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Abstract
Wediscuss an analytical method for qualitative investigations of linear fractional delay
differential equations. This method originates from the Lambert function technique
that is traditionally used in stability analysis of ordinary delay differential equations.
Contrary to the existing results based on such a technique, we show that the method
can result into fully explicit stability criteria for a linear fractional delay differential
equation, supported by a precise description of its asymptotics. As a by-product of
our investigations, we also state alternate proofs of some classical assertions that are
given in a more lucid form compared to the existing proofs.

Keywords Fractional delay differential equation (primary) · Lambert function ·
Stability · Asymptotic behavior

Mathematics Subject Classification (Primary) 34K37 · 33E30 · 33E12 · 34K20 ·
34K25

1 Introduction

The paper discusses an analytical method for qualitative investigations of fractional
delay differential equations (FDDEs). These equations are currently very intensively
studied due to their importance in various application areas, with a special emphasis to
control theory. Indeed, presence of both the time lag as well as non-integer derivative
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order as control or tunning parameters in studied models provides a very efficient tool
for various control processes such as stabilization or destabilization of the particular
solutions of these models (for a pioneering work in this direction we refer to [17]).

Systematic investigations of FDDEs were initiated in the paper [9]. Here, stability
properties of

Dαx(t) = λx(t − τ), (1)

where α, τ ∈ R
+, λ ∈ R and Dα is a fractional differential operator, were analyzed

using the fact that (1) is asymptotically stable (i.e., any its solution is eventually tending
to zero) if and only if all the roots of the characteristic equation

sα − λ exp(−sτ) = 0 (2)

have negative real parts. To explore such a location of characteristic roots with respect
to the imaginary axis, the Lambert function technique was utilized. The essence of
the method consists in a representation formula for characteristic roots in terms of
appropriate branches of this multi-valued function (for some precisions concerning
the correct use of the Lambert function technique in stability analysis of (1), we refer
also to [12]). A certain general disadvantage of this approach consists in its (seeming)
disability to provide stability criteria in an explicit form depending on entry parameters
only (i.e., on α, λ and τ in the case of (1)).

As the other papers on stability and asymptotic properties of (1) followed, the
Lambert function method was replaced by some alternate classical tools of stability
investigations (such as D–partition method or τ -decomposition method) modified to
the fractional case. Using these approaches, effective and non-improvable stability
conditions for (1), supported by some asymptotic bounds, were derived in [16] (the
case λ ∈ R, 0 < α < 1), [6] (the case λ ∈ C, 0 < α < 1), and partially also in [7]
(the case λ ∈ C, α > 0). Some of the mentioned results can be extended also to the
case of a two–term FDDE

Dαx(t) = μx(t) + λx(t − τ). (3)

In this respect, we refer to [2, 5, 15] (the case μ, λ ∈ R, 0 < α < 1) and [8] (the
case μ, λ ∈ R, 1 < α < 2). Following the integer-order case (see, e.g., [1]), (1) and
(3) may serve as test equations for numerical analysis of FDDEs. From this point of
view, it is very important to describe their basic qualitative properties in the strongest
possible form. Then, when analyzing appropriate numerical schemes applied to these
test equations, the ability to keep the key qualitative properties of the underlying exact
equations is of basic importance. For some other recent advances in qualitative theory
of FDDEs, we refer, e.g., to [3, 10, 11, 18–20, 23].

Following the above outlines, the aim of this paper is twofold. First, we deepen the
existing knowledge on some qualitative properties of (1) with the Caputo fractional
derivative. Second, perhaps a more important aspect of the paper consists in the way
how we aim to do it. We come back to the Lambert function method used in [9]
and show that this approach can offer more than formulae depending on the use of
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supporting software packages. In fact, this technique can result into actually effective
stability and asymptotic criteria.

The paper is organized as follows. Section 2 recalls some existingfindings on (1) and
essentials of the Lambert function theory. In Sect. 3, we explore the Lambert function
method in details. In particular, we give an alternate proof of the classical assertion
saying that the characteristic root generated by the principal branch of the Lambert
function has the largest real part, and formulate a criterion that enables to localize
values of the principal branch in the complex plane. Section 4 presents applications of
these results to (1). Here, we extend the existing stability criteria for (1) to arbitrary
(positive) real values of α, and formulate sharp asymptotic estimates for the solutions
of (1). Some final remarks in Sect. 5 conclude the paper.

2 Basic mathematical background

In this section, we summarize some known facts relevant to our next investigations.
First, we recall a close relationship between stability and asymptotic properties of (1),
and distribution of the characteristic roots of (2). Then, we recall some basics of the
Lambert function and its use in stability analysis of FDDEs.

It was shown in [7] that any solution x of (1) with the Caputo fractional derivative
(and a generally complex λ) can be written using the Mittag-Leffler type function

Gλ,τ
α,β(t) =

�t/τ�−1∑

j=0

λ j (t − jτ)α j+β−1

�(α j + β)
, α, β > 0, (4)

where �·� denotes the upper integer part. More precisely, if φ is a continuous initial
(complex-valued) function on [−τ, 0], φ0 = φ(0) and φ j , j = 1, . . . , �α� − 1, are
(complex) constants (considered when α > 1), then

x(t) =
�α�−1∑

j=0

φ j G
λ,τ
α, j+1(t) + λ

∫ 0

−τ

Gλ,τ
α,α(t − τ − ξ)φ(ξ) dξ (5)

is the solution of (1) satisfying x(t) = φ(t) for all t ∈ [−τ, 0], and limt→0+ x ( j)(t) =
φ j , j = 1, . . . , �α� − 1.

Based on some asymptotic results on (4), the solution (5) can be rewritten by the
use of the characteristic roots having non-negative real parts. We recall that (2) admits
countably many roots, and only a finite number of them is lying right to any line
�(s) = p, p ∈ R (throughout the paper, the symbol �(z) and �(z) stands for the real
and imaginary part of z ∈ C, respectively). If we denote by S the set of all roots of (2)
having non-negative real parts (note that S must be a finite set), then, for a non-integer
α, (5) can be rewritten as

x(t) =
∑

s∈S
cs exp(st) + O(t j−α) as t → ∞ (6)
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where cs are complex coefficients depending on α, τ , λ, φ, and j ∈ {−1, 0, . . . , �α�−
1} (the particular value of j depends on limit behavior of φ at t = 0). Notice that
j − α < 0, i.e., the function t j−α always tends to zero.
By (6), the roots of (2) play an essential role in qualitative behavior of the solu-

tions of (1). Following the classical integer-order pattern, the authors in [9] used the
following chain of steps

sα exp(sτ) = λ → s exp
( τ

α
s
)

= λ
1
α → τ

α
s exp

( τ

α
s
)

= τ

α
λ

1
α (7)

to express the roots of (2) via the Lambert function introduced as the solution of

W (z) exp(W (z)) = z, z ∈ C. (8)

Before we recall the root formula for (2) based on this special function, some of its
basic properties might be collected. The Lambert function is a multi-valued function
(except at z = 0) with infinitely many (single-valued) branches Wk , k ∈ Z. Neither
of them can be expressed in terms of elementary functions. In particular, W0 is called
a principal branch. For any z ∈ C,�(W0(z)) is between−π and π . The other branches
are numbered so that �(Wk(z)) is between (2k−2)π and (2k+1)π while �(W−k(z))
is between −(2k + 1)π and −(2k − 2)π for any z ∈ C and k = 1, 2, . . .. More
precisely, the ranges of W±k and W±(k+1), k = 0, 1, . . . , are separated by the curves

{w = x + i y ∈ C : x = −y cot(y), 2kπ < |y| < (2k + 1)π}

and the ranges of W1 and W−1 are separated by the half-line

{w = x + i y ∈ C : −∞ < x ≤ −1, y = 0}.

These separating curves correspond to the branch cuts in the z-plane defined as

{z = ξ + i η ∈ C : −∞ < ξ ≤ − exp(−1), η = 0}

in the case of W0, and

{z = ξ + i η ∈ C : −∞ < ξ ≤ 0, η = 0}

in the case of Wk , k 
= 0. Conventionally, the branch cut (having the argument π

in the z-plane) is mapped by Wk on its upper boundary in the w-plane. Only the
branches W0 and W−1 take on real values for a real z ∈ [− exp(−1),∞) and a real
z ∈ [− exp(−1), 0), respectively. Further details on the Lambert function (including
some historical remarks) can be found in [4], for other comments, see also [13] and
[22].

Now, following (7), all the roots of (2) can be expressed in the form

sk = α

τ
Wk

( τ

α
λ

1
α

)
, k ∈ Z. (9)

123



The Lambert function method in qualitative... 1549

By (6), a crucial role in analysis of (1) is played by the rightmost characteristic root
(i.e., the root of (2) with the largest real part). The following classical assertion says
that this root is just s0.

Lemma 1 Let z ∈ C. Then W0(z) has the largest real part �(W0(z)) among all the
other real parts �(Wk(z)), k ∈ Z.

The original proof of Lemma 1 is pretty long (see [22]). As a by-product of our
next procedures, we are going to present an alternate (and more simple) way how to
prove this assertion.

Remark 1 As pointed out in [12], the expression (9) is not quite correct for some
complex values of λ. More precisely, (7) contains taking the 1/α-power which means
that the roots given by (9) are identical to those of (2) only in the case

|Arg(λ)| ≤ απ

(we recall that −π < Arg(·) ≤ π ). This inequality is satisfied trivially when α ≥ 1
but makes a restriction when 0 < α < 1. In other words, if |Arg(λ)| > απ , then the
representation (9) can produce some superfluous roots that are actually not the true
roots of (2). As an example, we can consider, e.g., the caseλ = −1,α = 1/2 and τ = 1
when (2) has the rightmost root s0 ≈ −0.4172 − i 2.2651 (i.e., (1) is asymptotically
stable) while (9) produces s0 ≈ 0.4263 > 0. On this account, we discuss qualitative
properties of (1) for α > 1. Comments to the case 0 < α < 1 are provided in the final
section.

3 Some advances on the LambertW function

This section contains several key results on the Lambert function which proved to be
useful in qualitative investigations of (1). To obtain an actually effective and strong
asymptotic description of the solutions of (1), we need to effectively localize the
position of the rightmost characteristic root in the complex plane. More precisely,
by (6) and (9), we need to derive effective expressions of the real and imaginary
parts of W0(z) in terms of z. Thus, keeping in mind intended stability and asymptotic
analysis of (1), we can pose the following problems: For given p ∈ R and z ∈ C, is
it possible to characterize the properties �(W0(z)) < p and �(W0(z)) = p directly
in terms of z and p, i.e., without an evaluation of the principal branch of the Lambert
function? Further, for given q ∈ R and z ∈ C, is it possible to similarly elaborate on
the properties |�(W0(z))| > q and |�(W0(z))| = q? The following result yields an
affirmative answer to these questions.

Theorem 1 Let p, q ∈ R, p > −1, 0 < q < π , and z ∈ C, z 
= 0. Then

(i) �(W0(z)) < p if and only if either |z| < p exp(p) or

|z| ≥ |p| exp(p) and arccos

(
p exp(p)

|z|
)

+
√|z|2 − p2 exp(2p)

exp(p)
< |Arg(z)| ;

(10)
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(ii) �(W0(z)) = p if and only if

|z| ≥ |p| exp(p) and arccos

(
p exp(p)

|z|
)

+
√|z|2 − p2 exp(2p)

exp(p)
= |Arg(z)| ;

(11)

(iii) |�(W0(z))| > q if and only if

|Arg(z)| > q and
q

sin(|Arg(z)| − q)
exp

(
q cot(|Arg(z)| − q)

)
< |z|; (12)

(iv) |�(W0(z))| = q if and only if

|Arg(z)| > q and
q

sin(|Arg(z)| − q)
exp

(
q cot(|Arg(z)| − q)

) = |z|. (13)

Proof (i) We write z = |z| exp(i Arg(z)) and put xk = �(Wk(z)), yk = �(Wk(z))
where Wk , k ∈ Z are particular branches of the Lambert function. Substitution into
(8) yields

exp(xk)(xk cos(yk) − yk sin(yk)) = |z| cos(Arg(z)), (14)

exp(xk)(xk sin(yk) + yk cos(yk)) = |z| sin(Arg(z)). (15)

If we solve (14)–(15) with respect to unknowns xk exp(xk) and yk exp(xk), then

xk exp(xk) = |z| cos(Arg(z) − yk), (16)

yk exp(xk) = |z| sin(Arg(z) − yk). (17)

To show that x0 = �(W0)(z)) < p whenever |z| < p exp(p), we consider (16)
implying

x0 exp(x0) ≤ |z| < p exp(p).

Then the monotony property of the function g(p) = p exp(p) on (−1,∞) actually
implies x0 < p.

Now we assume that |z| ≥ |p| exp(p). Squaring and adding (16) and (17) we get

|z|2 = ((xk)
2 + (yk)

2) exp(2xk),

i.e.,

|yk | =
√|z|2 − (xk)2 exp(2xk)

exp(xk)
. (18)
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For the principal branch, it holds x0 ≥ −y0 cot(y0), |y0| < π , i.e., x0 sin(y0) +
y0 cos(y0) ≥ 0 whenever y0 ≥ 0. Multiplying this by exp(x0) and using (15), one gets

|z| sin(Arg(z)) = exp(x0)(x0 sin(y0) + y0 cos(y0)) ≥ 0

which implies Arg(z) ≥ 0 for y0 ≥ 0. If y0 < 0, the same argumentation leads to
Arg(z) ≤ 0, hence Arg(z)y0 ≥ 0, i.e., |Arg(z) − y0| ≤ π . Then (16) with k = 0 is
equivalent to

arccos(x0 exp(x0)/|z|) = |Arg(z) − y0| . (19)

Moreover, sign analysis of (17) with respect to Arg(z)y0 ≥ 0 yields |Arg(z)| ≥ |y0|,
i.e.,

|Arg(z) − y0| = |Arg(z)| − |y0|. (20)

Then, using (18), (19) and (20), we are able to set up an implicit dependence between
x0 = �(W0(z)) and z in the form f (x0, z) = 0 where f is defined via

f (p, z) = arccos

(
p exp(p)

|z|
)

− |Arg(z)| +
√|z|2 − p2 exp(2p)

exp(p)

for all p > −1 and z ∈ C such that |p| exp(p) ≤ |z|. Let z be fixed. Then

d f

dp
(p, z) = − (2p + 1) exp(3p) + |z|2 exp(p)

exp(2p)
√|z|2 − p2 exp(2p)

≤ − (p + 1)2 exp(p)√|z|2 − p2 exp(2p)
≤ 0,

hence, f is decreasing in p if |p| exp(p) ≤ |z|. Therefore,

f (p, z) < f (x0, z) = 0

whenever

p > x0 = �(W0(z)) and |p| exp(p) ≤ |z|.

(ii) The property follows directly from the proof of (i) using the fact that f (p, z) = 0
if and only if p = x0 due to monotony of f with respect to p.

(iii) Since W0 is symmetric in the sense W0(z) = W0(z) for all z ∈ C except those
lying on the branch cut along the negative real axis between −∞ and − exp(−1), it
suffices to assume the case y0 = �(W0(z)) > q > 0. We have already observed that
Arg(z) ≥ y0. In addition, a stronger property holds, namely Arg(z) > y0. Indeed,
possible equality Arg(z) = y0 implies y0 = 0 (due to (17)) which contradicts the
assumption y0 > q > 0. Hence, it must be 0 < Arg(z) − y0 < π as well as
0 < Arg(z) − q < π . We divide (16) by (17) and put k = 0 to get

x0 = y0 cot(Arg(z) − y0). (21)
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Taking the logarithm of (17) with k = 0, we also have

x0 = ln
(|z| sin(Arg(z) − y0)

) − ln(y0). (22)

Combining (21) and (22), we arrive at

ln
(|z| sin(Arg(z) − y0)

) − ln(y0) − y0 cot(Arg(z) − y0) = 0

representing again an implicit dependence, now between�(W0(z)) and z. If we denote

h(q, z) = ln
(|z| sin(Arg(z) − q)

) − ln(q) − q cot(Arg(z) − q),

then we have

dh

dq
(q, z) = −q sin(2(Arg(z) − q)) − sin2(Arg(z) − q) − q2

q sin2(Arg(z) − q)
.

While the denominator is positive, the numerator

N (q, z) = −q sin(2(Arg(z) − q)) − sin2(Arg(z) − q) − q2

is negative for each 0 ≤ q ≤ Arg(z). Indeed, we have

dN

dq
(q, z) = 2q(cos2(Arg(z) − q) − 1) ≤ 0

which implies that N (·, z) is non-increasing and, together with N (0, z) =
− sin2(Arg(z)) < 0, negative on [0,Arg(z)]. Consequently, h(·, z) is decreasing and
therefore h(q, z) > h(y0, z) = 0 whenever 0 < q < y0 < Arg(z). Taking into
account the above mentioned symmetry, we arrive (after some elementary algebra) at
(12).

(iv) The required property is again a consequence of monotony of the function h
from the previous part. �
Remark 2 (a) The properties (ii) and (iv) of Theorem 1 provide a new tool for evalu-
ations of the principal branch of the Lambert function. Let z 
= 0 be a fixed complex
number. Then the left-hand side of (11) is decreasing for all p ∈ [a,W0(|z|)] (a = −1
if |z| ≥ exp(−1) and a = W0(−|z|) if |z| < exp(−1)) fromπ to the zero value. Hence,
(11) has a unique root p∗ lying in this interval, and this root equals just �(W0(z)).
Similarly, the left-hand side of (13) is increasing for all q ∈ (0,Arg(z)) from the zero
value to infinity, i.e., (13) admits a unique positive root q∗ which is just �(W0(z)).

To illustrate this evaluation technique, we compute W0(z) for z = 1
2 + i

√
3
2 . Then

|z| = 1, Arg(z) = π/3 and the standard Newton method returns�(z) = p∗ ≈ 0.4843
in 5 iterations with the initial value p0 = 0.5 and the stopping criterion taken as
|pk+1 − pk | ≤ 10−16. The same method gives �(z) = q∗ ≈ 0.3808 in 7 iterations
with the initial value q0 = 0.5 and the same precision as in the case of the real part.
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In fact, the value p∗ + i q∗ matches the value produced by the MATLAB command
lambertw(1/2+sqrt(3)/2*1i) to all the 15 digits behind the decimal point.
Standardly, theNewtonorHalleymethod is applied directly to the equationw exp(w)−
z = 0 using the complex arithmetic. MATLAB employs the latter method with some
advanced guess of the starting point. For computing the values of the Lambert function
with arbitrary precision, we refer to the recent paper [14].

(b) Using a different approach, the property (i) of Theorem 1 was also discussed in
[21].

In the sequel, we clarify ordering of the real as well as imaginary parts of the
particular branches of the Lambert function. This ordering may be useful in a deeper
asymptotic analysis of (1), and, moreover, results into an alternate proof of Lemma 1.

Following the proof of Theorem 1, we introduce the functions

Gz(x, y) = x sin(y) + y cos(y) − |z| sin(Arg(z)) exp(−x) and

fz(x) =
√

|z|2 exp(−2x) − x2.

In view of (15) and (18), the couples (xk, yk), where xk = �(Wk(z)), yk = �(Wk(z)),
have to meet the relations Gz(x, y) = 0 and y = ± fz(x), respectively.

The following assertion specifies ordering of imaginary parts of the branches of the
Lambert function.

Lemma 2 Let z ∈ C \ {0}. Then �(Wk(z)) ≤ �(Wk+1(z)) for all k ∈ Z. In fact, all
the inequalities are strict with the only exception: If z ∈ [− exp(−1), 0), then we have
�(W−1(z)) = �(W0(z)) = 0.

Proof For the sake of formal simplicity, we identify complex numbers w = x + i y
with couples (x, y) ∈ R

2. First, let z ∈ C \ {0} be such that 0 ≤ Arg(z) ≤ π and
define sets Szj , j ∈ Z, as

Szj = {(x, y) ∈ R
2 : Gz(x, y) = 0, (2 j − 1)π < y < (2 j + 1)π} for j = 1, 2, . . . ;

Szj = {(x, y) ∈ R
2 : Gz(x, y) = 0, 0 ≤ y < π} for j = 0;

Szj = {(x, y) ∈ R
2 : Gz(x, y) = 0, −2π < y ≤ 0} for j = −1;

Szj = {(x, y) ∈ R
2 : Gz(x, y) = 0, 2 jπ < y < (2 j + 2)π} for j = −2, −3, . . .

(note that the equationGz(x, y) = 0 has no solution for y = (2 j−1)π , j = 1, 2, . . . ,
and for y = 2 jπ , j = −1,−2, . . . ). We wish to show that Szj is a part of the range of
Wk just when j = k.

Let k ≥ 1 be arbitrary. Then, by the definition of Wk (see also Sect. 2),

(2k − 2)π < yk < (2k + 1)π. (23)

Let j be such that (xk, yk) ∈ Szj . We distinguish the following cases with respect to j .
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If j > k, then yk > (2k + 1)π which contradicts (23). Let j = k. The ranges of
Wk and Wk+1, k = 0, 1, . . . , are separated by the curve

γk = {(u, v) ∈ R
2 : u = −v cot(v), 2kπ < v < (2k + 1)π}

(see Sect. 2). The equation Gz(x, y) = 0, (2k − 1)π < y < (2k + 1)π , is equivalent
to

x = −y cot(y) + |z| sin(Arg(z)) exp(−x) (24)

provided y 
= 2kπ . To estimate the y-coordinate of a point (x, y) ∈ Szk , we put u = x
in γk .

First, let 2kπ < y < (2k + 1)π . Then any point (x, y) of Szk together with the
corresponding point (x, v) of γk have to fulfill the formula

y cot(y) − v cot(v) = |z| sin(Arg(z))
sin(y)

exp(−x) (25)

due to x = −v cot(v) and (24). Since 0 ≤ Arg(z) ≤ π , the right-hand side of (25) is
non-negative, hence, we have y cot(y) ≥ v cot(v) implying y ≤ v. In other words, any
point (x, y) ∈ Szk is located below or on the curve γk separatingWk andWk+1. Second,
let (2k −1)π < y ≤ 2kπ . Then the points (x, y) ∈ Szk lie below γk trivially (note that
the equation Gz(x, y) = 0 has a unique solution x for y = 2kπ , 0 < Arg(z) < π ,
and has no solution for y = 2kπ , Arg(z) = 0 or Arg(z) = π ). On the other hand, any
point of Szk lies above the upper bound (2k − 1)π of γk−1, hence, we have proven that
Szk is contained in the range of Wk .

Finally, if j < k, then we can similarly verify that any point of Szj is already located
below or on γk−1. Thus, to summarize the previous observations, Szj is contained in
the range of Wk (k = 1, 2, . . . ) just when j = k; otherwise, Szj and the range of Wk

are disjoint. Consequently, (2k − 1)π < yk < (2k + 1)π , hence, yk < yk+1 for all
k = 1, 2, . . ..

The same line of arguments can be used in the case k ≤ −1 to obtain 2kπ <

yk < (2k + 2)π , and, in the remaining case k = 0, to obtain 0 ≤ y0 < π (and
therefore, y0 < y1). In this respect, a real z is mapped by W0 to γ0 (hence, y0 > 0)
if z < − exp(−1), and is mapped by W0 to reals if z ≥ − exp(−1) (hence, y0 = 0).
Also W−1 takes real values just when − exp(−1) ≤ z < 0 (hence, y−1 = y0 = 0).

The procedure can be analogously applied to the case−π < Arg(z) < 0 (definition
of the sets Szj now differ by shifting the particular y-domains vertically down by
π ). �

Lemma 2 is useful also for ordering of the real parts of the branches of the Lambert
function. In particular, it enables to prove the classical assertion of Lemma 1 in a more
lucid way compared to the existing proof techniques.

Proof of Lemma 1 We recall that the couple (xk, yk), k ∈ Z, satisfies |y| = fz(x), see
the text preceding Lemma 2. Put ζ1 = W−1(−|z|), ζ2 = W0(−|z|), ζ3 = W0(|z|).
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Then, we can easily observe that fz is defined on (−∞, ζ3] and (−∞, ζ1] ∪ [ζ2, ζ3] if
|z| ≥ exp(−1) and 0 < |z| < exp(−1), respectively. Moreover, fz has a (unique) root
ζ3 > 0 if |z| > exp(−1), a couple of roots ζ1 = ζ2 = −1 and ζ3 > 1 if |z| = exp(−1),
and a triple of roots ζ1 < −1, −1 < ζ2 < 0, ζ3 > 0 if 0 < |z| < exp(−1). Otherwise,
fz is positive at all other points of its domain.
Further, we have

f ′
z (x) = −|z|2 exp(−2x) − x√|z|2 exp(−2x) − x2

.

If |z| ≥
√
2
2 exp(−1/2), then f ′

z is negative, hence fz is decreasing on (−∞, ζ3). If√
2
2 exp(−1/2) > |z| > exp(−1), then fz has a local minimum at ζ4 = 1

2W−1(−2|z|2)
and a local maximum at ζ5 = 1

2W0(−2|z|2) (note that ζ4 < ζ5). Consequently, fz is
decreasing on (−∞, ζ4), increasing on (ζ4, ζ5) and again decreasing on (ζ5, ζ3).

If |z| = exp(−1), then fz is decreasing on (−∞,−1), increasing on (−1, ζ5)
and decreasing on (ζ5, ζ3). Finally, if exp(−1) > |z| > 0, then fz is decreasing on
(−∞, ζ1) increasing on (ζ2, ζ5) and decreasing on (ζ5, ζ3).

Thus, fz is decreasing on its domain up to “a small part” which is, however, lying
within the range of W0 (we again identify w = x + i y with (x, y) ∈ R

2). Indeed, if√
2
2 exp(−1/2) > |z| > exp(−1), we have to show that the graph of fz between the
points [ζ4, fz(ζ4)] and [ζ5, fz(ζ5)] is contained in the range of W0. Since

ζ 2
4 + f 2z (ζ4) = −1

2
W−1(−2|z|) < 1 and ζ 2

5 + f 2z (ζ5) = −1

2
W0(−2|z|2) <

1

2

for any
√
2
2 exp(−1/2) > |z| > exp(−1), both the endpoints of the graph belong

to the range of W0 (note that the open unit disk is a part of the W0 range). Also,
if ζ4 ≤ x ≤ ζ5, then x2 + f 2z = |z| exp(−2x) is decreasing in x , hence, we have

|z| exp(−2x) < 1 for any ζ4 ≤ x ≤ ζ5 and any
√
2
2 exp(−1/2) > |z| > exp(−1)

meaning that the graph of the increasing part of fz is again lying in the range of W0.
Similarly, we can show that, for exp(−1) ≥ |z| > 0, the graph of fz between the

relevant points is contained in the range of W0 as well.
Collecting the abovemonotony properties together with Lemma 2, we can conclude

that x±(k+1) < x±k for any k = 1, 2, . . .. If k = 0, we have x1 < x0 but x−1 ≤ x0
because of W0(z) = W−1(z) for any z ∈ R, z ≤ − exp(−1). �
Remark 3 We have actually proven monotony of the real parts of Wk(z) with respect
to k which is a slightly stronger result than that stated in Lemma 1.

4 Applications towards qualitative properties of (1) with the Caputo
derivative

In this section, we apply our previous observations on the principal branch of the
Lambert function to describe important qualitative properties of (1), including their
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Fig. 1 The set α,τ
0 as the stability region for (1) (the figure corresponds to α = 1.2)

dependence on the parameter λ. We remind that here we restrict ourselves to the case
α > 1 due to the reason mentioned in Remark 1.

We start with a basic stability criterion for (1). We introduce a (parametric) setα,τ
0

given as


α,τ
0 =

{
z ∈ C : |z| <

( |Arg(z)| − απ/2

τ

)α

, |Arg(z)| >
απ

2

}
, (26)

see Fig. 1. This set already appeared in [6, Thm. 2] as the asymptotic stability region
for (1) with 0 < α < 1. As indicated in [7], the D-subdivisionmethod (combined with
some tools of fractional calculus) used in [6] is extendable also to the caseα > 1. In the
following assertion, we confirm validity of this stability result for α > 1. Contrary to
the existing techniques, we are able to prove this result (as a consequence of Theorem
1(i)) in an almost elementary way.

Theorem 2 Let α > 1, τ > 0 and λ ∈ C. Then (1) is asymptotically stable if and only
if λ ∈ 

α,τ
0 .

Proof By (9) and Lemma 1, we need to analyze�(s0) = α
τ
�(

W0
(

τ
α
λ1/α

))
< 0. Using

(10) with z = τλ1/α/α and p = 0, this inequality can be converted into

∣∣∣
τ

α
λ

1
α

∣∣∣ + π

2
<

∣∣∣Arg(λ
1
α )

∣∣∣ ,

i.e.,

τ

α
|λ| 1α <

∣∣∣Arg(λ
1
α )

∣∣∣ − π

2
.
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Taking into account
∣∣Arg(λ1/α)

∣∣ = 1
α

|Arg(λ)|, this is equivalent to the condition
defining 

α,τ
0 in (26). �

Remark 4 If λ ∈ ∂
α,τ
0 , then (1) is stable but not asymptotically stable. If λ /∈ clα,τ

0 ,
then (1) is unstable. Obviously, α,τ

0 becomes empty for any α ≥ 2, hence, (1) cannot
be asymptotically stable for any complex λ whenever α ≥ 2.

Theorem 1 can be used in a more subtle way to bring a deeper insight into behavior
of (1). More precisely, relations (10)–(13) enable to reveal a relationship between the
position of the rightmost characteristic root s0 and the value of λ. Then, by (6), such
a relationship easily results into a precise asymptotic description of the solutions of
(1) in the unstable case (�(s0) > 0). Indeed, while in the asymptotically stable case
(�(s0) < 0) the decay rate of solutions is algebraic and independent of the particular
value of s0, in the unstable case (�(s0) > 0), the growth rate is exponential and
governed by the real part of the rightmost characteristic root s0 (it is well known that
this is true also for integer values of α). In addition, the imaginary part of s0 is related
to the frequency characteristics describing an oscillatory behavior of (1).

Thus, for given u, v ≥ 0, we need to find a region of all complex λ such that the
rightmost characteristic root s0 is lying on or left to the line u + iω, ω ∈ R, and on or
above (below) the line ω + i v (the line ω − i v), ω ∈ R. On this account, similarly as
in the proof of Theorem 2, we put z = τλ1/α/α, p = τu/α, q = τv/α and consider
u ≥ 0, απ/τ > v > 0. Then, Theorem 1 immediately implies that

(i) �(s0) ≤ u if and only if either

|λ| < uα exp(τu) (27)

or

|λ| ≥ uα exp(τu) and α arccos

(
u exp(τu/α)

|λ|1/α
)

+ τ
√|λ|2/α − u2 exp(2τu/α)

exp(τu/α)

≤ |Arg(λ)| ; (28)

(ii) |�(s0)| ≥ v if and only if

|Arg(λ)| > τv/α and
vα

sinα
(
(|Arg(λ)| − τv)/α

)

× exp
(
τv cot

(
(|Arg(λ)| − τv)/α

)) ≤ |λ|. (29)

Thus, if we introduce the set 
α,τ

u as a set of all λ ∈ C such that either (27) or
(28) holds, and �

α,τ

v as a set of all λ ∈ C such that (29) holds (we put �
α,τ

v = ∅
for απ/τ ≤ v < π and �

α,τ

v = C for v = 0), then we can rewrite our previous
observations into the following assertion:

Lemma 3 Let α > 1, τ > 0, u ≥ 0, π > v ≥ 0, λ ∈ C and let s0 be given by (9).
Then

123
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(i) �(s0) ≤ u if and only if λ ∈ 
α,τ

u ;
(ii) |�(s0)| ≥ v if and only if λ ∈ �

α,τ

v (�
α,τ

v is non-empty whenever 0 ≤ v < απ/τ ).

Remark 5 (a) The set
α,τ

u contains the origin (λ = 0)which is excluded byTheorem1.
However, admitting λ = 0, we have the only characteristic root s0 = 0 of (2), hence,
Lemma 3 remains true.

(b) It is easy to check that α,τ
0 introduced in (26) coincides with int

α,τ

0 .

The part (i) of Lemma 3 immediately implies

Corollary 1 Let u ≥ 0 be fixed. Then 
α,τ

u is the set of all λ ∈ C such that x(t) =
O(exp(ut)) as t → ∞ for any solution x of (1).

To obtain an actually effective (and non-improvable) asymptotic result for the solu-
tions of (1), we have to look at the problem inversely. More precisely, for a given
complex λ /∈ 

α,τ
0 , we need to find (non-negative) real values u0, v0 such that the

rightmost root s0 of (2) satisfies �(s0) = u0, |�(s0)| = v0.
The way how to do it easily follows from Theorems 1(ii) and 1(iv), respectively,

taking into account the above introduced substitutions z = τλ1/α/α, p = τu/α,
q = τv/α. Then the corresponding relations (11) and (13) become

|λ| ≥ uα exp(τu) and α arccos

(
u exp(τu/α)

|λ|1/α
)

+ τ
√|λ|2/α − u2 exp(2τu/α)

exp(τu/α)

= |Arg(λ)| (30)

and

|Arg(λ)| > τv/α and
vα

sinα
(
(|Arg(λ)| − τv)/α

) exp
(
τv cot

(
(|Arg(λ)| − τv)/α

))

= |λ|, (31)

respectively (see also (28) and (29)). Thus, the unique solution of (30)2 defines the
value u0, while the unique positive solution of (31)2 defines the value v0 (provided
Arg(λ) > 0). If Arg(λ) = 0, then s0 is real, and we set v0 = 0.

Notice that (30)2, defining the relation between the modulus and argument of λ

that is explicit with respect to the argument, forms the boundary of 
α,τ

u . Its left-
hand side, considered as a function of |λ|, is continuous, increasing and unbounded on
[uα exp(τu),∞), and its graph in the complex plane creates a Jordan curve symmetric
with respect to the real axis, see Fig. 2.

Similarly, (31)2 provides the relation between the modulus and argument of λ that
is explicit with respect to the modulus. The equality (31)2 is the boundary of�

α,τ

v , and
its left-hand side, as a function of |Arg(λ)|, is continuous on (τv/α, π ] and unbounded
in a right neighborhood of the point τv/α (for |Arg(λ)| = π , it takes a value on the
negative real axis). This implies that �

α,τ

v is unbounded for any 0 < v < απ/τ and
its boundary splits the complex plane into two parts, see Fig. 2.

Now we are in a position to formulate a complete asymptotic description for the
solutions of (1).
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Fig. 2 The figure depicts the boundaries of the sets 
α,τ
u (blue) and �

α,τ
v (orange) for several values of u

and v, respectively (the scenario corresponds to α = 1.2 and τ = 1). The particular blue curves represent
the set of all λ ∈ C such that the rightmost characteristic root s0 of (2) satisfies�(s0) = u, and the particular
orange curves represent the set of all λ ∈ C such that the rightmost characteristic root s0 of (2) satisfies
|�(s0)| = v. As an example, the blueish curvilinear rectangles then represent the set of all λ ∈ C such that
0.5 < �(s0) < 0.75 and 1.25 < |�(s0)| < 1.5

Theorem 3 Let α > 1, τ > 0 and λ ∈ C.

(i) If λ ∈ 
α,τ
0 , then, for any solution x of (1),

x(t) = O(t1−α) as t → ∞.

Moreover the algebraic decay order 1 − α cannot be improved;
(ii) If λ /∈ 

α,τ
0 , then, for any solution x of (1),

x(t) = exp(u0t)(c exp(i v0t) + o(1)) as t → ∞

where c is a complex constant, u0 ≥ 0 is the unique solution of (30)2, v0 > 0 is
the unique solution of (31)2 if |Arg(λ)| > 0, and v0 = 0 if Arg(λ) = 0.

Proof (i) The property is a direct consequence of (6) as the set S is empty.
(ii) Let s0 = u0 + i v0 be the rightmost characteristic root, and S0 be the set of

the remaining characteristic roots s with a non-negative real part (we remind that
�(s) < �(s0) for any s ∈ S0). Then, if α is a non-integer, we can write (6) as

x(t) = exp(u0t)
(
c exp(i v0t) +

∑

s∈S0
cs exp((s − u0)t

) + O(t1−α)

= exp(u0t)
(
c exp(i v0t) + o(1) + O(o(1))

) = exp(u0t)
(
c exp(i v0t) + o(1)

)
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as t → ∞,

where c = cs0 is the complex constant from (6) corresponding to the rightmost charac-
teristic root s0. If α is an integer, then the dominating role of s0 in asymptotic behavior
of (1) is well known. In this case, the assertion of (ii) holds as well. �
Remark 6 (a) The asymptotic formula from Theorem 3(ii) immediately implies

x(t) = O(exp(u0t)) as t → ∞ (32)

for any solution x of (1), and the constant u0 is non-improvable. Moreover, for large t ,
the roots of the real and imaginary parts of x tend to the roots of cos(v0t) and sin(v0t),
respectively. In both the cases, the distance between the subsequent roots tends to
π/v0. These properties are illustrated by Example 1.

(b) The asymptotic behavior of (1) significantly depends on stability of (1). In
particular, the exponential terms in (6) are vanishing in the asymptotically stable
case �(s0) < 0. However, the situation changes in the limit case α = 1 when, in
accordance with the first-order theory, the rightmost characteristic root s0 determines
an exponential decay rate of the solutions also in the asymptotically stable case. Since
the above argumentation can be extended to this problem as well, our results provide
a contribution also to the corresponding classical first-order theory.

Example 1 Let α = 1.2, τ = 1, and consider (1) along with the initial conditions
φ(t) = 1 (−1 ≤ t ≤ 0), φ0 = φ(0) = 1, and φ1 = limt→0+ x ′(t) = 0. We compare
the corresponding (numerical) solutions of (1) for two distinct values of λ, namely
λ1 = −2 + i and λ2 = −3 + i 0.1. As indicated by Fig. 2, both the values λ1, λ2 lie
in the instability region. In particular, the real parts u0 of the corresponding rightmost
roots are approximately 0.4721 and 0.4917, and their imaginary parts v0 are 1.2321
and 1.5844, respectively.

The real parts of the solutions of (1) with two above specified sets of entries, along
with the growth-rate functions exp(u0t), are depicted in Figs. 3 and 4. The graphs
suggest that the modulus of constant c introduced in Theorem 3(ii) is less than one for
λ = λ1, and greater than one for λ = λ2.

To illustrate behavior of the solutions x in better detail, Figs. 5 and 6 depict the ratio
�(x(t))/ exp(u0t) for λ1 and λ2, respectively. The resulting functions are bounded,
but do not tend to zero which is a consequence of non-improvability of the constant
u0 in (32).

Asmentioned in Remark 6(a), the distance between the subsequent roots of�(x(t))
tends to π/v0. Figs. 7 and 8 illustrate this fact. We can see that while in the case of λ1
the convergence is rather fast and the distance seems to be somewhat stabilized around
the seventh root, in the case of λ2, the stabilization occurs around the hundredth root.

5 Concluding remarks

The aim of the paper was to develop the Lambert function theory, and then apply the
obtained results in qualitative investigations of (1). Using this approach, we were able
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Fig. 3 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ1 = −2 + i, along with the
corresponding growth-rate functions ± exp(0.4721t)

Fig. 4 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ2 = −3 + i 0.1, along with the
corresponding growth-rate functions ± exp(0.4917t)

to formulate a precise asymptotic description of the solutions of (1). Particularly, in
addition to an algebraic decay rate of the solutions in the stable case (described in
some earlier papers), we could observe an exponential growth of the solutions in the
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Fig. 5 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ1 = −2+ i, divided by its growth-rate
function exp(0.4721t)

Fig. 6 The real part of the solution x of (1) for α = 1.2, τ = 1 and λ2 = −3 + i 0.1, divided by its
growth-rate function exp(0.4917t)

unstable case; the rate of this growth was determined as a (unique) real root of an
auxiliary transcendental equation.
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Fig. 7 The distance between the subsequent roots of�(x(t)) for α = 1.2, τ = 1 and λ1 = −2+ i is tending
to π/1.2321

Fig. 8 The distance between the subsequent roots of �(x(t)) for α = 1.2, τ = 1 and λ2 = −3 + i 0.1 is
tending to π/1.5844

However, the impact of the presented results is not limited to the theory of FDDEs
only. Our approach offers an alternate way how to prove (and also strengthen) some
classical assertions of the Lambert function theory.Moreover, to the best of our knowl-
edge, the derived asymptotic formulae are new also in the first-order case. Here,
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contrary to the fractional case, our results can be applied also in the stable case where
a (non-improvable) rate of exponential decay of the solutions can be determined.

Since we have formulated our results for (1) with a complex coefficient λ, their
extension to the vector case is nearly straightforward provided the eigenvalues of
a (real) system matrix are simple. Regarding eigenvalues with higher multiplicities,
some additional argumentation seems to be necessary.Based on related cases discussed
in earlier papers, one can expect a slight modification of the solutions growth, but no
impact on the asymptotic frequency.

Our final remark concerns the case 0 < α < 1 not involved among the assumptions
of the assertions of Sect. 4. The procedure of computing the characteristic roots uses
the law of exponents which is, in general, not valid for complex numbers. Thus,
some superfluous roots of the characteristic equation may appear if 0 < α < 1 (as
illustrated via a counterexample in Remark 1). In this case, our stability and asymptotic
formulae remain basically true, but we cannot confirm their strictness. In particular,
we cannot claim that the above described rate of exponential growth of solutions is
non-improvable. Nevertheless, we conjecture that a more thorough analysis of the
corresponding branches of a complex power can overcome this problem, and thus
achieve the strict asymptotic results for all α > 0. Such an analysis provides another
possible topic for the next research.
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8. Čermák, J., Kisela, T.: Stabilization and destabilization of fractional oscillators via a delayed feedback
control. Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106960, 16 pp. (2023). https://doi.
org/10.1016/j.cnsns.2022.106960

9. Chen, Y., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic
systems. Nonlinear Dyn. 29, 191–200 (2002)

10. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: Solving fractional delay differential equations: A new
approach. Fract. Calc. Appl. Anal. 18, 400–418 (2015). https://doi.org/10.1515/fca-2015-0026

11. Garrappa, R., Kaslik, E.: On initial conditions for fractional delay differential equations. Commun.
Nonlinear Sci. Numer. Simul. 90, Article ID 105359, 16 pp. (2020). https://doi.org/10.1016/j.cnsns.
2020.105359

12. Hwang, C., Cheng, Y.C.: A note on the use of the LambertW function in the stability analysis of time-
delay systems. Automatica 41(11), 1979–1985 (2005). https://doi.org/10.1016/j.automatica.2005.05.
020

13. Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the LambertW function. Math.
Sci. 21(1), 1–7 (1996)

14. Johansson, F.: Computing the Lambert W function in arbitrary-precision complex interval arithmetic.
Numer. Algorithms 83, 221–242 (2020). https://doi.org/10.1007/s11075-019-00678-x

15. Kaslik, E., Sivasundaram, S.: Analytical and numerical methods for the stability analysis of linear
fractional delay differential equations. J. Comput. Appl. Math. 236(16), 4027–4041 (2012). https://
doi.org/10.1016/j.cam.2012.03.010

16. Krol, K.: Asymptotic properties of fractional delay differential equations. Appl.Math. Comput. 218(5),
1515–1532 (2011). https://doi.org/10.1016/j.amc.2011.04.059
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