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Abstract
The purpose of this text is to propose an attempt of an extension of the Filippov-
Ważewski Relaxation Theorem for a certain class of fractional differential inclusions.
The classical result devoted to ordinary differential inclusions is a part of the qualita-
tive theory: a description of the relationship between the solutions to the differential
inclusion and the convexified differential inclusion was given. There exist several
generalizations of that result and in this note a method is proposed so that the range
of some parameters is extended. An example of a possible application may arise in
control theory and the question is whether it is possible to have the same reachable set
economizing the set of controls.

Keywords Filippov-Ważewski (primary) · Relaxation · Differential inclusion ·
Fractional derivative · Riemann-Liouville
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1 Introduction

The aim of the text is to propose an attempt of a generalization of the Filippov-
Ważewski Relaxation Theorem ([2], p.124) for the fractional differential inclusion{

Dα y(t) ∈ F(t, y(t))

(I 1−α y)(0) = ỹ0 ,
(1.1)
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2 J. Sadowski

where F : [0, T ] ×R
n �→ 2R

n
is a set-valued mapping, Dα y stands for the fractional

derivative

Dα y(t) = d

dt
(I 1−α y)(t) = d

dt

∫ t

0

y(s)

�(1 − α) · (t − s)α
ds (1.2)

and I 1−α y is the Riemann-Liouville integral. A solution to (1.1) is a function y :
(0, T ] �→ R

n given by the formula

y(t) = (I 1−α y)(0) · tα−1

�(α)
+ 1

�(α)

∫ t

0

v(s)

(t − s)1−α
ds , (1.3)

where v(·) : (0, T ) �→ R
n is a measurable function such that v(s) ∈ F(s, y(s)) a.e..

1.1 Definitions and the literature

There are different concepts of the fractional derivative (see [8], pp. 69-133) and we
recall fractional derivatives in the sense of Riemann-Liouville, Caputo and Grünwald-
Letnikov, for instance. In this paper the Riemann-Liouville derivative is considered.
Such derivative is based on the convolution operator

t �→ (I 1−αg)(t) = 1

�(1 − α)

∫ t

0

g(s)

(t − s)α
ds (1.4)

and the function in (1.4) is supposed to be absolutely continuous (see [28], pp. 35-44).
The formula of a solution to the Cauchy problem for a fractional differential equation
Dαx = f (t, x) equipped with the initial condition (I 1−αx)(0) is

x(t) = (I 1−αx)(0)

�(α)
· tα−1 + 1

�(α)

∫ t

0

f (s, x(s))

(t − s)1−α
ds ,

(see [28], p. 833). A solution to the differential inclusion

y′(t) ∈ F(t, y(t)), y(0) = ỹ0, (1.5)

where F : [0, T ] × R
n �→ 2R

n
is a multifunction, is usually understood in the

Caratheodory sense and the corresponding formula is y(t) = ỹ0 + ∫ t0 v(s) ds with
v(·) ∈ L1([0, T ]) such that v(t) ∈ F(t, y(t)) a.e. (see [3], p. 384). The fractional
analogue of (1.5) is given in (1.3).

Ordinary differential inclusions are closely related with control theory because
Filippov and Ważewski proved that under very mild assumptions the control system

x ′ = f (t, x, u(t)), u(t) ∈ U is measurable (1.6)

may be reduced to the differential inclusion x ′(t) ∈ F(t, x(t)) (see [3], p. 384).
Therefore some problems concerning system (1.6) might be investigated using the
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On the Filippov-Ważewski relaxation theorem for... 3

tools of set-valued analysis. For example the question to economize controlU in (1.6)
led to the Filippov-Ważewski relaxation theorem ( [3], p. 402).

An attempt of an extension of (1.6) is the fractional differential system Dαx =
f (t, x, u(t)) with the Riemann-Liouville fractional derivative. The interest for the
concept of the fractional derivative was not only purely theoretical, because fractional
derivatives describe solutions of fractional integral equations, many times arising from
physics, as done by Abel in 1823 to solve the brachistochrone problem. Recently
applications of fractional calculus arise in applied sciences such as acoustic wave
propagation in inhomogeneous porous material and diffusive transport (see [1], pp. 4-
5). The reader is also referred to [21] and [25] for further applications of fractional
calculus such as biophysics, thermodynamics, polymer physics, viscoelasticity and
control theory.

The classical relaxation theorem by Filippov and Ważewski is concerned with
differential inclusions on a finite dimensional space (see [2], [9] and [30]). Briefly
speaking, the convexified system x ′ ∈ co(F(x)) is compared with the system y′ ∈
F(y) equipped with the same initial condition (and co(A) stands for the closed convex
hull of the set A). Under suitable assumptions, such as the boundedness of the right-
hand side, theorem says that for every ε > 0 and every function x(t), a solution to
the convexified problem, there is y(t), a solution to y′ ∈ F(y), such that ‖x(t) −
y(t)‖L∞≤ε.

There exist generalizations of the classical relaxation theorem in a few directions:
for instance Ioffe [19] extended that result for a certain class of differential inclusions of
the form x ′ ∈ F(t, x), where the values of the set-valued mapping F : [0, 1]×R

n �→
2R

n
might be unbounded. The converse statement of the relaxation theorem is proved in

[20] and infinite dimensional versionswere given byGórniewicz et al. [7], Frankowska
[10], Papageorgiou [24], Polovinkin [26] and Tolstogonov [29]. Fryszkowski and
Bartuzel proposed relaxation-type theorems concerned with differential inclusions of
second order and fourth order (see [4] and [5], resp. - the corresponding differential
inclusions are y′′ − ay ∈ F(t, y) and y(4) − (a2 + b2) · y(2) + (ab)2 · y ∈ F(t, y)).
Another extension of the relaxation theorem (see [12], [13] and the references therein)
is devoted to the parametrized Cauchy problem{

u′ ∈ F(t, u, s)

u(0) = ξ(s),

where F : I × X × S �→ cl(X) is a closed-valued multifunction, S is a separable
metric space, X stands for the Banach space and I is the time interval. There is also
a result [10] on the relaxation theorem concerned with the Cauchy problem equipped
with some state constraints, i.e.

{
x ′ ∈ F(t, x) , x(0) = x0 ,

x(t) ∈ � ,

where the state constraint� ∈ R
n is an open subset and the relation x(t) ∈ � is meant

to hold for every t in the domain of x(·).
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4 J. Sadowski

Existence and uniqueness results for fractional differential equations may be found
in [8] and [28]. An extension for a class of fractional differential inclusions is given in
[15], [16], [22] and [23]. Fractional differential inclusions with the Riemann-Liouville
derivative are considered in [22]; [15] and [16] are devoted to Riemann-Liouville
fractional differential inclusions with a delay; [23] is concerned with a semilinear
differential inclusion with the Caputo fractional derivative.

Comparing to [2], where the distance between the solution and the quasisolution
is estimated by an exponential series, in [15], [16], [22], [23] a geometric series
is considered thus the smallness of some parameters is essential to guarantee the
convergence of the geometric series.

This paper is an attempt to extend some recent results:

– A different procedure for the construction of a quasisolution is proposed to avoid
the application of a geometric series: the estimate for the distance between the
solution and the quasisolution is based on an exponential - type series thus the
smallness of some parameters is no longer required.

– Comparing to [15] and [22], nonzero initial data (i.e. (I 1−α y)(0) 	= 0) is con-
sidered and some modifications of the method of successive approximations are
needed.

– A method is proposed to omit and exclude condition (H3) given in [16] so that
the range 0 < α < 1 is permitted.

The structure of this text is the following: a general existence result concerning solu-
tions to (1.1) is given in Theorem 1; Theorem 2 is concerned with the existence of
a particular solution being sufficiently close to a given function r(t); Theorem 3 is
devoted to the relaxation property.

1.2 Some examples on the relaxation theorem

Comparing the differential inclusion y′(t) ∈ {±1} with the convexified problem
x ′(t) ∈ [−1, 1] equipped with the initial condition x(0) = y(0) = 0 it is clear that
x̃(t) ≡ 0 is a solution to the convexified problem only. Function y(t) = ∫ t

0 vε(s) ds
with

vε(s) =
{

+1, s ∈ (0, ε) ∪ (3ε, 5ε) ∪ ...

−1, s ∈ (ε, 3ε) ∪ (5ε, 7ε) ∪ ...
(1.7)

is a solution to y′(t) ∈ {±1} and we have ‖y(·) − x̃(·)‖L∞ < ε.
Take for instance D3/4y(t) ∈ {±1} and D3/4x(t) ∈ [−1, 1] equipped with the

initial condition (I 1/4y)(0) = (I 1/4x)(0) = 0. Function x̃(t) ≡ 0 is a solution to the
convexified problem only and a solution to problem D3/4y(t) ∈ {±1} satisfying the

condition ‖x̃(·) − y(·)‖L∞ < ε takes the form y(t) = 1
�(3/4)

t∫
0

v(s) ds
(t−s)1/4

where

v(s) =
{

1 , s ∈ (0, ε1) ∪ (ε2, ε3) ∪ ...

−1 , s ∈ (ε1, ε2) ∪ ... ,
(1.8)
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On the Filippov-Ważewski relaxation theorem for... 5

with ε1 = (ε · �(7/4))4/3, ε2 = 24/3/(24/3 − 1) · ε1 ≈ 1.658 · ε1, ε3 ≈ 2.53 · ε1, .... .

Remarks on the notation. In what follows, Rn is the n dimensional Euclidean space;
�(t) is the Gamma function and B(a, b) is the Beta function; dH (A, B) is the Haus-
dorff distance between sets A, B ⊂ R

n and d(x, A) = inf{‖x − a‖ : a ∈ A} is
the distance between a point x ∈ R

n and a nonempty set A ⊂ R
n ; B(a, r) = {y :

‖y − a‖ < r} is the open ball in R
n ; I 1−α(g)(t) is the Riemann-Liouville fractional

integral of order 1−α given in (1.4). A set-valuedmapping F : Rn �→ 2R
n
is Lipschitz

continuous with respect to the Hausdorff distance provided there is a constant k such
that for every x1, x2 ∈ R

n is dH (F(x1), F(x2)) ≤ k · ‖x1 − x2‖.

2 Existence of solutions

One of the possible way to achieve the task to derive the solutions to (1.1) is to employ
fixed point theorems for multivalued mappings. This in turn requires the multivalued
Niemytskij operator K0 : L p([0, T ],Rn) � clL p([0, T ],Rn) defined by

K0(u) =
{
w ∈ L p([0, T ],Rn) :

w(t) ∈ F

(
t,

(I 1−α y)(0)

�(α)
· tα−1 + 1

�(α)

∫ t

0

u(s)ds

(t − s)1−α

)}
.

(2.1)

In order to derive the existence of solutions on [0, T ] for arbitrary T > 0 we shall
demonstrate that there is a Bielecki norm equivalent to the norm L p such that K0(·)
is a contraction. The following hypothesis on multifunction F : [0, T ] × R

n � R
n

shall be assumed:

Hypothesis (H). Multifunction F is nonempty compact valued; for each x mapping
F(·, x) is measurable. There is a function k(·) ∈ L p([0, T ],R) such that mapping
F(t, ·) is k(t)-Lipschitz continuous with respect to the Hausdorff distance. There is
a mapping a(·) ∈ L p([0, T ],R+) such that for eachx the estimate sup{‖u‖ : u ∈
F(t, x)} ≤ a(t) holds a.e..

Theorem 1 Let F : [0, T ]×R
n � R

n be a multifunction such that Hypothesis (H) is
satisfied. Suppose that α p > 1. Then there is a solution to the fractional differential
inclusion (1.1) on [0, T ].
Proof Let function φ : [0, T ] �→ R be given by the formula

φ(t) = exp

(
−2
∫ t

0
A(s) ds

)
,

where A(t) = tα p−1 · |k(t)|p · (�(α))−p · ((α − 1) · p
p−1 + 1)1−p . Then there are

constants 0 < c1 < c2 depending on T such that c1 < φ(t) < c2 and the norm
‖ f ‖L p([0,T ],dμ) = (

∫ T
0 | f (s)|p φ(s) ds)1/p is equivalent to the standard L p-norm on

[0, T ].
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6 J. Sadowski

Fix u1, u2 ∈ L p([0, T ],Rn) and w1 ∈ K0(u1). Since t �→ (I 1−α y)(0)
�(α)

· tα−1 +
I α(u2)(t) is a measurable mapping then the composition

t �→ F

(
t,

(I 1−α y)(0)

�(α)
· tα−1 + I α(u2)(t)

)

is a measurable multifunction ( [3], Thm. 8.2.8, p. 314). Then, according to [3]
(Cor. 8.2.13, p. 317) there is a measurable selection w2 : [0, T ] �→ R

n such that

w2(t) ∈ F

(
t,

(I 1−α y)(0)

�(α)
· tα−1 + I α(u2)(t)

)
(2.2)

for a.e. t ∈ [0, T ] and

|w1(t) − w2(t)| =

= d

(
w1(t), F

(
t,

(I 1−α y)(0)

�(α)
· tα−1 + 1

�(α)

∫ t

0

u2(τ )dτ

(t − τ)1−α

))
≡ d(w1(t) , P(t)) .

It follows from (2.1) and (2.2) that w2 ∈ K0(u2). Then, employing the assumption
that w1 ∈ K0(u1) and by the k(t)-Lipschitz continuity of F(t, ·) for a.e. t ∈ [0, T ]
we obtain the inequality

|w1(t) − w2(t)| = d(w1(t), P(t)) ≤

≤ dH

⎛
⎝F

⎛
⎝t, (I 1−α y)(0)

�(α)
· tα−1 + 1

�(α)

t∫
0

u1(s) ds

(t − s)1−α

⎞
⎠ , P(t)

⎞
⎠

≤ k(t) ·
∣∣∣∣∣∣

t∫
0

u1(s)

�(α)(t − s)1−α
ds −

t∫
0

u2(s)

�(α)(t − s)1−α
ds

∣∣∣∣∣∣ .
(2.3)

Keeping in mind that function φ is a solution to the differential equation φ′(t) =
−2A(t) · φ(t), following (2.3) and employing the Hölder inequality we obtain

‖w1 − w2‖p
L p([0,T ],dμ) ≤

∫ T

0

|k(t)|p · φ(t)

|�(α)|p ·
∣∣∣∣
∫ t

0

|u1(s) − u2(s)|
(t − s)1−α

ds

∣∣∣∣
p

dt

≤
∫ T

0

(
A(t)φ(t) ·

∫ t

0
|u1(s) − u2(s)|p ds

)
dt

= −1

2

∫ T

0
φ′(t)

∫ t

0
|u1(s) − u2(s)|p ds dt .

(2.4)
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On the Filippov-Ważewski relaxation theorem for... 7

Then the integration of the r.h.s. of (2.4) by parts implies that

‖w1 − w2‖p
L p([0,T ],dμ) ≤ 1

2
· ‖u1 − u2‖p

L p([0,T ],dμ) , (2.5)

since we keep in mind the sign of the boundary terms. Estimate (2.5) implies that
operator K0(·) is a contraction, hence the Covitz-Nadler Jr. Theorem ( [18], Thm. 1.11,
p. 524) yields the existence of a fixed point u0 ∈ K0(u0). ��

2.1 The method of successive approximations by Filippov

In comparison to the previous section concerned with a general existence result now
we shall prove the existence of a certain solution y(·) such that y(·) is sufficiently close
to a given function r(·). Conditions imposed on function r(t) are described below:

Hypothesis (H2). Let be given functionr : (0, T ] �→ R
n of the form

r(t) = (I 1−αr)(0) · tα−1/�(α) + I α(v0)(t) (2.6)

with v0 ∈ L p([0, T ]), p > 1. Suppose that there is a function m(t) ∈ L p([0, T ])
such that for a.e. t ∈ [0, T ] there is d(v0(t), F(t, r(t))) ≤ m(t). Let ξ = α p−1

p−1 ,
suppose that k ∈ L p([0, T ]) and let sequences {A j (t)} j≥1 and {C j (t)} j≥0 be given
by formulas

A j (t) =
(‖k‖L p([0,t])

) j−1(
�(α)

) j ·
[

(�(ξ)) j

�( jξ + 1)

]1− 1
p

,

C j (t) =
(‖k‖L p([0,t])

�(α)

) j

·
[

(�(ξ)) j+1

�(( j + 1)ξ)

]1− 1
p

.

(2.7)

Keeping in mind(1.1) and (2.6) we introduce symbols Y0 = (I 1−α y)(0)/�(α) and
R0 = (I 1−αr)(0)/�(α) to simplify the notation.

Theorem 2 Let multifunction F : [0, T ] × R
n � R

n fulfill Hypothesis (H). Assume
that α p > 1. Let be given a function r(t) satisfying (H2). Then there is a solution
y(t) to (1.1) such that for t ∈ (0, T ] is

‖y(t) − r(t)‖ ≤‖m‖L p([0,t]) ·
( ∞∑
n=1

An(t) · tn·(α− 1
p )

)

+ ‖Y0 − R0‖ ·
( ∞∑
n=0

Cn(t) · tn(α− 1
p )+α−1

) (2.8)

and, for a.e. t ∈ (0, T ], we have

‖Dα y(t) − Dαr(t)‖ ≤ m(t)
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8 J. Sadowski

+k(t) ·
(

‖m‖L p([0,t]) ·
∞∑
n=1

An(t) · tn·(α− 1
p )

+‖R0 − Y0‖ ·
∞∑
n=0

Cn(t) · tn·(α− 1
p )+α−1

)
(2.9)

with {An}, {Cn} are given in (2.7).

Proof The aim is to construct sequences {yn} and {vn}. Functions y = lim yn and
Dα y = lim vn shall satisfy (2.8) and (2.9).

Let y0(t) = Y0 ·tα−1+ I α(v0)(t). Then the composition t �→ F(t, y0(t)) is measur-
able ( [3], Thm. 8.2.8, p. 314) and there is a measurable function v1(t) : [0, T ] �→ R

n

such that v1(t) ∈ F(t, y0(t)) and ‖v1(t) − v0(t)‖ = d(v0(t), F(t, y0(t))) a.e. (see
[3], Cor. 8.2.13). Hence by the triangle inequality for a.e. t ∈ [0, T ] we have

‖v1(t) − v0(t)‖ ≤ d(v0(t), F(t, r(t))) + dH (F(t, r(t)), F(t, y0(t)))

≤ m(t) + k(t) · tα−1 · ‖R0 − Y0‖ .
(2.10)

Let us define function y1(t) = Y0 ·tα−1+ I α(v1)(t). Then y1(·) is well defined since
the fractional integral I α(v1)(t) converges because α p > 1 and supt ‖I α(v1)(t)‖ ≤
c(α, p, T ) · ‖v1‖L p(0,T ). For completeness, v1 ∈ L p because v1(t) ∈ F(t, y0(t)) a.e.
and the set-valued mapping F fulfills hypothesis (H), i.e. there is a function a(·) ∈ L p

such that for each x we have sup{‖u‖ : u ∈ F(t, x)} ≤ a(t) a.e..
Employing (2.10) we derive an estimate between y0(·) and y1(·):

‖y1(t) − y0(t)‖ ≤ 1

�(α)

∫ t

0

m(s) + k(s) · sα−1 · ‖R0 − Y0‖
(t − s)1−α

ds

≤ ‖m‖L p([0,t])
�(α)

·
[ ∫ t

0
(t − s)(α−1) p

p−1 ds

]1− 1
p

+ ‖k‖L p([0,t])
�(α)

· ‖R0 − Y0‖

·
[ ∫ t

0

[
(t − s)(α−1)· p

p−1 · s(α−1)· p
p−1

]
ds

]1− 1
p

.

(2.11)

Changing variable in (2.11): s = tτ , ds = tdτ , leads to an estimate in terms of the
Beta function depending on parameter ξ = α p−1

p−1 :

‖y1(t) − y0(t)‖

≤ ‖m‖L p([0,t]) · [B(ξ, 1)]1−
1
p

�(α)
· tα− 1

p

+ ‖R0 − Y0‖ · ‖k‖L p([0,t])
�(α)

· [B(ξ, ξ)]1−
1
p · t2α−1− 1

p

≡ ‖m‖L p([0,t]) · A1(t) · tα− 1
p + ‖R0 − Y0‖ · C1(t) · t2α−1− 1

p

(2.12)
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On the Filippov-Ważewski relaxation theorem for... 9

with {A j }, {C j } given in (2.7). Proceeding step by step, suppose that functions
{y0, y1, ..., yn} are already constructed and

y j (t) = Y0 · tα−1 + I α(v j )(t), v j (t) ∈ F(t, y j−1(t)) a.e. in [0, T ], j = 1, .., n,

as well as

‖y j (t) − y j−1(t)‖
≤ ‖m‖L p([0,t]) · A j (t) · t j ·(α− 1

p ) + ‖R0 − Y0‖ · C j (t) · t j ·(α− 1
p )+α−1

.
(2.13)

The inductive step is to construct function yn+1. Since yn(t) = Y0 · tα−1 + I α(vn)(t)
fulfills vn(t) ∈ F(t, yn−1(t)) a.e. then there is a measurable function vn+1 such that

‖vn+1(t) − vn(t)‖ = d(vn(t), F(t, yn(t)))

≤ dH (F(t, yn(t)), F(t, yn−1(t))) ≤ k(t) · ‖yn(t) − yn−1(t)‖ a.e.,
(2.14)

hence we define yn+1(t) = Y0 · tα−1 + I α(vn+1)(t) and compute

‖yn+1(t) − yn(t)‖

≤
t∫

0

‖vn+1(s) − vn(s)‖
�(α)(t − s)1−α

ds ≤
t∫

0

k(s) · ‖yn(s) − yn−1(s)‖
�(α)(t − s)1−α

ds

≤ 1

�(α)

t∫
0

k(s)

(t − s)1−α

[
‖m‖L p([0,s]) · An(s) · sn(α− 1

p )

+‖R0 − Y0‖ · Cn(s) · sn(α− 1
p )+α−1

]
ds

≤ ‖k‖L p([0,t])
�(α)

·
(

‖m‖L p([0,t]) · An(t) ·
[ t∫

0

(t − s)(α−1) p
p−1 · sn·(α− 1

p )· p
p−1 ds

]1− 1
p

+ ‖R0 − Y0‖ · Cn(t) ·
[ t∫

0

[
(t − s)(α−1) p

p−1 · s(n·(α− 1
p )+α−1)· p

p−1

]
ds
]1− 1

p
)

.

Changing variables s = tτ , ds = tdτ and recalling parameter ξ from Hypothesis
(H2) we transform the above inequality into an estimate in terms of the Beta function:

‖yn+1(t) − yn(t)‖

≤ ‖k‖L p([0,t])
�(α)

·
(

‖m‖L p([0,t]) · An(t) ·
[
B
(
ξ, nξ + 1

)]1− 1
p · t (n+1)(α− 1

p )

+ ‖R0 − Y0‖ · Cn(t) ·
[
B
(
ξ, (n + 1)ξ

)]1− 1
p · t (n+1)(α− 1

p )+α−1
)

.

(2.15)
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10 J. Sadowski

But (2.7) and the identity B(a, b) = (�(a)�(b))/�(a + b) imply that

An · ‖k‖L p([0,t])
�(α)

·
[
B(ξ, nξ + 1)

]1− 1
p ≡ An+1

and

Cn · ‖k‖L p([0,t])
�(α)

·
[
B
(
ξ, (n + 1)ξ

)]1− 1
p ≡ Cn+1 ,

therefore (2.15) takes the form

‖yn+1(t) − yn(t)‖ ≤ ‖m‖L p([0,t]) · An+1(t) · t (n+1)(α− 1
p )

+ ‖R0 − Y0‖ · Cn+1(t) · t (n+1)(α− 1
p )+α−1

.

(2.16)

Since α p > 1 then the sign of the exponents in (2.16) is the following: (n + 1) ·
(α − 1

p ) ≥ 0 for n = 0, 1, 2, ... and (n + 1) · (α − 1
p ) + α − 1 ≥ 0 provided

n ≥ max{0, (1 + 1
p − 2α)/(α − 1

p )}. Therefore if α ∈ [ 12 + 1
2p , 1) ⊂ ( 1p , 1) then

n ≥ 0 and the range α ∈ ( 1p , 1
2 + 1

2p ) ⊂ ( 1p , 1) implies that n ≥ (1+ 1
p −2α)/(α− 1

p ),
i.e. the exponents in (2.16) are positive for each n large enough.

Let N0 be the smallest positive integer greater than (1 + 1
p − 2α)/(α − 1

p ). Then,
keeping in mind estimate (2.16), we shall prove that the series

∞∑
n=N0

‖yn+1(t) − yn(t)‖ (2.17)

converges uniformly. This will be done by applying the Weierstrass M-test combined
with the ratio test and the Gautschi’s inequality [14] on the asympthotic behaviour of
the Gamma function.

If follows from the definition in (2.7) that the mappings t �→ An+1(t) and t �→
Cn+1(t) are nondecreasing, hence (keeping in mind (2.16)) we obtain

∞∑
n=N0

sup
t

‖yn+1(t) − yn(t)‖

≤ ‖m‖L p([0,T ])
∞∑

n=N0

An+1(T ) · T (n+1)(α− 1
p )

+ ‖R0 − Y0‖
∞∑

n=N0

Cn+1(T ) · T (n+1)(α− 1
p )+α−1

.

(2.18)
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On the Filippov-Ważewski relaxation theorem for... 11

Employing the ratio test to the r.h.s. of (2.18) and recalling (2.7) we get

lim
n→∞

An+2(T )

An+1(T )
· T

(n+2)(α− 1
p )

T (n+1)(α− 1
p )

= T α− 1
p

�(α)
· ‖k‖L p([0,T ]) · lim

n→∞

(
(�(ξ))n+2

�((n + 2)ξ + 1)
· �((n + 1)ξ + 1)

(�(ξ))n+1

)1− 1
p

= T α− 1
p

�(α)
· ‖k‖L p([0,T ]) · (�(ξ))1−1/p · lim

n→∞

⎛
⎝�

(
(n + 1)ξ + 1

)
�
(
(n + 2)ξ + 1

)
⎞
⎠

1− 1
p

≡ I1

(2.19)

and

lim
n→∞

Cn+2(T )

Cn+1(T )
· T α− 1

p

= T α− 1
p · ‖k‖L p([0,T ])

�(α)
· lim
n→∞

(
(�(ξ))n+3

�((n + 3)ξ)
· �((n + 2)ξ)

(�(ξ))n+2

)1− 1
p

= T α− 1
p · ‖k‖L p([0,T ])

�(α)
· (�(ξ))

1− 1
p · lim

n→∞

⎛
⎝�

(
(n + 2)ξ

)
�
(
(n + 3)ξ

)
⎞
⎠

1− 1
p

≡ I2

(2.20)

respectively.
In order to compute limits (2.19) and (2.20) we recall the Gautschi’s inequality [14]

on the asympthotic behaviour of the Gamma function, i.e.

lim
x→∞

�(x + s) · x1−s

�(x + 1)
= 1 (2.21)

for 0 < s < 1.
Suppose that x = (n + 2)ξ and s = 1 − ξ ∈ (0, 1) in (2.21). Then (2.21) implies

that the limit (2.19) takes the form

I1 = c · lim
n→∞

⎛
⎜⎝�

(
(n + 1)ξ + 1

)
·
(
(n + 2)ξ

)1−s

�
(
(n + 2)ξ + 1

) · 1

((n + 2)ξ)1−s

⎞
⎟⎠

1− 1
p

= c · ξ−α+1/p · lim
n→∞

(
1

n + 2

)α−1/p

= 0.

Similarly, the substitution x = (n + 3)ξ − 1 and s = 1 − ξ in (2.21) implies that the
limit (2.20) takes the form:
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12 J. Sadowski

I2 = c · lim
n→∞

⎛
⎜⎝ 1(

(n + 3)ξ − 1
)ξ

⎞
⎟⎠

1−1/p

= c · lim
n→∞

1(
(n + 3)ξ − 1

)α− 1
p

= 0.

The latter implies that the series (2.17) converges uniformly. Since {yn} is a Cauchy
sequence then there is a limit y = lim yn .

Observe that ‖vn+1(t)−vn(t)‖ ≤ k(t) · ‖yn(t)− yn−1(t)‖ a.e. for n ≥ 1, therefore
{vn} is a Cauchy sequence in L p and

∞∑
n=N0+1

‖vn+1 − vn‖L p([0,T ]) ≤

≤ ‖k‖L p([0,T ]) ·
⎛
⎝‖m‖L p([0,T ]) ·

∞∑
n=N0

An(T ) · T n(α− 1
p )+

+ ‖R0 − Y0‖ ·
∞∑

n=N0

Cn(T ) · T n(α− 1
p )+α−1

⎞
⎠ .

Denote v = lim vn in L p and recall that α − 1
p > 0. Then by the Hölder inequality

we get the convergence of the fractional integrals, i.e.

lim
n→∞ sup

t
‖I α(vn)(t) − I α(v)(t)‖ ≤ c · lim

n
‖vn − v‖L p([0,T ]) = 0.

Hence, in particular, the limit of the approximate solutions yn(t) = Y0·tα−1+I α(vn)(t)
is the function y(t) = Y0 · tα−1 + I α(v)(t).

We shall prove that v(s) ∈ F(s, y(s)) a.e.. Since vn → v in L p then there is
a subsequence (still denoted as vn) converging pointwise almost everywhere to v

(Rudin [27], Thm. 3.12). Suppose that s is such that vn(s) → v(s). Then by the
triangle inequality and by the Lipschitz continuity of the set-valued mapping F(t, ·)
we obtain an estimate for the distance between v(s) and F(s, y(s)):

d(v(s), F(s, y(s)))

≤ ‖v(s) − vn(s)‖ + d(vn(s), F(s, yn−1(s))) + dH (F(s, yn−1(s)), F(s, y(s)))

≤ ‖v(s) − vn(s)‖ + 0 + k(s) · ‖yn−1(s) − y(s)‖.

If n → ∞ then d(v(s), F(s, y(s))) = 0 almost everywhere. Since the multifunction
F is supposed to be closed valued then v(s) ∈ F(s, y(s)) a.e..

Combining the above considerations we obtain estimates for ‖y(t) − r(t)‖ and
‖Dα y(t) − Dαr(t)‖ given in (2.8) and (2.9), respectively. Employing (2.16) implies
that for arbitrary positive integer N there is an inequality:
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On the Filippov-Ważewski relaxation theorem for... 13

‖r(t) − y(t)‖

≤ ‖r(t) − y0(t)‖ +
( N∑
n=0

‖yn+1(t) − yn(t)‖
)

+ ‖y(t) − yN+1(t)‖

≤ ‖R0 − Y0‖ · tα−1 +
N∑

n=0

(
‖m‖L p(0,t) · An+1(t) · t (n+1)(α− 1

p )

+ ‖R0 − Y0‖ · Cn+1(t) · t (n+1)(α− 1
p )+α−1

)
+ ‖y(t) − yN+1(t)‖.

(2.22)

But C0(t) ≡ 1 (by the definition (2.7)) and supt ‖yN+1(t) − y(t)‖ → 0 as N → ∞
therefore (2.22) takes the form given in (2.8).

Let {vn} be the sequence convergent to v in L p and suppose that {vNk } is the
subsequence convergent to v pointwise almost everywhere. Assume that t is such that
vNk (t) → v(t). Then for N1 < N2 < ... there is an estimate between Dα y(t) and
Dαr(t):

‖Dα y(t) − Dαr(t)‖ ≤ ‖Dαr(t) − Dα y0(t)‖ + ‖Dα yNk (t) − Dα y(t)‖

+
Nk−1∑
j=0

‖Dα y j+1(t) − Dα y j (t)‖

≡ 0 + ‖vNk (t) − v(t)‖ + ‖v1(t) − v0(t)‖ +
Nk−1∑
j=1

‖v j+1(t) − v j (t)‖

≤ ‖v1(t) − v0(t)‖ + ‖vNk (t) − v(t)‖ + k(t) ·
Nk−1∑
j=1

‖y j (t) − y j−1(t)‖.

(2.23)

The application of (2.10) and (2.13) to (2.23) and letting Nk → ∞ yields estimate
(2.9). This ends the proof of Theorem 2. ��

3 Relaxation property

Following [2], below we would like to apply the Filippov-type approximations and
propose an attempt of an extension of the relaxation property for a certain class of
fractional differential inclusions. Recall that in Theorem 2 the conditions imposed on
(α, p) are: p > 1 and α = α(p) ∈ ( 1p , 1). Below in Theorem 3 it is supposed that
p = +∞, therefore the range of α is α ∈ (0, 1).

Theorem 3 Let F : Rn � R
n be a set-valuedmapping such that F bounded, nonempty

compact-valued and Lipschitzean with constant k. Suppose that α ∈ (0, 1) and let x(·)
be a solution to problem

Dαx(t) ∈ co(F(x(t))) , (I 1−αx)(0) = ξ0. (3.1)
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14 J. Sadowski

Then for every ε > 0 there is y(·), a solution to problem

Dα y(t) ∈ F(y(t)) , (I 1−α y)(0) = ξ0 (3.2)

such that for t ∈ [0, T ], ‖y(t) − x(t)‖ ≤ ε.

Proof Let ε > 0 be fixed and suppose that a function x(t), a solution to (3.1), is given.
Then the idea of the proof is to construct a sufficiently regular function r(t) such that
‖r(·) − x(·)‖L∞ ≤ ε/2 and the distance between Dαr(t) and F(r(t)) shall be small
enough, i.e. d

(
Dαr(t), F(r(t))

) ≤ m(t) a.e. for a function m(·) ∈ L p satisfying

‖m‖L p([0,T ]) ≤ ε/
(
2 ·
{ ∞∑
n=1

An(T ) · T n(α− 1
p )
})

≡ ε · c, (3.3)

where An(·) is given in (2.7). If the desired function r(t) exists then Theorem 2 implies
the existence of a function y(·), a solution to (3.2), such that ‖y(t) − r(t)‖ < ε/2 for
each t > 0 (in other words we shall apply (2.8) with Y0 = R0 and m(t) as above).
Combining these estimates with the triangle inequality we shall get ‖x(t)− y(t)‖ < ε.

In what follows function r(·) is constructed: the formula for r(t) is given in (3.13)
and further considerations are concerned with estimates justifying that function r(t)
is sufficiently close to the given trajectory x(t).

Suppose that M = sup{‖u‖ : u ∈ F(x), x ∈ R
n} is the upper bound of multifunc-

tion F . Let be given the trajectory

x(t) = ξ0

�(α)
· tα−1 + 1

�(α)

∫ t

0

v(s) ds

(t − s)1−α
, (3.4)

a solution to the convexified problem (3.1) and let 0 < ε < 1 be fixed. Suppose that

δ1 = (ε · �(α + 1)/(8M))1/α

and let y(t) = (ξ0 · tα−1)/(�(α)) + I α(u)(t) be a solution to (3.2). Take r(t) = y(t)
for t < δ1. Then for t < δ1 we have

‖r(t) − x(t)‖ = ‖(I αu)(t) − (I αv)(t)‖ ≤ ε/4.

Observe that function [δ1, T ] � t → x(t) is Hölder continuous with exponent α

and constant

c1 = 3M

�(α + 1)
+ 2T ‖ξ0‖

�(α) · δ21

= 3M

�(α + 1)
+ 2T ‖ξ0‖

�(α)
·
(

8M

�(α + 1)

)2/α

· ε−2/α

≤
(

3M

�(α + 1)
+ 2T ‖ξ0‖

�(α)
·
(

8M

�(α + 1)

)2/α
)

· ε−2/α
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On the Filippov-Ważewski relaxation theorem for... 15

≡ c0 · ε−2/α, (3.5)

i.e. ‖x(t) − x(τ )‖ ≤ c1 · |t − τ |α for every t, τ ∈ [δ1, T ]. The Hölder continuity
follows straightforward from (3.4) and from the boundedness of set-valued mapping
F . Hence, in particular, multifunction [δ1, T ] � t �→ coF(x(t)) is Hölder continuous
with respect to the Hausdorff metric with exponent α and constant c2 = kc1, where k
is the Lipschitz constant of multifunction x �→ F(x).

Take a positive integer number N > ε−3/α2
and consider the partition of the interval

[δ1, T ] into subintervals of a sufficiently small length, i.e. let [δ1, T ] =⋃N−1
i=0 [ti , ti+1]

with |ti+1 − ti | < T /N < T ε3/α
2
. Then, keeping in mind the Hölder continuity

with respect to the Hausdorff metric of the multifunction t �→ coF(x(t)), for a.e.
t ∈ [ti , ti+1] we derive an estimate

dH (coF(x(t)), coF(x(ti ))) ≤ k · ‖x(t) − x(ti )‖ ≤ kc1 · |t − ti |α

≤ kc0 · ε−2/α ·
(
T ε3/α

2
)α ≡ c3 · ε1/α ,

(3.6)

in other words,

Dαx(t) ∈ coF(x(t)) ⊂ coF(x(ti )) + B
(
0, c3 · ε1/α

)
.

Consider the partition of the set {coF(x(t)) : t ∈ [ti , ti+1]} into a finite number of
borel subsets Sij having the diameter less than ε. Set the preimage Ei

j = (Dαx)−1(Sij ),

let 1Ei
j
(·) be the characteristic function of Ei

j and take a point ξ ij ∈ Sij . Then the

function

ξ(t) =

⎧⎪⎨
⎪⎩

Dαx(t) , t < δ1,∑
j

ξ ij · 1Ei
j
(t) , t ∈ [ti , ti+1] ⊂ [δ1, T ] , i = 0, 1, ..., N − 1. (3.7)

has the property that

‖ξ(t) − v(t)‖ ≡ ‖ξ(t) − Dαx(t)‖ ≤ ε a.e. on [0, T ]. (3.8)

The proof of (3.8) is that ξ(t) = Dαx(t) for almost every t < δ1. Moreover, for almost
every t > δ1 we have: if t ∈ Ei

j ∈ [ti , ti+1] for some fixed (i, j) then Dαx(t) ∈ Sij
and ‖ξ(t) − Dαx(t)‖ = ‖ξ ij − Dαx(t)‖ ≤ diam(S j ) ≤ ε.

Another feature of function ξ(·) introduced in (3.7) is that point ξ ij remains suf-

ficiently close to coF(x(ti )): since ξ ij ∈ Sij ⊂ ⋃
t∈[ti ,ti+1] coF(x(t)) then there is

τ ∈ [ti , ti+1] such that ξ ij ∈ coF(x(τ )) and
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16 J. Sadowski

d
(
ξ ij , coF(x(ti ))

)
≤ dH

(
coF(x(τ )), coF(x(ti ))

) ≤ k · ‖x(τ ) − x(ti )‖
≤ kc0ε

−2/α · |τ − ti |α

≤ kc0ε
−2/α · |ti+1 − ti |α ≤ kc0ε

−2/α ·
(
T ε3/α

2
)α

= kc0T
α · ε1/α ≡ c3 · ε1/α.

(3.9)

Since coF(x(ti )) is a closed subset of Rn then there is a point η ∈ coF(x(ti )) such
that ‖ξ ij − η‖ = d(ξ ij , coF(x(ti ))). Then the definition of the convex hull and (3.9)

imply that there are finitely many points zijk ∈ F(x(ti )) and positive constants αi
jk

satisfying

∑
k

αi
jk = 1 and ‖ξ ij − η‖ =

∥∥∥ξ ij −
∑
k

αi
jk z

i
jk

∥∥∥ ≤ c3 · ε1/α . (3.10)

Moreover, there is a partition of the set Ei
j into measurable subsets {Ei

j,k}k such that∫
Ei
j,k

1ds = αi
j,k ·

∫
Ei
j

1ds, (3.11)

where {αi
j,k}N1

k=1 is the convex combination introduced in (3.10). In order to derive

the existence of partition {Ei
j,k}k we introduce a mapping ψ : [ti , ti+1] �→ R defined

by ψ(t) = ∫ t
ti
1Ei

j
(s) ds, where 1A(·) is the characteristic function of a set A ⊂ R.

Function ψ ≥ 0 is nondecreasing and continuous, therefore the sequence {τk}N1
k=1

defined as

τk = sup
{
t ∈ [ti , ti+1]

∣∣∣ ψ(t) ≤ (αi
j1 + .. + αi

jk) · (the measure of Ei
j )
}

leads to the desired partition {Ei
jk}k of Ei

j of the form: Ei
j1 = [ti , τ1] ∩ Ei

j and

Ei
jk = Ei

j ∩ (τk−1, τk] for 2 ≤ k ≤ N1.
Consider function

�(t) =

⎧⎪⎨
⎪⎩

Dαx(t) , a.e. in t ∈ [0, δ1)∑
k

zijk · 1Ei
jk
(t) , t ∈ [ti , ti+1] (3.12)

and let

r(t) = ξ0 · tα−1

�(α)
+ 1

�(α)

∫ t

0

�(s)

(t − s)1−α
ds. (3.13)

Function r(·) depends on ε and we shall denote r(t) = rε(t) depending on the con-
text. We will prove that the distance between the fractional integrals ‖(I 1−αx)(t) −
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On the Filippov-Ważewski relaxation theorem for... 17

(I 1−αrε)(t)‖ and the distance between the trajectories ‖x(t) − rε(t)‖ shall be small
enough.

If 0 < t < δ1 then it follows from (3.4) and (3.12) that

‖(I 1−αx)(t) − (I 1−αrε)(t)‖ =
∥∥∥∥
∫ t

0
(v(s) − �(s)) ds

∥∥∥∥ = 0 ,

while for t > δ1 there is an integer l such that t ∈ [tl , tl+1]. Therefore, recalling
function ξ(·) from (3.7) and (3.13), we estimate:

∥∥∥(I 1−αx)(t) − (I 1−αrε)(t)
∥∥∥ ≤

≤
∥∥∥(I 1−αx)(t) − (I 1−αx)(tl+1)

∥∥∥+
∥∥∥(I 1−αr)(t) − (I 1−αr)(tl+1)

∥∥∥+
+ ‖(I 1−αrε)(tl+1) − (I 1ξ)(tl+1)‖ + ‖(I 1ξ)(tl+1) − (I 1−αx)(tl+1)‖

≡
∥∥∥∥
∫ tl+1

t
v(s) ds

∥∥∥∥+
∥∥∥∥
∫ tl+1

t
�(s) ds

∥∥∥∥+
∥∥∥∥
∫ tl+1

0
(�(s) − ξ(s)) ds

∥∥∥∥+

+
∥∥∥∥
∫ tl+1

0
(ξ(s) − v(s)) ds

∥∥∥∥ .

(3.14)

But ‖v(s)‖ ≤ M and ‖�(s)‖ ≤ M a.e., whereM is the uniform bound ofmultifunction
F . Moreover, function ξ(·) is constructed in such a way that the estimate (3.8) holds,
therefore (3.14) takes the form

∥∥∥(I 1−αx)(t) − (I 1−αrε)(t)
∥∥∥ ≤ 2T Mε3/α

2 + T ε +
∥∥∥∥
∫ tl+1

0
(�(s) − ξ(s)) ds

∥∥∥∥ .

It remains to estimate the last term above: recalling (3.7), (3.11), (3.12) and applying
the partition Ei

jk ⊂ Ei
j ⊂ [ti , ti+1] we transform

∥∥∥∥
∫ tl+1

0
(ξ(s) − �(s)) ds

∥∥∥∥ =
∥∥∥∥
∫ tl+1

δ1

(ξ(s) − �(s)) ds

∥∥∥∥
=
∥∥∥∥∥

l∑
i=0

∫ ti+1

ti
(ξ(s) − �(s)) ds

∥∥∥∥∥ =
∥∥∥∥∥∥
∑
i, j

∫
Ei
j

(ξ(s) − �(s)) ds

∥∥∥∥∥∥
=
∥∥∥∥∑

i, j

∫
Ei
j

(
ξ ij −

∑
k

zijk · 1Ei
jk
(s)

)
ds

∥∥∥∥
=
∥∥∥∥∑

i, j

∫
Ei
j

(
ξ ij −

∑
k

αi
jk z

i
jk

)
ds

∥∥∥∥.

(3.15)
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18 J. Sadowski

But (3.10) combined with (3.15) implies that

∥∥∥∥
∫ tl+1

0
(ξ(s) − �(s))ds

∥∥∥∥ ≤ c3 · ε1/α ·
∑
i, j

∫
Ei
j

1 ds ≤ c3 · T · ε1/α ,

and, in particular, we have

sup
0<t<T

∥∥∥(I 1−αx)(t) − (I 1−αrε)(t)
∥∥∥ ≤ 2T Mε3/α

2 + T ε + c3 · T · ε1/α

≤ c6(k, M, ‖ξ0‖, α, T ) · ε

(3.16)

because 1 < 1/α < 3/α2 for α ∈ (0, 1) and ε ∈ (0, 1). Combining the semigroup
property and the linearity of the fractional integral with (3.16) implies that

sup
t

∥∥∥∥
∫ t

0
(x(s) − rε(s)) ds

∥∥∥∥ = sup
t

∥∥∥I α(I 1−αx)(t) − I α(I 1−αrε)(t)
∥∥∥

= sup
t

‖I α(I 1−αx − I 1−αrε)(t)‖

≤ 1

�(α)
sup
t

t∫
0

‖(I 1−αx)(s) − (I 1−αrε)(s)‖
(t − s)1−α

ds ≤ c6 · ε

�(α + 1)
· T α ,

(3.17)

therefore there is an estimate

sup
0≤τ≤t≤T

∥∥∥∥
∫ t

τ

(x(s) − rε(s)) ds

∥∥∥∥ ≤ 2c6T α

�(α + 1)
· ε ≡ c7 · ε. (3.18)

Observe that the family {x(t)−rε(t)}ε>0 is uniformly bounded and uniformly equicon-
tinuous, i.e. ‖x(t) − rε(t)‖ ≤ (2MT α)/(�(α + 1)) and

∥∥∥(x(t) − rε(t)
)− (x(τ ) − rε(τ )

)∥∥∥ ≤ 6M

�(α + 1)
· |t − τ |α ≡ c8 · |t − τ |α (3.19)

for every 0 ≤ t, τ ≤ T (the proof of (3.19) is to combine (3.4) and (3.13) with the
boundedness of multifunction F).

The family {gε}ε>0, where gε(t) = x(t) − rε(t), is uniformly bounded and
uniformly equicontinuous. Therefore by the Arzelá-Ascoli Theorem there is a subse-
quence {gk}k≥1 convergent uniformly to a function g and g inherits the regularity of
gε, i.e. g is Hölder continuous with constant c8 and exponent α. Let us also introduce
the notation for the components of the vector-valued function gk = (g1k , ..., g

n
k ) ⇒

g = (g1, ..., gn).
If we suppose that g(s) 	= 0 for some s ∈ [0, T ] then there is a nonzero component

gi (s) of g(s). Then the scalar-valued function gi (·) is Hölder continuous with constant
c8 and exponent α and the Hölder continuity implies that there is a line segment
[a, b] � s such that |gi (t)| > 1

2 |gi (s)| > 0 for t ∈ [a, b]. Moreover, since gi (·) does
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On the Filippov-Ważewski relaxation theorem for... 19

not change the sign on [a, b] then ∫ ba |gi (t)|dt = | ∫ ba gi (t) dt |. Hence, in particular,
the vector-valued functions gk ⇒ g satisfy

0 <
b − a

2
· |gi (s)| =

∫ b

a

|gi (s)|
2

dt <

∫ b

a
|gi (t)|dt =

∣∣∣ ∫ b

a
gi (t) dt

∣∣∣
≤
∣∣∣ ∫ b

a
gik(t) dt

∣∣∣+ ∫ b

a

∣∣∣gi (t) − gik(t)
∣∣∣ dt ,

(3.20)

but the r.h.s. of (3.20) tends to 0 as k → ∞ due to (3.18) and by the uniform
convergence gk ⇒ g. Then the contradiction implies that there is a subsequence
{x(t) − rk(t)}k≥1 convergent uniformly to 0. Choosing a subsubsequence, if neces-
sary, we obtain that for every ε > 0 there is a function rε(·) satisfying

‖x(·) − rε(·)‖L∞ ≤ ε/2 (3.21)

and the fractional derivative Dαrε(t) shall be sufficiently close to F(rε(t)) almost
everywhere. In order to estimate the distance between Dαrε(t) and F(rε(t)) we recall
that (Dαrε)(t) = (Dαx)(t) ∈ coF(x(t)) a.e. for t < δ1, therefore

d(Dαrε(t), F(rε(t))) ≤ k · ‖x(t) − rε(t)‖ ≤ k · ε/2 (3.22)

a.e. on (0, δ1) due to (3.21) and by the Lipschitz continuity of multifunction F . On
the other hand, for almost every t > δ1 the derivative Dαrε(t) exists and there are
positive integers (i, j, k) such that t ∈ Ei

j,k ⊂ [ti , ti+1], where {Ei
j,k}k is the partition

introduced in (3.11). If t ∈ Ei
j,k then Dαrε(t) = zij,k ∈ F(x(ti )) due to (3.12) and

(3.13). Hence by the Hölder continuity of x(·) on [δ1, T ] there is an estimate for a.e.
t > δ1:

d(Dαrε(t), F(rε(t))) ≤ dH (F(x(ti )), F(rε(t))) ≤ k · ‖x(ti ) − rε(t)‖
≤ k · (‖x(ti ) − x(t)‖ + ‖x(t) − rε(t)‖)
≤ k ·

(
c0 · ε−2/α · |t − ti |α + ε/2

)
≤ k · (c0 · ε−2/α · (T ε3/α

2
)α + ε/2) ≤ k · (c0T

αε1/α + 0.5ε)

≤ (kc0T
α + 0.5k) · ε ≡ c9 · ε,

(3.23)

and the latter follows because of the fact that ε1/α < ε for ε ∈ (0, 1).
Combining (3.22) with (3.23) we obtain that for a.e. t ∈ [0, T ] there is an estimate

d(Dαrε(t), F(rε(t))) ≤ m(t) = max{k/2, c9} · ε ≡ c10 · ε. (3.24)
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Employing Theorem 2 with R0 = Y0 = ξ0/�(α), p = ∞ and function m(t) given in
(3.24) implies the existence of y(t), a solution to (3.2), and (2.8) takes the form:

‖y(t) − rε(t)‖ ≤ c10 · t1/p · ε ·
( ∞∑
n=1

An(t) · tn·(α− 1
p )

)
≡ ε · c11(t) ≤ ε · c11(T ).

As a conclusion, letting ε1 := ε/2 · min{1, (c11(T ))−1} ≤ ε/2 we obtain that for a
given function x(t), a solution to (3.1), there are functions rε1(t) and y(t) such that
y(t) a solution to (3.2) and these functions satisfy the estimate

‖x(t) − y(t)‖ ≤ ‖x(t) − rε1(t)‖ + ‖rε1(t) − y(t)‖
≤ ε1/2 + c11(T ) · ε1

≤ (1/2 + c11(T )) · min
{
1,

1

c11(T )

} · ε

2
≤ ε

for every t ∈ [0, T ]. This ends the proof of Theorem 3. ��
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