractional limiting cases. They correspond to the
three integer values of α in the considered range: α = 0, 1 and 2. Since the dependence
on α is continuous, the behaviour of the fractional model tends to that of the limiting
cases as α tends to an integer.

The central case, α = 1, corresponds to the classical Duffing equation. The other
two values correspond, basically, to the same model.

To understand the solution of the fractional equation (2.4) in the limits and show its
behaviours, we need to compare it with the classical case of the non-fractional equation
(undamped forced duffing equation) where there is no dissipation in the system and γ

is no longer a damping parameter. It merges with the coefficient of the linear stiffness
as α → 0+ or with the coefficient of the second derivative as α → 2−, see (4.3)
below.

4.1 Non-fractional equation: undamped forced Duffing equation

In the limit α → 0+, the fractional derivative gives the identity operator [23], and we
have the equation:

ẍ + (γ − 1)x + x3 = f0 cos(ωt). (4.1)

In the limit α → 2−, the fractional derivative corresponds to the second order deriva-
tive [23], giving the following:

(1 + γ )ẍ − x + x3 = f0 cos(ωt). (4.2)
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Provided γ − 1 < 0, both equations correspond to a conservative system perturbed
by a periodic driving force and the difference is solely in the value of some of the
coefficients. Thus, the fractionalmodel ends up, in both these extreme limits, modeling
the same qualitative system. Let us present its general features.

Let be the general undamped Duffing equation:

mẍ − ax + x3 = f0 cos(ωt), (4.3)

with m and a are two positive constants. It corresponds to a Hamiltonian system
perturbed by an external forcing. The unperturbed Hamiltonian function is

H(x, y) = m

2
ẋ2 − a

2
x2 + x4

4
. (4.4)

The unforced system has three critical points: two centers, located at (+√
a, 0) and

(−√
a, 0), and a saddle point at the origin. The unstable equilibriumpoint (0, 0) is con-

nected to itself by two homoclinic orbits [14]. This is, basically, the same Hamiltonian
(2.3) on which the classical Duffing equation is built.

The presence of the forcing term introduces a period that competes with the inter-
nal periods of the unperturbed Hamiltonian system. This mechanism allows chaotic
solutions to exist. Nevertheless, it is possible to show [12] that solutions in the plane
xv are bounded between regular curves such that for large initial values the chaotic
behaviour is suppressed.

The regular and the chaotic regions of the phase space can be visualized using the
stroboscopic map with the period of the external force, T = 2π/ω. For the numerical
simulations, we use the Strauss-Vázquez approach [22]:

m

(
xn+1 − 2xn + xn−1

�t2

)
+ U (xn+1) −U (xn−1)

xn+1 − xn−1
= f0

cos(ωtn+1) + cos(ωtn−1)

2
,

(4.5)
where U (x) = − a

2 x
2 + 1

4 x
4 is the potential. This method gives an exact discrete

counterpart of the variation law of the Hamiltonian (4.4).
We illustrate the behaviour of the system with some different cases, depending on

the values of the parameters. We have fixed ω = 1. In all the simulations we observe
a bounded central chaotic region with some possible internal structure, basically reg-
ularity islands. Outside of this central region the system is always regular. In Fig. 21
we present two examples.

It is important to note that the chaos in the solutions of Equation (4.3) is quite
different from that exhibited by the classical Duffing’s equation. This is mainly due to
the fact that no dissipation is present.

The trace of the Jacobianmatrix of the system is now always zero and the Lyapunov
exponents have the same value with opposed signs. If we extend the Lyapunov dimen-
sion as defined by (2.41) to the undamped limit cases, the value for chaotic solutions
is always 2. These features are closer to that of chaos in Hamiltonian systems.

The boundedness of the chaotic part, and of the solutions in general, can be seen in
Fig. 21 where we show the central chaotic region that corresponds to small initial data
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(a) f0 = 0.13, m = 1.01, a = 1
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Fig. 21 Stroboscopic maps for Equation (4.3). Different colors correspond to different initial conditions

-2 -1 0 1 2

-2

-1

0

1

2

(a) α = 0.00001

-2 -1 0 1 2

-2

-1

0

1

2

(b) α = 1.999999

Fig. 22 Stroboscopic maps for both limits with f0 = 0.13, γ = 0.01, ω = 1 shows the similarity to the
classical case (Fig. 21(a))

and the regular behaviour of solutions with large initial data, for two different settings
of the parameters and several initial values.

4.2 Fractional Duffing equation near the limits

Let us illustrate now the behaviour of the fractional system for values of α close to
the limit cases. We have considered the typical regime (γ − 1 < 0) where both m
and a are positive. We discard the case where (γ − 1 > 0) which is featureless, since
the system has a single critical point (center) at the origin (0, 0). We present some
solutions for different combinations of parameters and compare themwith the classical
case mentioned in Subsection 4.1, above.

– In Fig. 22 for f0 = 0.13, γ = 0.01 , ω = 1:
The similarity to the classical case, when choosing the same parameters and the
same initial conditions as in Fig. 21(a), is striking. For large initial conditions all
solutions are regular.

– In Fig. 23 for f0 = 0.03, γ = 0.25, ω = 1:
Although the similarity with the classical case is not as striking as previously, it is
clear that the structure is the same.

– In Fig. 24 for f0 = 0.1, γ = 0.25, x0 = 0.25, v0 = 0.2, ω = 1:

We have computed the Lyapunov Dimension which is close to 2 near both limits as
shown in Fig. 20.
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Fig. 23 Stroboscopic maps for α near to 1 and 2 for f0 = 0.03, γ = 0.25, ω = 1
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(c) Classical case α = 0
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(d) Classical case α = 2

Fig. 24 Stroboscopic maps showing the chaotic region of both limit cases: f0 = 0.1

α → 1: The fractional derivative corresponds in this limit to the first order derivative
[23] and we obtain the classical Duffing equation (2.1).

The strange attractor obtained as α → 1 with values above or below 1 tends to the
classical one.

Although the system is not symmetric with respect to α, this does not affect the
behaviour of the fractional system as it tends to any of the three classical limits.

5 Conclusions

In this paper, we study Duffing’s equation with fractional damping term and linear
stiffness using the Caputo fractional derivative. We have explored the equation in the

123



Rich phenomenology of the solutions in a fractional Duffing equation

range from α = 0 to α = 2. We have used two numerical methods, from two different
approaches, that give consistent results.

The system appears to be very sensitive to the values of the parameters and of the
initial conditions, especially in the region near the threshold that sepparates the regular
and the chaotic regimes. Small variations in any of the values can give rise to solutions
with different behaviours, even in the case of regular solutions, with multiple regular
attractors, given a fixed set of parameter values. The classical equation may present
three attractors that correspond to periodic solutions around one of the two centers
of the undisturbed Hamiltonian, or around both of them. In the fractional case we
have found that the number of regular attractors that coexist is not limited to three and
several different closed curves may be found. We understand that the relaxation of the
dissipation and the long memory that the fractional derivative introduces allow more
periodic attractors to be stable.

For α near 1 and above, the transition from regular to chaotic solutions is marked
by intermittencies.

We have estimated both Lyapunov Characteristic Exponents. They were in good
agreement with the maximum LCE, simulated using the fiduciary orbit technique.

In both limits, α → 0 and α → 2, the system behaves similarly and tends to
the classical case where no dissipation is present. In this sense, there is a closed
transition that interpolates between these limits and the classical Duffing equation that
corresponds to the intermediate limit α = 1.

Although the limit cases can be obtained, somehow, in the classical model by just
diminishing the values of the dissipation coefficient γ , the behaviour is different to
what we observe in the fractional model.

Although the behaviour of the system is similar in both extreme limits, the inter-
mediate behaviour is different on both sides of α = 1.

Further studies are underway. Preliminary results indicate that the system presents
different types of intermittency. The non-unicity of the regular attractors suggests to
study the bifurcation diagrams of the transition from regular to chaotic regimes. As an
analytical tool for these studies, an extension of theMelnikovmethod to this fractional
case is under consideration.
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