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Abstract
We study the asymptotic behavior of solutions to various Dirichlet sublinear-type
problems involving the fractional Laplacian when the fractional parameter s tends to
zero. Depending on the type on nonlinearity, positive solutions may converge to a
characteristic function or to a positive solution of a limit nonlinear problem in terms
of the logarithmic Laplacian, that is, the pseudodifferential operator with Fourier sym-
bol ln(|ξ |2). In the case of a logistic-type nonlinearity, our results have the following
biological interpretation: in the presence of a toxic boundary, species with reduced
mobility have a lower saturation threshold, higher survival rate, and are more homo-
geneously distributed. As a result of independent interest, we show that sublinear
logarithmic problems have a unique least-energy solution, which is bounded and Dini
continuous with a log-Hölder modulus of continuity.

Keywords Logarithmic Laplacian (primary) · Fractional laplacian · Nonlinear
eigenvalue problems · Allen-Cahn nonlinearity

Mathematics Subject Classification 35S15 (primary ) · 35B40 · 35P30

1 Introduction

Consider a positive solution of a sublinear-type problem such as

(−�)sus = f (us) in �, us = 0 on R
N\�,
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where s ∈ (0, 1), N ≥ 1, � ⊂ R
N is an open bounded Lipschitz set, and f (u) is

a sublinear-type nonlinearity such as f (u) = |u|p−2u with p ∈ (1, 2) or a bistable
nonlinearity such as f (u) = ku − |u|q−1u with k > 0 and q > 1. Here, (−�)s is the
fractional Laplacian of order 2s given by

(−�)su(x) := cN ,sp.v.
∫
RN

u(x) − u(y)

|x − y|N+2s dy, cN ,s := s(1 − s)
�( N2 + s)4s

�(2 − s)π
N
2

,

and p.v stands for the integral in the principal value sense.
In this paper, we study the asymptotic profile of positive solutions us as s → 0+.

This asymptotic analysis has only been done for superlinear problems in [25] for
least energy solutions and for linear problems in [14, 22]. The motivation behind the
understanding of these profiles is twofold. On one hand, the parameter s plays an
important role in some models coming from population dynamics [10, 31], optimal
control [34], approximation of fractional harmonic maps [3], and fractional image
denoising [2]. In these models, a small value for the fractional parameter s can yield
an optimal choice; for instance, for the population models in [10, 31], it can happen
that a species survives only for dispersal strategies associated to a small value of s (for
more information and references we refer to [25]). Another motivation comes from
the understanding of the interesting underlying mathematical structures behind the
asymptotic profiles of weak solutions as s → 0. Indeed, in this paper we show that
sublinear and superlinear problems have very different behaviors as s → 0+ and the
challenges to characterize the limits are also distinct.

We begin by discussing the paradigmatic case of the power nonlinearity. Let
(sn)n∈N ⊂ (0, 1) and (pn)n∈N ⊂ (1, 2) be such that lim

n→∞ sn = 0 and lim
n→∞ pn =

p ∈ [1, 2] and consider the equation

(−�)sn un = |un|pn−2un in �, un = 0 on R
N\�. (1.1)

Since pn ∈ (1, 2), the problem (1.1) has a unique positive solution for every n ∈ N

(see, for instance, [7, Section 6]), which can be found by global minimization of an
associated energy functional (see Sect. 2). Furthermore, these solutions are uniformly
bounded independently of n, see Proposition 1 below. This is one of the advantages
of the sublinear regime, since similar uniform bounds for superlinear powers in the
small order limit are not known.

Heuristically, it is easy to see that the asymptotic behavior of the sequence of
positive solutions (un)n∈N is closely related to the limit p of the sequence (pn)n∈N.
Indeed, if p ∈ [1, 2), we are led (at least formally) to the limit equation

u = u p−1 in �, (1.2)

where we have used that (−�)s goes in some suitable sense to the identity operator
as s → 0+ (see, e.g., [16, Proposition 4.4]). This suggests that the limiting profile of
the sequence (un)n∈N must be (piecewisely) constant. On the other hand, if p = 2,
then the limit equation becomes the trivial identity u = u, which does not provide
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information on the asymptotic profile. In this case, similarly as in [25], we need to
consider a first order expansion in s of the fractional Laplacian (−�)s .

As a consequence of the discussion above, we split our analysis of (1.1) in two
cases depending on the limit p of the sequence pn . The following result focuses on
the case p = 2.

Theorem 1 Let (sn)n∈N ⊂ (0, 1) and (pn)n∈N ⊂ (1, 2) be such that

lim
n→∞ sn = 0, lim

n→∞ pn = 2, and μ := lim
n→∞

2 − pn
sn

∈ (0,∞). (1.3)

Let un be a positive solution of (1.1), then un → u0 in Lq(RN ) as n → ∞ for all
1 ≤ q < ∞, where u0 ∈ H(�) ∩ L∞(�)\{0} is the unique nonnegative least energy
solution of

L�u0 = −μ ln(|u0|)u0 in �, u0 = 0 on R
N \ �. (1.4)

Here L� stands for the logarithmic Laplacian, whose weak solutions belong to
a suitable Hilbert space H(�) (see (2.3) below). The logarithmic Laplacian appears
naturally as the first order expansion of the fractional Laplacian; in particular,

lim
s→0+

∣∣∣∣ (−�)sϕ − ϕ

s
− L�ϕ

∣∣∣∣
p

= 0 for all 1 < p ≤ ∞ and ϕ ∈ C∞
c (RN ), (1.5)

where | · |p denotes the usual L p-norm, see [14, Theorem 1.1]. These type of operators
are also related to geometric stable Lévy processes, we refer to [5, 6, 13, 20, 21, 23, 26,
28, 29, 33] and the references therein for an overview of the different applications that
they have (in engineering, finances, physics, mathematics, etc). For precise definitions
and further properties of the logarithmic Laplacian and of the Hilbert spaceH(�), we
refer to Sect. 2 below. We also refer to Remark 1 for a version of Theorem 1 without
sequences (see also Remark 3).

As a byproduct of Theorem 1, we obtain the following qualitative information on
the unique (up to a sign) least energy solution of the limit logarithmic problem.

Theorem 2 For every μ > 0 there is a unique (up to a sign) least energy solution of

L�v = −μ ln(|v|)v in �, v = 0 on R
N\�, (1.6)

which is a global minimizer of the energy functional J0 : H(�) → R given by

J0(u) := 1

2
EL(u, u) + I (u), I (u) := μ

4

∫
�

u2
(
ln(u2) − 1

)
dx . (1.7)

Moreover, v does not change sign and

0 < sup
x∈�

|v(x)| ≤ (R2e
1
2−ρN )

1
μ , where R := 2 diam(�) (1.8)

123



Small order limit of fractional Dirichlet... 1597

and ρN is an explicit constant given in (2.2). Furthermore, if � satisfies a uniform
exterior sphere condition, then |v| > 0 in �, v ∈ C(RN ), and there are α ∈ (0, 1)
and C > 0 such that

sup
x,y∈RN

x 	=y

|v(x) − v(y)|

α(|x − y|) < C, 
(r) := 1

| ln(min{r , 1
10 })|

. (1.9)

Theorems 1 and 2 are the sublinear counterparts of [25, Theorem 1.1] and [25,
Theorem 1.2]. A crucial difference between these results is the sign of pn−2

sn
, which is

positive for superlinear problems and negative in the sublinear regime. Thismeans that,
for logarithmic problems, a notion of sublinearity is encoded in the negative sign in
front of the coefficientμ in (1.6). This sign has several consequences on the asymptotic
analysis and on the qualitative properties of the limiting profile. One key feature in the
sublinear case is that the sequence of positive solutions of (1.1) is uniformly bounded
(see Proposition 1). This boundedness is then inherited to the limiting profile, which
is the first step to characterize further regularity properties (observe that (1.9) is a
lower-order log-Hölder estimate, see Remark 2). Here the asymptotic analysis done in
Theorem 1 is essential, since it is not clear how to obtain a bound as in (1.8) directly
from the equation (1.6). Another important difference is the uniqueness of positive
solutions, which does not hold in general for superlinear fractional problems (see,
for example, [15, Theorem 1.2] or [17, Remark 2,11] for a multiplicity result). An
L∞-bound and the uniqueness properties of solutions are not known for logarithmic
problems in the “superlinear regime” (μ < 0), see [25].

Furthermore, methodologically, the treatment of sublinear problems requires a dif-
ferent approachwith respect to its superlinear counterpart; for example, [25, Theorems
1.1 and 1.2] are strongly based on Sobolev logarithmic inequalities; but these do not
play any role in our asymptotic analysis. Instead, we use Fourier transforms, sharp
regularity bounds, and direct integral estimates to find a uniform bound of the solutions
of (1.1) in the norm of H(�) (see Theorem 7). This bound together with the compact
embedding H(�) ↪→ L2(�) gives the main compactness argument to characterize
the limiting profile. We also mention that the uniqueness property stated in Theorem
2 relies strongly on the fact that μ > 0 (see the proof of Theorem 6). If μ < 0, then
uniqueness or multiplicity results for (1.6) are not known.

These arguments, however, cannot be used if the limit of the sequence of powers
pn is strictly less than 2, because in that case the logarithmic Laplacian does not relate
in any way to the limit equation (1.2). Our next result summarizes our asymptotic
analysis for (1.1) when p ∈ [1, 2).
Theorem 3 Let (sn)n∈N ⊂ (0, 1) and (pn)n∈N ⊂ (1, 2) be such that lim

n→∞ sn = 0 and

lim
n→∞ pn = p ∈ [1, 2), and let un be the unique positive solution of (1.1). Then,

un → 1 in Lq(�) as n 
→ ∞ for any 1 ≤ q < ∞

The main difficulty in showing Theorem 3 comes from the absolute lack of com-
pactness tools. Indeed, as n → ∞, the Sobolev norm ‖·‖sn converges to the L2−norm
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| · |2 (see, e.g., [9, Corollary 3]), and therefore it is not possible to use any type of
Sobolev embedding. Similarly, all Hölder regularity estimates for un degenerate in
the limit s → 0+. Furthermore, since the logarithmic Laplacian does not relate to the
limit equation (1.2), the compactness properties of the space H(�) cannot be used.
However, since, heuristically, the limit equation is given by (1.2), it is easy to guess that
the limiting profile must be the characteristic function of the set �. As a consequence,
this asymptotic analysis is the opposite of that of Theorem 1, since we “know" a priori
the limiting profile, but we do not have any compact embedding at our disposal. This
requires a new approach.

To show Theorem 3, we use an auxiliary nonlinear eigenvalue problem. To be more
precise, consider

�n := inf{‖v‖2sn : v ∈ Hs
0(�), |v|pn = 1},

where Hs
0(�) is the homogeneous fractional Sobolev space given by

Hs
0(�) :=

{
u ∈ Hs(RN ) : u = 0 on R

N \ �
}

and

‖u‖sn :=
(
cN ,sn

∫
RN

∫
RN

|u(x) − u(y)|2
|x − y|N+2sn

dx dy

) 1
2

,

|u|pn :=
(∫

RN
|u|pn dx

) 1
pn

.

(1.10)

A minimizer of �n is (after a suitable rescaling) a solution of (1.1), but the L pn -
normalization will turn out to be a useful tool in the asymptotic analysis. Indeed, we
show that (�n)n∈N converges to �0 > 0 given by

�0 := inf

{∫
�

|v|2 dx : v ∈ L2(�),

∫
�

|v|p dx = 1

}
> 0.

Note that this variational problem does not have any kind of differential operator and a
minimizer is achieved at a characteristic function of� (see Lemma 11). From this fact,
we derive that the minimizers vn of�n converge to 1 in L2(�). Finally, we use that the
solutions un of (1.1) are related to vn by a direct rescaling to obtain the convergence
of un .

Theorems 1 and 3 show that sublinear problems behave very differently than their
superlinear counterparts. Moreover, a link between the cases p < 2 and p = 2 resides
in the assumptionμ ∈ (0,∞) required in Theorem 1. Ifμ = 0, then the limit problem
cannot be characterized by the logarithmic Laplacian. To analyze this case, it would be
necessary to consider a second (or higher) order expansion of the fractional Laplacian
in the parameter s.

In the last result we present here, we show that, with some adjustments, a similar
strategy can also be used to characterize the limiting profile of other sublinear-type
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fractional problems. For instance, consider the nonlinearity f (u) = ku−u p for k > 1,
p > 1, and u ≥ 0. This nonlinearity is widely studied in the literature; in particular,
p = 2 (the logistic nonlinearity) is used in ecology in the studyof population dynamics,
where k is a birth rate and −u2 is called a concentration or saturation term (see, e.g.,
[10, 31] and the references therein); and p = 3 (the Allen-Cahn nonlinearity) is used
in the study of phase transitions in material sciences (see, e.g., [30] and the references
therein). In this regard, we have the following.

Theorem 4 Let k > 1 and p > 1. There is s0 = s0(�, k) ∈ (0, 1) so that, for
s ∈ (0, s0), there is a unique positive solution us ∈ Hs

0(�) ∩ L p+1(�) of

(−�)sus = kus − u p
s in �, us = 0 in R

N\�. (1.11)

Moreover, us → (k − 1)
1

p−1 in Lq(�) as s → 0+ for every 1 ≤ q < ∞.

This result has an interesting biological interpretation in terms of population dynam-
ics (at equilibrium): in the presence of a toxic boundary, species with limited mobility
have a lower saturation threshold, higher survival rate, and are more homogeneously
distributed. Indeed, to fix ideas consider p = 2, k = 2, let un represent the population
density of a species, � = BR(0) be a ball of radius R > 0, and let s be a parameter
describing a diffusion strategy. Because the nonlinearity 2u − u2 has a concentration
term, the population density us is bounded by 2 (see Proposition 3). This bound is opti-
mal, in the sense that us has values arbitrarily close to 2 as R → ∞ (a heuristic way to
see this, is to consider the rescaled equation R−2s(−�)svs = 2vs − v2s in B1(0), with
vs(x) = us(Rx), then, letting R → ∞ yields the limit equation 0 = 2v − v2 which
implies v = 2). However, Theorem 4 yields that us → 1 as s → 0+, independently
of R > 0. This shows that us grows only half as much as more dynamical species
in large domains for s sufficiently small. On the other hand, the Dirichlet boundary
conditions represent a toxic boundary, which in small domains can be deadly for the
species; in fact, for every s ∈ (0, 1) fixed, there is R > 0 small such that the only
solution of (1.11) is u ≡ 0. But again, Theorem 4 shows that almost static populations
thrive even in small domains. This is consistent with the results and interpretations
from [10, 31].

Theorem 4 is a particular case of a slightly more general result, Theorem 12 in
Sect. 5. The proof of Theorem 4 follows a similar strategy as in Theorem 3, we begin
by considering a nonlinear eigenvalue problem given by

s := inf

{
‖u‖2s
2

+ |u|p+1
p+1

p + 1
: u ∈ Hs

0(�) ∩ L p+1(�) and
ε|u|22
|�| = 1

}
, (1.12)

where ε > 0 is a parameter. We show that s → 0 as s → 0+, where

0 := inf

{
|u|22
2

+ |u|p+1
p+1

p + 1
: u ∈ �0

}
,
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with �0 :=
{
u ∈ L2(�) ∩ L p+1(�) : u = 0 in RN\�, and

ε|u|22|�| = 1

}
, which is

shown to be achieved at u0 = ε− 1
2 χ�. Note that, in these cases, the functionals have

terms with different homogeneities and therefore the link between a minimizer of
(1.12) and a solution of (1.11) cannot be established by a direct rescaling. Here is
where the parameter ε > 0 is used. A suitable choice of this parameter allows us to
link, via a stability-type argument (see (5.22)), the problems (1.12) and (1.11), and to
conclude the desired convergence.

To close this introduction, we mention that an interesting problem would be to con-
sider also sign-changing solutions of (1.11) and to characterize its limit as s → 0+. In
this case, there is no clear candidate for the limiting profile, and a deeper understanding
of the asymptotic behavior of the nodal set is needed (one can compare this analysis
with the results from [30]). It could also be interesting to consider other nonlinearities,
for instance f1(u) = u(u − α)(β − u), where β > α > 0, or f2(u) = λuq + u2

∗
s−1,

where q ∈ (0, 1) and 2∗
s is the fractional Sobolev critical exponent. The nonlinearity

f1 is related to the Allee effect and it is used in ecology and genetics to establish a
correlation between population size and the mean individual fitness [11], whereas f2
is a concave-convex nonlinearity for which multiplicity of positive solutions is known
in fractional problems [4]. In these cases, formally, the limit equation (u = fi (u))
would have two positive constant solutions. We expect that ground states converge to
the least-energy constant with respect to a limit energy functional.

The paper is organized as follows. In Sect. 2 we fix some notation that is used
throughout the paper. Section3 contains some auxiliary estimates. Section 4 is
devoted to the power nonlinearity case and it contains the proofs of Theorems 1,
2, and 3. Finally, in Sect. 5 we show Theorem 12, which directly implies Theorem 4.

2 Notation

We fix some notation that is used throughout the paper. The space Hs
0(�) is the

homogeneous fractional Sobolev space given by

Hs
0(�) :=

{
u ∈ Hs(RN ) : u = 0 on R

N \ �
}

.

The energy functional associated to (1.1) is Jsn : Hsn
0 (�) → R given by

Jsn (u) := 1

2
‖u‖2sn − 1

pn
|u|pnpn , (2.1)

where ‖u‖sn and |u|pn are norms defined in (1.10). We also let |u|∞ denote the usual
supremum norm. Following [14], the logarithmic Laplacian L� can be evaluated as

L�u(x) := cN

∫
B1(x)

u(x) − u(y)

|x − y|N dy − cN

∫
RN \B1(x)

u(y)

|x − y|N dy + ρNu(x),
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where

cN := π
− N

2 �( N2 ), ρN := 2 ln 2 + ψ( N2 ) − γ, and γ := −�′(1). (2.2)

Here γ is also known as the Euler-Mascheroni constant and ψ := �′
�
is the digamma

function. Moreover, H(�) is the Hilbert space given by

H(�) :=
{
u ∈ L2(RN ) : u = 0 in RN \ �,

and
∫ ∫

x,y∈RN

|x−y|≤1

|u(x) − u(y)|2
|x − y|N dx dy < ∞

}
(2.3)

with inner product

E(u, v) := cN
2

∫ ∫
x,y∈RN

|x−y|≤1

(u(x) − u(y))(v(x) − v(y))

|x − y|N dx dy,

and the norm ‖u‖ := (E(u, u))
1
2 . The space of compactly supported smooth functions

C∞
c (�) is dense in H(�), see [14, Theorem 3.1]. The operator L� has the following

associated quadratic form

EL(u, v) := E(u, v) − cN

∫ ∫
x,y∈RN

|x−y|≥1

u(x)v(y)

|x − y|N dx dy + ρN

∫
RN

uv dx . (2.4)

Furthermore, for u ∈ H(�),

EL(u, u) = cN
2

∫
�

∫
�

(u(x) − u(y))2

|x − y|N dx dy +
∫

�

(h�(x) + ρN )u(x)2 dx, (2.5)

where h�(x) = cN (
∫
B1(x)\� |x − y|−N dy − ∫

�\B1(x) |x − y|−N dy), see [14, Propo-
sition 3.2].

By [14, Theorem 1.1], it holds that

EL(u, u) =
∫
RN

ln(|ξ |2)|û(ξ)|2 dξ for all u ∈ C∞
c (�), (2.6)

where û is the Fourier transform of u. Moreover, for ϕ ∈ C∞
c (�) we have that L�ϕ ∈

L p(RN ) and

EL(u, ϕ) =
∫

�

uL�ϕ dx for u ∈ H(�), (2.7)
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see [14, Theorem 1.1]. We say that u ∈ H(�) is a weak solution of (1.4) if

EL(u, v) = −μ

∫
�

uv ln |u| dx for all v ∈ H(�). (2.8)

Note that limt→0 ln(t2)t = 0.

3 Auxiliary lemmas

3.1 Asymptotic estimates

Lemma 1 Let (ϕn)n∈N be a uniformly bounded sequence in L∞(�), p ∈ [1, 2], and
let (pn)n∈N ⊂ (1, 2) be such that limn→∞ pn = p. Then,

∫
�

||ϕn|pn − |ϕn|p| dx → 0 as n → ∞. (3.1)

Proof Consider the function g(t) := |ϕn|t . Then,

|ϕn|pn − |ϕn|p =
∫ 1

0
g′(p + τ(pn − p))(pn − p) dτ

=
∫ 1

0
ln (|ϕn|) |ϕn|p+τ(pn−p)(pn − p) dτ.

Integrating in � and using Fubini’s Theorem,

∫
�

∣∣|ϕn|pn − |ϕn|p
∣∣ dx ≤

∫ 1

0

∫
�

|ln (|ϕn|)| |ϕn|p+τ(pn−p)|pn − p| dx dτ.

(3.2)

By assumption, there is M > 2 such that |ϕn|∞ ≤ M for all n ∈ N. Therefore, by
(3.2),

∫
�

∣∣|ϕn|pn − |ϕn|p
∣∣ dx ≤ |pn − p|| lnM |Mp+1|�|

for all n sufficiently large, and the claim follows. ��
Lemma 2 Let (sk)k∈N ⊂ (0, 1

4 ) and (pk)k∈N ⊂ (1, 2) be such that lim
k→∞ sk = 0 and

lim
k→∞ pk = 2. Let (uk)k∈N ⊂ L2(�) and u0 ∈ L2(�) be such that uk → u0 in L2(�)

as k → ∞. Then, passing to a subsequence,

lim
k→∞

∫
�

ln(|uk |2)|uk |pk−2ukϕ dx =
∫

�

ln(|u0|2)u0ϕ dx for all ϕ ∈ C∞
c (�).

123



Small order limit of fractional Dirichlet... 1603

Proof Notice that
∫

�

ln(|uk |2)|uk |pk−2ukϕ dx

=
∫

{|uk |≤1}
ln(|uk |2)|uk |pk−2ukϕ dx +

∫
{|uk |>1}

ln(|uk |2)|uk |pk−2ukϕ dx . (3.3)

Passing to a subsequence, we have that

sup
t∈(0,1)

t pk−1| ln t2| ≤ sup
t∈(0,1)

t
1
2 | ln t2| < ∞

(note that ln(t2)t
1
2 = 0) and uk → u0 a.e. in � as n → ∞. In particular, since

ln(1) = 0,

χ{|uk |≤1} ln(|uk |2)uk → χ{|u0|≤1} ln(|u0|2)u0 a.e. in � as n → ∞.

Then, by the dominated convergence theorem,

lim
k→∞

∫
{|uk |≤1}

ln(|uk |2)|uk |pk−2ukϕ dx =
∫

{|u0|≤1}
ln(|u0|2)u0ϕ dx . (3.4)

If |uk | > 1, it follows easily (see, for example, [25, Lemma 3.3] with α = pk − 2 and
β = 1) that, passing to a subsequence,

ln(|uk |2)|uk |pk−2|ukϕ| ≤ 2

3 − pk
|uk |2|ϕ| ≤ 2‖ϕ‖∞|U |2 ∈ L1(�), (3.5)

for some U ∈ L2(�) (see [36, Lemma A.1]). The claim now follows by applying the
dominated convergence theorem to the second integral in (3.3) together with (3.4). ��
Lemma 3 Let (sk)k∈N, (pk)k∈N, and μ as in (1.3) and let φ ∈ C∞

c (�). Then,

lim
k→∞

1

sk
Jsk (φ) = −μ

4
|φ|22 + 1

2

(
EL(φ, φ) + μ

∫
RN

|φ|2 ln |φ| dx
)

. (3.6)

In particular, if v ∈ H(�) is a weak solution of (1.4) and (φn)n∈N ⊂ C∞
c (�) is such

that φn → v in H(�) as n → ∞, then lim
n→∞ lim

k→∞
1
sk
Jsk (φn) = −μ

4 |v|22.

Proof Let φ ∈ C∞
c (�), then,

lim
k→∞

1

sk
Jsk (φ) = lim

k→∞
1

sk

(‖φ‖2sk
2

− |φ|pkpk
pk

)

= lim
k→∞

1

sk

(
1

2
− 1

pk

)
‖φ‖2sk + lim

k→∞
‖φ‖2sk − |φ|pkpk

pksk
.
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Thus, since ‖φ‖2sk → |φ|22 (see, e.g., [9, Corollary 3]),

lim
k→∞

1

sk
Jsk (φ) = −μ

4
|φ|22 + 1

2
lim
k→∞

‖φ‖2sk − |φ|pkpk
sk

. (3.7)

Note that

‖φ‖2sk − |φ|pkpk
sk

= Ik + Jk, (3.8)

where Ik := ‖φ‖2sk−|φ|22
sk

and Jk := |φ|22−|φ|pkpk
sk

. Let φ̂ denote the Fourier transform of
φ. If |ξ | < 1, then passing to a subsequence,

|ξ |2skτ | ln(|ξ |2)||φ̂(ξ)|2 ≤ 2|φ̂(ξ)|2. (3.9)

On the other hand, if |ξ | ≥ 1, since 0 < sk < 1
4 , we have that

|ξ |2skτ ln(|ξ |2)|φ̂(ξ)|2 ≤ |ξ |1/2 ln(|ξ |2)|φ̂(ξ)|2 ≤ 4

3
|ξ |2|φ̂(ξ)|2. (3.10)

Then, by (3.9), (3.10), and dominated convergence,

lim
k→∞ Ik = lim

k→∞

∫
RN

∫ 1

0
|ξ |2skτ ln(|ξ |2)|φ̂(ξ)|2 dτ dξ

=
∫
RN

ln(|ξ |2)|φ̂|2 dξ = EL(φ, φ). (3.11)

For Jk it holds that

lim
k→∞ −Jk = lim

k→∞
pk − 2

sk

∫ 1

0

∫
RN

|φ|2+(pk−2)τ ln |φ| dx dτ

= lim
k→∞

pk − 2

sk

∫ 1

0

∫
{|φ|<1}

|φ|2+(pk−2)τ ln |φ| dx dτ

+ lim
k→∞

pk − 2

sk

∫ 1

0

∫
{|φ|≥1}

|φ|2+(pk−2)τ ln |φ| dx dτ.

If |φ| < 1, |φ|2+(pk−2)τ ln(|φ|) is bounded independently of k. On the other hand, if
|φ| ≥ 1, |φ|2+(pk−2)τ ln(|φ|) < 2|φ|3 ∈ L1(RN ) (see (3.5)). By dominated conver-
gence,

lim
k→∞Jk = μ

∫
RN

|φ|2 ln |φ| dx . (3.12)

By using (3.8), (3.11) and (3.12) into (3.7) we obtain (3.6).
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Now, let (φn)n∈N ⊂ C∞
c (�) and v ∈ H(�) such that φn → v in H(�) as n →

∞. Assume that v ∈ H(�) is a weak solution of (1.4); in particular, EL(v, v) +
μ

∫
RN |v|2 ln |v| dx = 0. Since J0 is of class C1 over H(�) (see [25, Lemma 3.9]),

EL(φn, φn) + μ
∫
RN |φn|2 ln |φn| dx = o(1) as n → ∞. Then, by the continuous

embedding of H(�) into L2(�), μ
4 |φn|22 → μ

4 |v|22 as n → ∞. This concludes the
proof. ��

We quote the following result from [25, Lemma 3.5].

Lemma 4 Let u ∈ Hs
0(�) for some s ∈ (0, 1). Then u ∈ H(�) and there is C1 =

C1(N ) > 0 and C2 = C2(�) > 0 such that |EL(u, u)| ≤ C1|u|21 + 1
s ‖u‖2s and

‖u‖2 ≤ C2|u|22 + 1
s ‖u‖2s .

3.2 Uniform bounds

To prove Theorem 3 we need some uniform regularity a priori estimates and a fine
analysis of the constants involved.

Lemma 5 Let s ∈ (0, 1
4 ), g ∈ LN/s2(�), and let u be a weak solution of (−�)su = g

in � and u = 0 in RN \ �. Then,

‖u‖L∞(�) ≤
(
1 +

(
ln(R2) + 1

2 − ρN

)
s + o(s)

)
‖g‖

LN/s2 (�)
as s → 0+,

(3.13)

where R := 2 diam(�) and ρN is given in (2.2).

Proof For the first part of the proof, we argue as in [19, Proposition 1.2]. We consider
the problem

(−�)sv = |g| in R
N , (3.14)

where g has been extended by zero outside �. Using the fundamental solution (see,
e.g., [35, Theorem 5] or [1, Definition 5.6]), we have the function v : RN → R given
by

v(x) = cN ,−s

∫
�

|g(y)|
|x − y|N−2s dy, cN ,−s = �( N2 − s)

4s�(s)πN/2 , (3.15)

is one solution for (3.14) (note that there can be other solutions for (3.14)). Observe
that v ≥ 0 and, by the comparison principle, −v ≤ u ≤ v, since −|g| ≤ g ≤ |g|.
From (3.15) and Hölder’s inequality, we have, for x ∈ �, that

0 ≤ |u(x)| < v(x) = cN ,−s

∫
�

|g(y)|
|x − y|N−2s dy

≤ cN ,−s‖g‖LN/s2 (�)

(∫
�

|x − y|(2s−N )qdy

)1/q

,
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1606 F. Angeles, A. Saldaña

where q = N
N−s2

. Without loss of generality, assume that 0 ∈ � and let R :=
2 diam(�) > 0. Then � ⊂ BR/2(0) and, for x ∈ �,

∫
�

|x − y|(2s−N )q dy ≤
∫
BR

|y|(2s−N )q dy = |SN−1|
∫ R

0
ρ(2s−N )qρN−1 dρ

= 2π
N
2

�( N2 )

RN (1−q)+2qs

N (1 − q) + 2qs
= 2π

N
2

�( N2 )

Rt(s)

t(s)
,

where t(s) := N (1−q)+2qs = N (2−s)s
N−s2

and |SN−1| = 2π
N
2

�( N
2 )

. Thus, we have proved

that ‖u‖L∞(�) ≤ C1‖g‖LN/s2 (�)
, where

C1 = C1(�, N , s, p) =
(
2π

N
2

�( N2 )

) N−s2
N

�( N2 − s)

4s�(s)π
N
2

(
Rt(s)

t(s)

) N−s2
N

=: h(s).

Then, C1 = h(0) + sh′(0) + o(s) as s → 0+. A direct calculation shows that h(0) =
lims→0+ h(s) = 1 and

h′(0) = lim
s→0+ h′(s) = ln(R2) + γ + 1

2
− 2 ln(2) − ψ

( N
2

) = ln(R2) + 1

2
− ρN ,

where ρN is given in (2.2). This ends the proof. ��

Proposition 1 Let � ⊂ R
N be a bounded domain, let (sn)n∈N ⊂ (0, 1), (pn)n∈N ⊂

(1, 2) be such that limn→∞ sn = 0, k := limn→∞ sn
2−pn

∈ [0,∞), and let un be a
weak solution of

(−�)sn un = |un|pn−2un in �, un = 0 in RN \ �. (3.16)

Then |un|∞ ≤ (R2e
1
2−ρN )k + o(1) as n → ∞, where R := 2 diam(�).

Proof By [32, Proposition 8.1], un ∈ L∞(RN ). Let C1 = ln(R2) + 1
2 − ρN , where

ρN is given by (2.2) and R := 2 diam(�) > 0. By Lemma 5, for n sufficiently large,

|un|∞ ≤ (1 + snC1 + o(sn))||un|pn−1| N
s2n

= (1 + snC1 + o(sn))

(∫
�

|un|
N
s2n

(pn−1)
dx

) s2n
N

≤ (1 + snC1 + o(sn))|un|pn−1∞ |�| s
2
n
N .
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Then, |un|∞ ≤
(
(1 + snC1 + o(sn))

1
sn |�| snN

) sn
2−pn . Let k = lim

n→∞
sn

2−pn
≥ 0, then

lim
n→∞

(
(1 + snC1 + o(sn))

1
sn |�| snN

) sn
2−pn = ekC1 = (R2e

1
2−ρN )k

(see [25, Lemma 3.1]), as claimed. ��

3.3 Upper and lower energy bounds

Now we show lower and upper energy bounds for the unique positive solution un
of (1.1). The lower bound is used in the proof of Theorem 1, the upper bound is
presented as a result of independent interest and for comparison with the bound given
in Proposition 1.

In the following, for each s ∈ (0, 1
4 ), ϕs denotes the first Dirichlet eigenfunction of

the fractional Laplacian (normalized in L2-sense) and λ1,s its first eigenvalue, that is,

(−�)sϕs = λ1,sϕs in �, ϕs = 0 on R
N \ �, |ϕs |22 = 1. (3.17)

Due to the variational formulation of the first eigenvalue,

|u|22 ≤ 1

λ1,s
‖u‖2s for every u ∈ Hs

0(�) and for each s ∈ (0, 1
4 ). (3.18)

Lemma 6 Let (sn)n∈N ⊂ (0, 1) be such that lim
n→∞ sn = 0, (pn)n∈N ⊂ (1, 2), and let

un be a positive solution of (3.16) then,

(λ1,sn )
pn

pn−2 |�| ≥ ‖un‖2sn ≥ λ1,sn |ϕsn |22
(

2

pn

|ϕsn |pnpn
λ1,sn |ϕsn |22

) 2
2−pn 2pn−2 − 1

pn − 2

pn
2pn

.

(3.19)

Proof Let an := λ1,sn |ϕsn |22, bn := |ϕsn |pnpn , t > 0, and note that

Jsn (tϕsn ) = t2

2
‖ϕsn‖2sn − t pn

pn
|ϕsn |snsn = t2

λ1,sn

2
|ϕsn |22 − t pn

pn
|ϕsn |snsn

= t2
(
an
2

− t pn−2 bn
pn

)
.

Then Jsn (tϕsn ) < 0 if t < ( 2
pn

bn
an

)
1

2−pn . Let un be a positive solution of (3.16). Since
the least energy solution is the unique positive solution of (3.16) (see [7, Section 6]),
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1608 F. Angeles, A. Saldaña

we have that un is the least energy solution. Let tn := 1
2

(
2
pn

bn
an

) 1
2−pn , then

(
1

2
− 1

pn

)
‖un‖2sn = Jsn (un) ≤ Jsn (tnϕsn ) = an

4

(
2

pn

bn
an

) 2
2−pn

(
1

2
− 1

2pn−1

)

(3.20)

and the lower bound in (3.19) follows. On the other hand, by (3.18), for every u ∈
Hsn

0 (�),

Jsn (u) = 1

2
‖u‖2sn − 1

pn
|u|pnpn ≥ 1

2
‖u‖2sn − 1

pn
C(sn, pn,�)pn‖u‖pn

sn , (3.21)

where C(sn, pn,�) := (λ1,sn )
− 1
2 |�| 2−pn

2pn . For t ≥ 0 let

f (t) := 1

2
t2 − 1

pn
C(sn, pn,�)pn t pn .

Then, f ′(t) = t −C(sn, pn,�)pn t pn−1 = 0 implies that t0 =
(

1
C(sn ,pn ,�)pn

) 1
pn−2

is a

critical point of f . By computing the second derivative and evaluating we obtain that
f ′′(t0) = 1 − C(sn, pn,�)pn (pn − 1)t pn−2

0 = 2 − pn > 0, implying that t0 is the
minimizer for f . Using t0 in f we obtain a lower bound for the energy functional Jsn ,

given by f (t0) = pn−2
2pn

(C(sn, pn,�)pn )
2

2−pn . Thus, for every u ∈ Hsn
0 (�), it holds

that Jsn (u) ≥ pn−2
2pn

(C(sn, pn,�)pn )
2

2−pn . Therefore,

(
1

2
− 1

pn

)
‖un‖2sn = Jsn (un) ≥ pn − 2

2pn

(
C(sn, pn,�)pn

) 2
2−pn ,

and the upper bound in (3.19) follows. ��
Recall that ϕL denotes the first Dirichlet eigenfunction of the logarithmic Laplacian

(normalized in the L2-sense) and λL
1 its corresponding eigenvalue, that is, L�ϕL =

λL
1 ϕL in �, ϕL = 0 on RN \ �, and |ϕL |22 = 1.

Lemma 7 Let (sn)n∈N, (pn)n∈N, and μ as in (1.3), then lim
n→∞(λ1,sn )

pn
pn−2 =

exp

(
− 2λL

1
μ

)
.

Proof The claim follows from the definition of μ and the fact that

λ1,sn = 1 + snλ
L
1 + o(sn) as n → ∞ (3.22)

(see [14, Theorem 1.5] or [22, Theorem 1.1]), because lims→0+(1 + sa + o(s))
1
s =

ea = lims→0+(1 + sa)
1
s for all a 	= 0 (see, e.g., [25, Lemma 3.1]). ��
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Lemma 8 Let (sn)n∈N, (pn)n∈N, and μ as in (1.3), then

lim
n→∞

(
2

pn

|ϕsn |pnpn
λ1,sn |ϕsn |22

) 2
2−pn

= exp

(
−2λL

1

μ
− 2

∫
�

ln(|ϕL |)|ϕL |2 dx + 1

)
.

Proof Note that

(
2

pn

) 2
2−pn =

(
1 − sn

μ

2
+ o(sn)

) 2
sn (−μ+o(1)) → e

and ( 1
λ1,sn

)
2

2−pn → exp

(
− 2λL

1
μ

)
as n → ∞. Moreover,

|ϕsn |pnpn − |ϕsn |22
sn

= pn − 2

sn

∫
�

∫ 1

0
ln |ϕsn ||ϕsn |2+(pn−2)τ dτ dx

→ −μ

∫
�

ln |ϕL ||ϕL |2 dx

as n → ∞, by dominated convergence, see [22, Corollary 1.3 and Theorem 1.1 (ii)].
Therefore,

(
|ϕsn |pnpn
|ϕsn |22

) 2
2−pn

=
(
1 − sn

μ

|ϕL |22 + o(1)

∫
�

ln |ϕL ||ϕL |2 dx + o(sn)

) 2
2−pn

→ exp

(
− 2

|ϕL |22

∫
�

ln |ϕL ||ϕL |2 dx
)

as n → ∞.

Thus,

(
2
pn

|ϕsn |pnpn
λ1,sn |ϕsn |22

) 2
2−pn → exp

(
− 2λL

1
μ

− 2
∫
� ln(|ϕL |)|ϕL |2 dx

|ϕL |22
+ 1

)
as n → ∞. The

claim follows since |ϕL |22 = 1. ��
Theorem 5 Let (sn)n∈N, (pn)n∈N, μ, and (un)n∈N as in Theorem 1, then

ln(2)

2
exp

(
− 2λL

1

μ
− 2

∫
�

ln(|ϕL |)|ϕL |2 dx + 1

)
|ϕL |22 + o(1)

≤ ‖un‖2sn ≤ |�| exp
(

−2λL
1

μ

)
+ o(1)

as n → ∞.

Proof The upper bound follows from Lemma 7 and (3.19). The lower bound follows
from (3.19), Lemma 8, and the fact that λ1,sn |ϕsn |22 2

pn−2−1
pn−2

pn
2pn → ln 2

2 |ϕL |22 = ln 2
2 . ��
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1610 F. Angeles, A. Saldaña

Corollary 1 Let (un)n∈N as in Theorem 5, then |un|22 ≤ |�| exp
(

− 2λL
1

μ

)
+ o(1) as

n → ∞.

Proof The result follows from (3.18) and Theorem 5, because λ1,s = 1+snλL
1 +o(sn)

as n → ∞ (see [22, Theorem 1.1]). ��

4 Sublinear power nonlinearity

4.1 Asymptotically linear case

We characterize first the limiting profile of solutions un of (1.1) when lim
n→∞ pn = 2,

which we call the asymptotically linear case (because |t |pn−2t → t as n → ∞). We
begin our analysis with a study of the least energy solutions of (1.6).

4.1.1 A logarithmic sublinear problem

Recall that J0 : H(�) → R is given by

J0(u) := 1

2
EL(u, u) + I (u), I (u) := μ

4

∫
�

u2
(
ln(u2) − 1

)
dx,

where μ > 0. This functional is of class C1, see [25, Lemma 3.1]. We show first that
J0 is coercive.

Lemma 9 lim‖u‖→∞
u∈H(�)

J0(u) = ∞.

Proof Let u ∈ H(�). By (2.4), there is C = C(�) > 0 such that EL(u, u) ≥
‖u‖2 − C |u|22. Moreover,

J0(u) ≥ 1

2
‖u‖2 − 1

2

(
C + μ

2

)
|u|22 + μ

4

∫
�

u2 ln(u2) dx . (4.1)

Let �̃ :=
{
x ∈ � : ln(u2(x)) > 2C

μ
+ 1

}
. Then,

μ

4

∫
�̃

u2 ln(u2) dx ≥ 1

2

(
C + μ

2

) ∫
�̃

u2 dx .

Therefore,

J0(u) ≥ 1

2
‖u‖2 − 1

2

(
C + μ

2

) ∫
�\�̃

u2 dx + μ

4

∫
�\�̃

u2 ln(u2) dx .

123



Small order limit of fractional Dirichlet... 1611

Since u2 ≤ e
2C
μ

+1 in �\�̃, there is C1 = C1(�,μ) > 0 such that

−1

2

(
C + μ

2

) ∫
�\�̃

u2 dx + μ

4

∫
�\�̃

u2 ln(u2) dx > −C1

and then J0(u) ≥ 1
2‖u‖2 − C1, which yields the result. ��

Theorem 6 For every μ > 0 there is a nontrivial unique (up to a sign) least energy
solution of

L�v0 = −μ ln(|v0|)v0 in �, u0 ∈ H(�). (4.2)

Moreover, v0 does not change sign.

Proof By Lemma 9, there is a minimizing sequence (vk)k∈N for J0, that is,
limk→∞ J0(vk) = infw∈H(�) J0(w) =: m. By the compact embedding of H(�) into
L2(�), there is v0 ∈ H(�) such that, up to a subsequence,

vk⇀v0 in H(�), vk → v0 in L2(�), vk → v0 a.e. in �,

as k → ∞. In particular, ‖v0‖2 ≤ lim inf
k→∞ ‖vk‖2. Moreover, since the function t 
→

t2 ln t2 is bounded below by a constant which is integrable over the bounded set �, it
follows by Fatou’s Lemma that

∫
�

v20 ln(v
2
0) dx ≤ lim inf

k→∞

∫
�

v2k ln(v
2
k ) dx . (4.3)

Observe that

∣∣∣∣∣∣
∫
x,y∈RN

|x−y|≥1

vk(x)vk(y)

|x − y|N dx dy −
∫
x,y∈RN

|x−y|≥1

v0(x)v0(y)

|x − y|N dx dy

∣∣∣∣∣∣
≤

∫
x,y∈RN

|x−y|≥1

|vk(x)||vk(y) − v0(y)|
|x − y|N dx dy +

∫
x,y∈RN

|x−y|≥1

|v0(y)||vk(x) − v0(x)|
|x − y|N dx dy

=: I1 + I2,

where

I1 ≤
∫
RN

|vk(x)|
∫
RN

|vk(x + y) − v0(x + y)|dydx

=
∫

�

|vk(x)| dx
∫

�

|vk(y) − v0(y)|dy → 0,
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and a similar argument shows that I2 → 0 as k → ∞. Hence,

lim
k→∞

∫
x,y∈RN

|x−y|≥1

vk(x)vk(y)

|x − y|N dx dy =
∫
x,y∈RN

|x−y|≥1

v0(x)v0(y)

|x − y|N dx dy. (4.4)

As a consequence, J0(v0) ≤ lim inf
k→∞ J0(vk) = m and v0 is a least energy solution of

(1.4).
To see that v0 is nontrivial, let ϕ ∈ C∞

c (�)\{0} and observe that

J0(v0) = m ≤ J0(tϕ) = t2

2

(
EL(ϕ, ϕ) + μ

2

∫
�

ϕ2(ln(t2) + ln(ϕ2) − 1) dx

)
< 0

(4.5)

for t > 0 sufficiently small, because lim
t→0

ln(t2) = −∞. Therefore v0 	≡ 0.

By [14, Lemma 3.3], EL(|v0|, |v0|) ≤ EL(v0, v0); since v0 is a global minimizer,
this yields that EL(|v0|, |v0|) = EL(v0, v0), which, by [14, Lemma 3.3], implies that
v0 does not change sign.

Finally, we show the uniqueness (up to a sign) of the least energy solution using a
convexity-by-paths argument as in [7, Section 6]. Assume, by contradiction, that there
are two least-energy solutions u and v such that u2 	= v2. Recall that a least-energy
solution is a global minimizer of the energy. Let

γ (t, u, v) := ((1 − t)u2 + tv2)
1
2 for t ∈ [0, 1].

We claim that the function

g : [0, 1] → R given byg(t) := J0(γ (t, u, v)) is strictly convex in [0, 1]. (4.6)

This would yield a contradiction, since the function g cannot have two global mini-
mizers (at t = 0 and at t = 1) and be strictly convex in [0, 1]. To see (4.6), we argue
as in [7, Theorem 6.1].

Note that g(t) = g1(t) + g2(t), where

g1(t) := EL(γ (t, u, v), γ (t, u, v)),

g2(t) := μ

2

∫
�

[γ (t, u, v)(x)]2(ln[γ (t, u(x), v(x))2] − 1) dx .

First, we show the convexity of g1 in [0, 1]. Let t1, t2, θ ∈ [0, 1]. We claim that

g1((1 − θ)t1 + θ t2) ≤ (1 − θ)g1(t1) + θg1(t2). (4.7)

Indeed, set U1 := γ (t1, u, v) and U2 := γ (t2, u, v). A direct calculation shows that

γ ((1 − θ)t1 + θ t2, u, v) = γ (θ,U1,U2).
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Now, for x, y ∈ �, let

a = √
1 − θU1(x), b = √

1 − θU1(y), c = √
θU2(x), d = √

θU2(y).

Then, by theMinkowski inequality, |(a2+c2)
1
2 −(b2+d2)

1
2 | ≤ ((a−b)2+(c−d)2)

1
2 ,

which is equivalent to

(γ (θ,U1,U2)(x) − γ (θ,U1,U2)(y))
2

≤ (1 − θ)(U1(x) −U1(y))
2 + θ(U2(x) −U2(y))

2. (4.8)

But then, using (2.5),

g1((1 − θ)t1 + θ t2)

= EL(γ ((1 − θ)t1 + θ t2, u, v), γ ((1 − θ)t1 + θ t2, u, v))

= EL(γ (θ,U1,U2), γ (θ,U1,U2))

= cN
2

∫
�

∫
�

(γ (θ,U1,U2)(x) − γ (θ,U1,U2)(y))2

|x − y|N dx dy

+
∫

�

(h�(x) + ρN )γ (θ,U1,U2)(x)
2 dx . (4.9)

By (4.8),

∫
�

∫
�

(γ (θ,U1,U2)(x) − γ (θ,U1,U2)(y))2

|x − y|N dx dy

≤ (1 − θ)

∫
�

∫
�

(U1(x) −U1(y))2

|x − y|N dx dy + θ

∫
�

∫
�

(U2(x) −U2(y))2

|x − y|N dx dy

(4.10)

and ∫
�

(h� + ρN )γ (θ,U1,U2)
2 dx

= (1 − θ)

∫
�

(h� + ρN )U 2
1 dx + θ

∫
�

(h� + ρN )U 2
2 dx . (4.11)

By (4.9), (4.10), and (4.11),

g1((1 − θ)t1 + θ t2) ≤ (1 − θ)EL(U1,U1) + θEL(U2,U2)

= (1 − θ)g1(t1) + θg1(t2),

which yields (4.7).
On the other hand, for x ∈ �, let

f (t) := [γ (t, u, v)(x)]2(ln([γ (t, u, v)(x)]2) − 1)

= [(1 − t)u(x)2 + tv(x)2](ln[(1 − t)u(x)2 + tv(x)2] − 1).
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1614 F. Angeles, A. Saldaña

Then f ′′(t) =
(
u(x)2−v(x)2

)2
(1−t)u(x)2+tv(x)2

> 0 in (0, 1), whenever u(x) or v(x) are different
from zero. Since u 	≡ 0 (see (4.5)), we have that

t 
→ g2(t) is strictly convex in [0, 1]. (4.12)

By (4.7) and (4.12), we conclude that (4.6) must hold, which yields the desired con-
tradiction. ��

4.1.2 Convergence of solutions

Theorem 7 Let (sk)k∈N, (pk)k∈N,μ, and (uk)k∈N as in Theorem 1. There is a constant
C = C(�,μ) > 0 such that ‖uk‖2 = E(uk, uk) ≤ C + o(1) as k → ∞.

Proof By Lemma 4 we have that ‖uk‖ is finite for all k ∈ N. Fix k ∈ N and let
(ϕn)n∈N ⊂ C∞

c (�) be such that ϕn → uk in Hsk
0 (�) as n → ∞. We begin with the

identity

In := ‖ϕn‖2sk − |ϕn|22
sk

=
∫ 1

0

∫
RN

|ξ |2skτ ln(|ξ |2)|ϕ̂n(ξ)|2 dξ dτ. (4.13)

From the definition of Jsk (see (2.1)) we have that

In = 1

sk

(
2Jsk (ϕn) + 2

pk
|ϕn|pkpk

)
− |ϕn|22

sk

= 1

sk

(
2Jsk (ϕn) +

(
2 − pk
pk

)
|ϕn|pkpk

)
+ |ϕn|pkpk − |ϕn|22

sk
,

and since uk is a solution of (1.1) and ϕn → uk inHs
0(�) as n → ∞,

2Jsk (ϕn) +
(
2 − pk
pk

)
|ϕn|pkpk = 2Jsk (uk) +

(
2 − pk
pk

)
|uk |pkpk + o(1) = o(1)

as n → ∞; thus,

In = |ϕn|pkpk − |ϕn|22
sk

+ o(1) as n → ∞. (4.14)

Observe that,

|ϕn|pkpk − |ϕn|22
sk

= pk − 2

sk

∫ 1

0

∫
�

|ϕn|2+(pk−2)τ ln(|ϕn|) dx dτ

= pk − 2

sk

(∫ 1

0

∫
{|ϕn |<1}

|ϕn|2+(pk−2)τ ln |ϕn| dx dτ

+
∫ 1

0

∫
{|ϕn |≥1}

|ϕn|2+(pk−2)τ ln |ϕn| dx dτ

)
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Small order limit of fractional Dirichlet... 1615

≤ pk − 2

sk

∫ 1

0

∫
{|ϕn |<1}

|ϕn|2+(pk−2)τ ln |ϕn| dx dτ

≤ 2 − pk
sk

|�| sup
t∈(0,1)

|t || ln |t || <
2 − pk
sk

|�|.

Therefore, by (4.14), we have that

In ≤ 2 − pk
sk

|�| + o(1) as n → ∞. (4.15)

On the other hand,

In ≥
∫ 1

0

∫
{|ξ |<1}

|ξ |2skτ ln(|ξ |2)|ϕ̂n(ξ)|2 dξ dτ +
∫

{|ξ |≥1}
ln(|ξ |2)|ϕ̂n(ξ)|2 dξ

=
∫ 1

0

∫
{|ξ |<1}

|ξ |2skτ ln(|ξ |2)|ϕ̂n(ξ)|2 dξ dτ

−
∫

{|ξ |<1}
| ln(|ξ |2)|ϕ̂n(ξ)|2 dξ +

∫
RN

ln(|ξ |2)|ϕ̂n(ξ)|2 dξ

=
∫ 1

0

∫
{|ξ |<1}

(
|ξ |2skτ − 1

)
ln(|ξ |2)|ϕ̂n(ξ)|2 dξ dτ +

∫
RN

ln(|ξ |2)|ϕ̂n(ξ)|2 dξ

≥
∫
RN

ln(|ξ |2)|ϕ̂n(ξ)|2 dξ = EL(ϕn, ϕn). (4.16)

By (2.4), there is C3 = C3(�) > 0 such that EL(ϕn, ϕn) ≥ ‖ϕn‖2 − C3|ϕn|22. There-
fore, (4.14), (4.15), (4.16), and Proposition 1 yield the existence of C4 = C4(�) > 0
such that

‖ϕn‖2 ≤ In + C3|ϕn|22 ≤ 2 − pk
sk

|�| + C4 + o(1) as n → ∞. (4.17)

Using Lemma 4 and the fact that ϕn → uk in Hsk
0 (�) as n → ∞, taking the limit in

(4.17) when n → ∞ we obtain that ‖uk‖2 ≤ 2−pk
sk

|�| +C4 = (μ + o(1))|�| +C as
k → ∞. ��

We are ready to show Theorem 1.

Proof By Theorem 7, passing to a subsequence, there is C = C(�,μ) > 0 such that,
‖un‖ ≤ C for all n ∈ N. Then, passing to a further subsequence,

un⇀u0 in H(�), un → u0 in L2(�), un → u0 a.e. in � (4.18)
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1616 F. Angeles, A. Saldaña

for some u0 ∈ H(�). Let us first show that u0 is a non-trivial solution of (2.7). Let
ϕ ∈ C∞

c (�), by (1.5) the identity

∫
�

un(ϕ + snL�ϕ + o(sn)) dx =
∫

�

un(−�)snϕ dx =
∫

�

|un|pn−2unϕ dx

=
∫

�

(
un + sn

pn − 2

sn

∫ 1

0
ln(|un|)|un|(pn−2)τun dτ

)
ϕ dx (4.19)

holds in L∞(�) for every n. Then, by (2.7) and (4.19),

EL(un, ϕ) + o(1) =
∫

�

unL�ϕ dx + o(1) (4.20)

= pn − 2

sn

∫
�

∫ 1

0
ln(|un|)|un|(pn−2)τun dτϕ dx, (4.21)

as n → ∞ for all ϕ ∈ C∞
c (�). Then, letting n → ∞ and using Lemma 2,

EL(u0, ϕ) = −μ

∫
�

ln(|u0|)u0ϕ dx for all ϕ ∈ C∞
c (�). (4.22)

By density, u0 is a weak solution of (1.4). Now, let us show that u0 is non-trivial. By
Theorem 5, we know the existence of C = C(�,μ) > 0 such that

C ≤ ‖un‖2sn =
∫

�

|un|pn dx ≤ |�| 2−pn
2

(∫
�

|un|2 dx
) pn

2

,

and so, C
2
pn |�| pn−2

pn ≤ ∫
�

|un|2 dx . Letting n → ∞ we conclude that 0 < C ≤∫
�

|u0|2 dx . Therefore, u0 	= 0. Since u0 is a weak solution of (1.4), we have that

J0(u0) = EL(u0, u0)

2
+ μ

4

∫
�

u20

(
ln(u20) − 1

)
dx = −μ

4

∫
�

u20 dx .

To see that u0 is of least energy it remains to show that −μ
4 |u0|22 = infH(�) J0. By

Hölder’s inequality,

0 ≤ lim sup
n→∞

|un − u0|pn ≤ lim sup
n→∞

|�| 2−pn
2pn |un − u0|2 = 0,

thus, using Proposition 1 and Lemma 1, lim
n→∞ ‖un‖2sn = lim

n→∞ |un|pnpn = |u0|22. Then,

−μ

4
lim
n→∞ ‖un‖2sn = −μ

4
lim
n→∞ |un|pnpn = −μ

4
|u0|22 = J0(u0). (4.23)

On the other hand, by Theorem 6, there is v0 ∈ H(�) such that J0(v0) = infH(�) J0
and by [14, Theorem 3.1] there is a sequence (vk)k∈N ⊂ C∞

c (�) such that vk → v0
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in H(�) as k → ∞. Since vk ∈ C∞
c (�) for all k ∈ N and un is of least energy (by

uniqueness [7, Theorem 6.1]), we have that

−μ

4
lim
n→∞ ‖un‖2sn = lim

n→∞
1

sn
Jsn (un) ≤ lim

n→∞
1

sn
Jsn (vk).

By (3.6), we obtain the following inequality

−μ

4
lim
n→∞ ‖un‖2sn ≤ −μ

4
|vk |22 + 1

2

(
EL(vk, vk) + μ

∫
RN

|vk |2 ln |vk | dx
)

= −μ

4
|v0|22 + o(1) = J0(v0) + o(1) = inf

H(�)
J0 + o(1) (4.24)

as k → ∞, according with Lemma 3. Therefore, by (4.23) and (4.24),

inf
H(�)

J0 ≤ J0(u0) = −μ

4
|u0|22 = −μ

4
lim
n→∞ ‖un‖2sn ≤ inf

H(�)
J0

as claimed. Since u0 ∈ H(�) is a least energy solution of (1.4), Theorem 6 implies
that u0 does not change sign in �.

To conclude the proof, we show that u0 ∈ L∞(�) and

|u0|∞ ≤ ((2 diam(�))2e
1
2−ρN )

1
μ =: C0. (4.25)

By Proposition 1, |un|∞ ≤ C0 + o(1) as n → ∞. Assume, by contradiction, that
there is ε > 0 and set ω ⊂ � of positive measure such that |u0| > (1 + ε)C0 in ω.
This implies that

|un(x) − u0(x)| ≥ |u0(x)| − |un(x)| > (1 + ε)C0 − C0 = εC0 for a.e. x ∈ ω.

Thus,
∫
�

|un − u0|2 dx ≥ ∫
ω

|un − u0|2 dx > εC0|ω| > 0, which contradicts the L2-
convergence of un to u0. Therefore, (4.25) holds. In consequence, up to a subsequence,
the convergence un → u0 in Lq(�) for any 1 ≤ q < ∞ now follows by the dominated
convergence theorem. Finally, since (1.4) has a unique least energy solution, we have
that the limit u0 is independent of the chosen subsequence of (un)n∈N, therefore the
whole sequence (un)n∈N must also converge to u0 in L2(�). ��
Remark 1 One could also phrase the statement of Theorem 1 as follows: Let � ⊂ R

N

be an open bounded Lipschitz set. Let h : (0, 1) → (0, 1) be a function such that
h(s)/s → μ ∈ (0,∞) as s → 0+. For s ∈ (0, 1), let us be the unique positive
solution of

(−�)sus = u1−h(s)
s in �, us = 0 on RN\�.

Then us → u0 in Lq(RN ) as s → 0+ for all 1 ≤ q < ∞, where u0 ∈ H(�) ∩
L∞(�)\{0} is the unique nonnegative least energy solution of (1.4).
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1618 F. Angeles, A. Saldaña

Since the nonlinearity −μ ln |u|u can change sign even if u ≥ 0, one cannot use
standard maximum principles to characterize the sign properties of the solution; how-
ever, in the next result we show a strong maximum principle for continuous weak
solutions of (4.2) by working on small neighborhoods and using the negative sign of
−μ.

Lemma 10 Let v ∈ C(RN ) be a nontrivial nonnegative weak solution of (4.2), then
v > 0 in �.

Proof By contradiction, assume that there is x0 ∈ � such that

v(x0) = 0. (4.26)

By continuity and because v 	= 0, there are δ > 0, an open set V ⊂ {x ∈ � : v(x) >

δ}, and r > 0 such that

−μ ln |v|v ≥ 0 in Br (x0) and dist(Br (x0), V ) > 0.

By [14, Corollary 1.9], we can consider, if necessary, r smaller so that L� satisfies
the weak maximum principle in Br (x0) and λL

1 > 0, where λL
1 is the first eigenvalue

of L�. Now, a standard application of the Riesz representation theorem yields the
existence of a unique solution τ ∈ H(�) of

L�τ = 1 in Br (x0), τ = 0 in RN \ Br (x0).

Moreover, by [12, Theorem 1.1], we know that τ is a classical solution, namely, that
L�τ(x) = 1 holds pointwisely for x ∈ �. This implies that τ > 0 in Br (x0), since if
τ(y0) = 0 for some y0 ∈ �, then

1 = L�τ(y0) = −cN

∫
Br (x0)

τ (y)

|y0 − y|N dy < 0,

which would yield a contradiction. Now we argue as in [18]. Let χV denote the
characteristic function of V and note that, for x ∈ Br (x0), χV (x) = 0 and therefore

L�χV (x) = −cN

∫
RN

χV (y)

|x − y|N dy

= −cN

∫
V

1

|x − y|N dy ≤ −cN |V | inf
z∈Br (x0)

(|z − y|−N ).

Let K := cN |V | inf z∈Br (x0)(|z−y|−N ) and ϕ := K
2 τ +χV . Then, L�ϕ ≤ K/2−K ≤

0 in Br (x0). Moreover, since v > δ in V , we have that

L�(v − δϕ) ≥ 0 in Br (x0), v − δϕ ≥ 0 in RN \ Br (x0) (4.27)

in the weak sense. Then, by the weak maximum principle (see [14, Corollary 1.8]) we
obtain that v ≥ δϕ ≥ δτ > 0 in Br (x0), a contradiction to (4.26). Therefore v > 0 in
�. ��
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Proof Existence and uniqueness of least energy solutions follow from Theorem 6, and
the estimate (1.8) follows from (4.25), by uniqueness. Assume now that � satisfies a
uniform exterior sphere condition, then, since v ∈ L∞(�), it follows that ln |v|v ∈
L∞(�), and, by [14, Theorem 1.11], we have that v ∈ C(�). The estimate (1.9)
follows from [12, Corollary 5.8] and a standard density argument. The fact that |v| > 0
in � follows from Lemma 10. ��
Remark 2 Note that the regularity in (1.9) is not enough to guarantee that u is a
classical solution, namely, that L�u can be evaluated pointwisely. This would require
a refinement of [12, Theorem 1.1], see [12, Section 6, open problem (1)].

4.2 Asymptotically sublinear case

Nowwe focus our attention on the analysis of solutions un of (1.1)when limn→∞ pn ∈
[1, 2), which we call the asymptotically sublinear case. We begin by considering an
auxiliary nonlinear eigenvalue problem in a rescaled domain. Let (sn) ⊂ (0, 1) be
such that limn→∞ sn = 0,

pn ⊂ (1, 2) be such that lim
n→∞ pn = p ∈ [1, 2).

Let λ := |�| and �λ := 1
λ
� (note that |�λ| = 1). Set

�0 := inf

{∫
�

|v|2 dx : v ∈ L2(�λ) and
∫

�λ

|v|p dx = 1

}
, (4.28)

�n := inf
{
‖v‖2sn : v ∈ Hsn

0 (�λ), |v|pnpn = 1
}

, (4.29)

and let χ�λ denote the characteristic function of �λ.

Lemma 11 The infimum �0 is achieved at χ�λ; in particular, �0 = 1 = |χ�λ |22.
Proof Clearly, �0 ≤ 1, because |�λ| = 1 = |χ�λ |22 = |χ�λ |pp. On the other hand, for
each v ∈ {

v ∈ L2(�λ) : v = 0 in RN\�λ and |v|pp = 1
}
it holds that 1 = |v|pp ≤

|v|p2 , thus 1 ≤ �0. ��
Proposition 2 For every n ∈ N there is vn ∈ Hsn

0 (�λ) such that �n = ‖vn‖2sn .
Moreover, vn → 1 in L2(�λ), �n → 1 as n → ∞, and (vn)n∈N is a minimizing
sequence for �0.

Proof Using the compact embedding of Hsn
0 (�λ) into L pn (�λ) and standard argu-

ments, we have that the infimum�n is achieved at some nontrivial vn ∈ Hsn
0 (�λ). We

can assume w.l.o.g. that vn is nonnegative. By the Lagrange multiplier theorem, each
vn is a solution of

(−�)snvn = �nv
pn−1
n in �λ, vn ∈ Hsn

0 (�λ). (4.30)
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Let ϕ ∈ C∞
c (�λ)\{0} and recall that limn→∞ pn = p ∈ [1, 2), then

�n = ‖vn‖2sn ≤ ‖ϕ‖2sn
|ϕ|2pn

= |ϕ|22
|ϕ|2p

+ o(1) as n → ∞,

because |ϕ|pn → |ϕ|p and ‖ϕ‖2sn → |ϕ|22 as n → ∞. Thus, passing to a subsequence,
�n = ‖vn‖2sn → �∗

0 as n → ∞ for some �∗
0 ≥ 0. Observe that

�∗
0 ≤ |ϕ|22

|ϕ|2p
for all ϕ ∈ C∞

c (�λ)\{0}. (4.31)

Let �0 be as in (4.28). By Lemma 11, (4.31), and the density of C∞
c (�λ) in L2(�),

�∗
0 ≤ �0 ≤ |vn|22

|vn|2p
≤ λ1,sn

‖vn‖2sn
|vn|2p

= (1 + o(1))
�n

|vn|2p
,

as n → ∞, where we have used that 1 + o(1) = λ1,sn := inf{‖v‖2sn : v ∈
Hsn

0 (�λ) and |v|2 = 1} as n → ∞, see [22, Theorem 1.1]. Notice that, by Proposi-
tion 1, the sequence (vn)n∈N is uniformly bounded in L∞(�λ). Thus, Lemma 1 yields
that

∣∣∫
�

|vn|p − ∫
�

|vn|pn
∣∣ = o(1) as n → ∞ and, since |vn|pn = 1, lim

n→∞ |vn|p = 1.

Then �0 ≤ �∗
0 and therefore �0 = �∗

0, namely,

‖vn‖2sn = �n → �0 as n → ∞. (4.32)

Now, since �0 ≤ |vn |22
|vn |2p ≤ ‖vn‖2sn

|vn |2p λ−1
1,sn

,

(1 + o(1)) �0 = |vn|2p�0 ≤ |vn|22 ≤ (λ1,sn )
−1�n = (1 + o(1)) (�0 + o(1))

as n → ∞. As a consequence, vn is a minimizing sequence for �0, namely,

|vn|22 → �0 as n → ∞. (4.33)

Finally, we show that vn → 1 in L2(�λ) as n → ∞. By Lemma 11 we have
that �0 = 1. By contradiction, assume that there is δ > 0 and n0 ∈ N such that∫
�λ

|vn − 1|2 dx ≥ δ > 0 for all n ≥ n0. Then, using (4.33),

∫
�λ

vn dx ≤ 1 − δ

2
+ o(1) as n → ∞. (4.34)
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Let αn := 2(pn − 1), βn := 2 − pn, rn := 2
αn

, qn := 1
βn

. Notice that rn, qn > 1 for

all n ∈ N, 1
rn

+ 1
qn

= 1 and αn + βn = pn . Then, by Young’s inequality,

1 = |vn|pnpn =
∫

�λ

vαn
n vβn

n dx ≤ (pn − 1)|vn|22 + (2 − pn)|vn|1. (4.35)

Then by (4.33), (4.34), (4.35),

1 ≤ (pn − 1) (1 + o(1)) + (2 − pn)

(
1 + o(1) − δ

2

)

= (p − 1 + o(1)) (1 + o(1)) + (2 − p + o(1))

(
1 + o(1) − δ

2

)

= 1 − 2 − p

2
δ + o(1)

as n → ∞ and the contradiction follows. ��
We are ready to show Theorem 3.

Proof Let un ∈ Hsn
0 (�) be the positive least-energy solution of (1.1) and letwn(x) :=

λ
− 2sn

2−pn un(λx). Then wn is a positive least-energy solution of

(−�)snwn = |wn|pn−2wn, wn ∈ Hsn
0 (�λ), (4.36)

�λ = �
|�| , and ‖wn‖sn = λ

− 2sn
2−pn λ

2sn−N
2 ‖un‖sn = λ

pn N−2pnsn−2N
2(2−pn ) ‖un‖sn . Passing to a

subsequence, let vn be the minimizers of �n given in Proposition 2. By uniqueness
of positive solutions of sublinear problems (see e.g. [7, Theorem 6.1]), the equations

(4.30) and (4.36) imply that wn = �
1

pn−2
n vn . Then, by Proposition 2 and Lemma 11,

λ
− 2sn

2−pn un(λx) = wn → 1 in L2(�λ) as n → ∞. Since limn→∞ pn ∈ (1, 2), we
conclude that un → 1 in L2(�) as n → ∞, as claimed. The convergence in Lq(�) for
1 ≤ q < ∞ now follows from Proposition 1 and the dominated convergence theorem.
Note that the limit 1 is independent of the chosen subsequence of (un)n∈N, therefore
the whole sequence (un)n∈N must also converge to 1 in Lq(�) for 1 ≤ q < ∞. This
ends the proof. ��
Remark 3 One could also phrase the statement of Theorem 3 as follows: Let � ⊂ R

N

be an open boundedLipschitz set, h : (0, 1) → (0, 1) be a function such that h(s) → p
as s → 0+ for some p ∈ [0, 1) and, for s ∈ (0, 1), let us be the unique positive solution
of

(−�)sus = uh(s)
s in �, us = 0 on R

N\�.

Then us → 1 in Lq(RN ) as s → 0+ for all 1 ≤ q < ∞.
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5 Other sublinear-type problems

Recall that � ⊂ R
N is an open bounded Lipschitz set. In this section, (sn)n∈N is a

sequence in (0, 1) such that limn→∞ sn = 0. Let � ⊂ R
N be a bounded open set with

Lipschitz boundary, and let

ε > 0, A > 0, r > 2. (5.1)

Define

Ln(u) := 1
2‖u‖2sn + A

r |u|rr , �n :=
{
v ∈ Hs

0(�) ∩ Lr (�) : |�|−1ε|u|22 = 1
}

,

(5.2)

and consider the following variational problem

n := inf {Ln(u) : u ∈ �n} . (5.3)

Using the compact embedding Hs
0(�) ↪→ L2(�) and standard arguments, it follows

that the infimum n is achieved at a non-trivial function vn ∈ �n which does not
change sign (since Es(|vn|, |vn|) ≤ Es(vn, vn)). Throughout this section we assume
that

vn ∈ �n is a non-negative function such that n = Ln(vn). (5.4)

5.1 Auxiliary nonlinear eigenvalue problems

Let ε > 0, A > 0, r > 2, define G(u) := |�|−1ε
∫
�

|u|2 dx and

J (u) := 1
2 |u|22 + A

r |u|rr , (5.5)

�0 :=
{
v ∈ L2(RN ) ∩ Lr (RN ) : u = 0 in RN\�, G(u) = 1

}
.

Let 0 := inf {J (u) : u ∈ �0} .

Theorem 8 Let � ⊂ R
N be an open bounded Lipschitz set. Then, 0 = |�|

2ε + A|�|
rεr/2

.

Proof Since ε−1/2χ� ∈ �0, we have that 0 ≤ |χ�|22
2ε + A|χ�|rr

rεr/2
= |�|

2ε + A|�|
rεr/2

. On the

other hand, for every u ∈ Lr (�) such that
ε|u|22|�| = 1, Hölder’s inequality yields that

|�|
εr/2

≤ |u|rr . Then, by (5.1), |�|
2ε + A|�|

rεr/2
≤ |u|22

2 + A|u|rr
r , holds for all u ∈ �0. This

proves the result. ��
Theorem 9 Let � ⊂ R

N be an open bounded Lipschitz set. Then

n → 0 as n → ∞ (5.6)
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and (vn)n∈N is a minimizing sequence for 0, that is

|vn|22
2

+ A|vn|rr
r

→ 0 as n → ∞. (5.7)

Proof Let ϕ ∈ C∞
c (�)\ {0} and set φ :=

( |�|
ε

)1/2
ϕ

|ϕ|2 so that |φ|22 = |�|
ε
. Then,

n = ‖vn‖2sn
2

+ A|vn|rr
r

≤ ‖φ‖2sn
2

+ A|φ|rr
r

= |φ|22
2

+ A|φ|rr
r

+ o(1) = |�|
2ε

+ A|φ|rr
r

+ o(1)

as n → ∞, where (sn)n∈N ⊂ (0, 1) is the sequence associated to n . Then, up to a

subsequence, n = ‖vn‖2sn
2 + A|vn |rr

r → ∗
0 as n → ∞ for some ∗

0 ≥ 0. In particular,
it holds that

∗
0 ≤ |�|

2ε
+ A

r

( |�|
ε

)r/2 |ϕ|rr
|ϕ|r2

for all ϕ ∈ C∞
c (�) \ {0} .

Using the definition of 0 and a density argument, it follows that

∗
0 ≤ 0. (5.8)

On the other hand, using that vn ∈ Lr (�) and |vn|22 = |�|ε−1 for all n ∈ N, together
with (3.18),

0 ≤ |vn|22
2

+ A|vn|rr
r

≤ (λ1,sn )
−1‖vn‖2sn
2

+ A|vn|rr
r

, (5.9)

implying that 0 ≤ n + o(1) = ∗
0 + o(1) as n → ∞. This inequality combined

with (5.8) yields (5.6). Then, by (5.9), 0 ≤ |vn |22
2 + A|vn |rr

r = n + o(1) = 0 + o(1)
as n → ∞, which proves (5.7). ��

The following result characterizes the minimizer of 0.

Theorem 10 Let J , �0, and G be as in (5.5). If u ∈ �0 is a minimizer for 0, then
|u| = ε−1/2 a.e. in �.

Proof Clearly, both J and G are differentiable on Lr (�). Assume that u ∈ �0 is
a minimizer for 0. Since u 	= 0, there is a test function ϕu ∈ C∞

c (�) such that
DϕuG(u) = 2|�|−1ε

∫
�
uϕudx 	= 0, where DϕuG(u) is the Gâteaux derivative of G

at u in the direction ϕu .
Then, by the Lagrange multiplier theorem (see, for example, [24, Ch. 2, Sec 1,

Theorem1]), there is a real numberλM such that the equation Dϕ J (u)−λMDϕG(u) =
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0 holds for all ϕ ∈ C∞
c (�), that is,

∫
�

(
u + A|u|r−2u − 2λM |�|−1εu

)
ϕ dx = 0 for all ϕ ∈ C∞

c (�).

In consequence, u satisfies that u+ A|u|r−2u−2λM |�|−1εu = 0 a.e. in�. If x1 ∈ �

is such that u(x1) 	= 0 then, A|u(x1)|r−2 = 2λM |�|−1ε − 1. Therefore,

|u| = K0χV0 , V0 := {x ∈ � : u 	= 0} (5.10)

for some constant K0 > 0. Since u must satisfy that G(u) = 1, it follows that

K0 =
( |�|

ε|V0|
)1/2

, (5.11)

and in particular, |u|rr = |�|r/2
εr/2|V0|(r−2)/2 . Now, let us assume that |V0| < |�|. Given that

u is a minimizer, (5.10) combined with (5.1) and Theorem 8 imply that

0 = |u|22
2

+ A|u|rr
r

= |V0|
(

1

2ε

|�|
|V0| + A

rεr/2
|�|r/2
|V0|r/2

)

> |V0|
(

1

2ε

|�|
|V0| + A

rεr/2
|�|
|V0|

)
= |�|

2ε
+ A

rεr/2
|�| = 0,

a contradiction. Therefore, |V0| = |�|. This implies that |� \ V0| = 0, which leads us
to conclude that χV0 = χ� a.e. in �, and by (5.11) that K0 = ε−1/2. The result now
follows from (5.10). ��

Recall that λ1,s = λ1,s(�) > 0 denotes the first Dirichlet eigenvalue of the frac-
tional Laplacian (−�)s in a domain � (see (3.17)).

Proposition 3 Let ε > 0, A > 0, r > 2, and η > λ1,s(�). There is a positive weak
solution u ∈ Hs

0(�) ∩ Lr (�) of the equation (−�)su + Aur−1 = ηu in �, that is,

Es(u, φ) + A
∫

�

ur−1φdx − η

∫
�

uφdx = 0 for all φ ∈ C∞
c (�). (5.12)

Moreover, u ≤ ( η
A

) 1
r−2 a.e. in RN .

Proof The existence of u follows by global minimization and standard arguments

(see, for example, [7, Corollary 6.3]). Let η0 := (
η
A )

1
r−2 and φ := (η0 − u)− =

−min{0, η0 − u} ≥ 0; then,

u(ηr−2
0 − ur−2)φ = u(ηr−2

0 − ur−2)
η0 − u

η0 − u
φ = −uφ2 ηr−2

0 − ur−2

η0 − u
≤ 0,
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since (ηr−2
0 − ur−2)/(η0 − u) > 0. Moreover, u(x) − η0 = −(η0 − u(x)) = −(η0 −

u(x))+ + φ(x), thus u(x) − u(y) = (u(x) − η0) − (u(y) − η0) = (η0 − u(y))+ −
(η0 − u(x))+ + φ(x) − φ(y), and

(u(x) − u(y))(φ(x) − φ(y))

= (φ(x) − φ(y))2 + [(η0 − u(y))+ − (η0 − u(x))+](φ(x) − φ(y))

= (φ(x) − φ(y))2 + (η0 − u(y))+φ(x) + (η0 − u(x))+φ(y) ≥ (φ(x) − φ(y))2;

but then, by (5.12),

0 = Es(u, φ) + A
∫

�

u(x)(ur−2(x) − ηr−2
0 )φ(x) dx ≥ Es(φ, φ) ≥ 0,

which implies that φ ≡ 0 and u ≤ η0 in �. ��
Lemma 12 Let vn be as in (5.4). Then, the sequence (vn)n∈N is bounded in L∞(�).

Proof Since vn is a minimizer of Ln (given in (5.2)) under the restriction Gn(u) :=
|�|−1ε|u|22 = 1, the Lagrange’s multiplier theorem implies the existence of a real
number λn such that vn is a weak solution of (−�)snvn + Avr−1

n = 2λn|�|−1εu in
�. Moreover,

λn = ‖vn‖2sn + A|vn|rr
2

= n +
(
r − 2

2r

)
A|vn|rr , (5.13)

where n is given in (5.3). By Theorem 9 it follows that λn is bounded and, by

Proposition 3, vn ≤ (
(2λn|�|−1ε)/A

) 1
r−2 , which yields the result. ��

Theorem 11 Let vn be as in (5.4). Then vn → ε−1/2 in L p(�) as n → ∞ for every
1 ≤ p < ∞.

Proof By Theorems 8, 9, and the fact that vn ∈ �n ,

A

r
|v2n |r/2r/2 = A

r
|vn|rr = 0 − |vn|22

2
+ o(1) = 0 − |�|

2ε
+ o(1) = A

r

|�|
εr/2

+ o(1)

(5.14)

as n → ∞, which implies that the sequence (wn)n∈N := (v2n)n∈N is bounded in
Lr/2(�). Then, there is w∗ ∈ Lr/2(�) such that, up to a subsequence,

wn⇀w∗ in Lr/2(�) as n → ∞. (5.15)

In consequence, |w∗|r/2r/2 ≤ lim inf
n→∞ |wn|r/2r/2 = lim inf

n→∞ |vn|rr . Then, by Theorem 9,

|�|
2ε

+ A

r
|w∗|r/2r/2 ≤ |�|

2ε
+ lim inf

n→∞

(
A

r
|vn|rr

)
= 0. (5.16)
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By (5.15), for every open set O ⊂ �,

0 ≤
∫
O

v2n dx =
∫

�

v2nχO dx →
∫

�

w∗χO dx =
∫
O

w∗ dx . (5.17)

Hence,
∫
O w∗ dx ≥ 0 for every open set O ⊂ � and thus, Lebesgue’s differ-

entiation theorem yields that w∗ ≥ 0 a.e. in �. Moreover, taking O = � in
(5.17), |�|ε−1 = ∫

�
v2n dx → ∫

�
w∗ dx . Therefore,

∫
�

|w∗|r/2 dx = |√w∗|rr and∫
�

w∗ dx = |√w∗|22 = |�|ε−1. Then, (5.16) yields the inequality 1
2 |

√
w∗|22 +

A
r |√w∗|rr ≤ 0, which implies that

√
w∗ ∈ Lr (�) is a minimizer of the func-

tional J (u) with the restriction G(u) − 1 = 0. Consequently, Theorem 10 yields that√
w∗ = ε−1/2χ�. From (5.14) and (5.15),

v2n⇀
1

ε
in Lr/2(�) as n → ∞. (5.18)

Since (5.14) means that |v2n |r/2r/2 = �
εr/2

+ o(1) as n → ∞, this result together with

(5.18) implies that v2n → ε−1 in Lr/2(�) as n → ∞. Finally, since (vn)n is bounded
in L∞(�) and, up to a subsequence, vn → ε−1/2 a.e. in �, from the dominated
convergence theorem it follows that vn → ε−1/2 in L p(�) for every 1 ≤ p < ∞, as
desired. Since the limit is independent of the chosen subsequence, the convergence
holds for the whole sequence, as claimed. ��

Finally, as a consequence of this last result, we can show that the bound obtained
during the proof of Lemma 12 can be improved.

Corollary 2 Let (vn)n∈N be as in (5.4), then

0 ≤ vn ≤
(
1

A
+ ε

2−r
2

) 1
r−2 + o(1) as n → ∞.

Proof By Proposition 3, we have that vn ≤ A
1

2−r
(
2λn|�|−1ε

) 1
r−2 . Using (5.13),

vn ≤ A
1

2−r

{
2|�|−1ε

(
n +

(
r − 2

2r

)
A|vn|rr

)} 1
r−2

.

Since, by Theorem 11, |vn|rr → ε−r/2|�|, we have, by Theorems 8 and 9, that

vn ≤ A
1

2−r

{
2|�|−1ε

( |�|
2ε

+ A|�|
2εr/2

+ o(1)

)} 1
r−2

= A
1

2−r

(
1 + Aε

2−r
2

) 1
r−2 + o(1) as n → ∞.

��
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The following is an easy calculation that will be useful for our next result.

Lemma 13 For M, r > 2, a ∈ [0, M], b ≥ 0, a 	= b, let F(a, b) := ar−2−br−2

a−b . There
are C = C(r , M) > 0 and α = α(r) ≥ 0 such that F(a, b) ≥ Cbα .

Proof If r − 2 > 1 and z := a
b , then

F(a, b)

ar−3 + br−3 = zr−2 − 1

(z − 1)(zr−3 + 1)
.

Since limz→1
zr−2−1

(z−1)(zr−3+1)
= r−2

2 , we can find C = C(r) > 0 such that F(a, b) ≥
C(r)(ar−3 + br−3) for all n ∈ N.

If 0 < r − 2 < 1, then the function f (y) = yr−2 is concave, which implies that
F(a, b) ≥ F(M, b) for all a < M and b ∈ R, where lim

b→M
F(M, b) = (r − 2)Mr−3.

Therefore, there is C0 = C0(r , M) > 0 such that F(a, b) ≥ C0 > 0. ��
We are ready to show the main result in this section.

Theorem 12 Let ε > 0, A > 0, r > 2, η0 := 1 + Aε
2−r
2 , and let (sn)n∈N ⊂ (0, 1) be

such that limn→∞ sn = 0. For n sufficiently large, the problem

(−�)sn un + Aur−1
n − η0un = 0 in �, un = 0 on R

N\�, (5.19)

has a unique positive solution un ∈ Hsn
0 (�) ∩ Lr (�). Moreover,

un → ε−1/2 in L p(�) asn → ∞ for every 1 ≤ p < ∞.

Proof Since limn→∞ sn = 0, by (3.22), there is n0 ∈ N so that η0 := 1 + Aε
2−r
2 >

λ1,sn for all n ≥ n0. Then, the existence and uniqueness of a positive solution un ∈
Hsn

0 (�) ∩ Lr (�) of (5.19) follows by arguing as in [7, Corollary 6.3].
Let vn and n be as (5.4), and λn be as in (5.13). In particular,

(−�)snvn + Avr−1
n − ηnvn = 0 in �, ηn := 2|�|−1ελn . (5.20)

By (5.13) andTheorems9 and11,wehave thatηn → η0 asn → ∞. Letwn := un−vn ,
then

(−�)snwn +
(
Aur−2

n − η0

)
wn =

(
η0 − ηn − A(ur−2

n − vr−2
n )

)
vn in �,

Define F(a, b) := ar−2−br−2

a−b , and notice that F > 0 for a 	= b, a, b ≥ 0. Then,

‖wn‖2sn +
∫

�

(
Aur−2

n − η0

)
w2
n dx

= (η0 − ηn)

∫
�

vnwn dx − A
∫

�

F(un, vn)w
2
nvn dx

≤ (η0 − ηn)

∫
�

vnwn dx = o(1), (5.21)
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because ηn → η0 as n → ∞ and because wn, vn ∈ L∞(�), by Proposition 3 and
Corollary 2.

Now we argue as in [8, Proposition 6.2]. By using standard arguments, the problem

μn = inf
v∈Hsn

0 (�)\{0}
‖v‖2sn + ∫

�

(
Aur−2

n − γ0
)
v2 dx

|v|22
, (5.22)

has a nontrivial non-negative solution zn ∈ Hsn
0 (�) for each n ∈ N. In particular, zn

is a weak solution of (−�)sn zn + (
Aur−2

n − γ0
)
zn = μnzn in �. Testing with un and

integrating by parts,

0 =
∫

�

(
(−�)sn un +

(
Aur−2

n − η0

)
un

)
zn dx = μn

∫
�

znun dx, (5.23)

by (5.19). Let us show that μn = 0. By Proposition 3, un ≤ (η0/A)
1

r−2 , and then
(−�)sn un = (

η0 − Aur−2
n

)
un ≥ 0 in �; by (5.1), we can apply the strong maximum

principle (see, for example, [27]) to conclude that un > 0 in �. Since zn ≥ 0 and
zn 	= 0, (5.23) implies that μn = 0. Then, by (5.21) and the definition of μn ,

0 = μ|wn|22 ≤ ‖wn‖2sn +
∫

�

(Aur−2
n − η0)w

2
n dx

= o(1) − A
∫

�

Fn(un, vn)w
2
nvn dx ≤ o(1)

as n → ∞. In particular, lim
n→∞ A

∫
�
F(un, vn)w2

nvn dx = 0. Since Proposition 3

guarantees the existence of a constant M > 0 such that un ≤ M for all n ∈ N, we
have, by Lemma 13, that there are C1 = C1(r , M) > 0 and α = α(r) ≥ 0 such that
F(un, vn) ≥ C1v

α
n . As a consequence,

0 = lim
n→∞ A

∫
�

F(un, vn)w
2
nvn dx ≥ C1 lim

n→∞

∫
�

vα+1
n w2

n dx ≥ 0, (5.24)

that is, lim
n→∞

∫
�

vα+1
n w2

n dx = 0. Furthermore, by Theorem 11 and dominated con-

vergence, we have that limn→∞
∫
�

|1 − ε
α+1
2 vα+1

n | dx = 0. By Proposition 3 and
Corollary 2, there is C > 0 such that |wn|2∞ < C and then

0 ≤
∫

�

w2
n dx ≤

∫
�

(1 − ε
α+1
2 vα+1

n )w2
n dx + ε

α+1
2

∫
�

vα+1
n w2

n dx = o(1)
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as n → ∞, i.e., lim
n→∞

∫
�

w2
n dx = 0. Finally,

∫
�

|un − ε−1/2|2 dx ≤
∫

�

(
|wn| + |vn − ε−1/2|

)2
dx

≤ 4
∫

�

w2
n + |vn − ε−1/2|2dx → 0 as n → ∞,

which proves the result for p = 2. The general case, 1 ≤ p < ∞, now follows
from the dominated convergence theorem since, by Proposition 3, (un)n is bounded
in L∞(�). ��
Proof The proof follows directly from Theorem 12 using r = p + 1, A = 1, and

ε = (k − 1)
2

2−r = (k − 1)
2

1−p . ��
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