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Abstract
We show that the Peetre K -functional between the space L p with 0 < p < 1 and

the corresponding smooth function spaceWψ
p generated by the Weyl-type differential

operatorψ(D), whereψ is a homogeneous function of any positive order, is identically
zero. The proof of themain results is based on the properties of the de la Vallée Poussin
kernels and the quadrature formulas for trigonometric polynomials and entire functions
of exponential type.
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1 Introduction

The classical Peetre K -functional is defined by

K ( f , t; X ,Y ) := inf
g∈Y(‖ f − g‖X + t |g|Y ),

where (X , ‖ · ‖X ) is a (quasi)-Banach space and Y ⊂ X is a complete subspace
with semi-norm | · |Y . The K -functional is one of the main tool in the theory of
interpolation spaces. Moreover, it has important applications in approximation theory.
Namely, smoothness properties of a function aswell as errors of various approximation
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methods can be efficiently expressed by means of K -functionals, especially when the
classical moduli of smoothness cannot be applied, see, e.g., [6], [7], [11], [15], [16].

In this paper, we are interested in the case, where X is an L p space and Y is a

smooth function space Wψ
p generated by the Weyl-type differential operator ψ(D),

whereψ is a homogeneous function. The class of such differential operators includes,
for example, the classical partial derivatives, Weyl and Riesz derivatives, the Laplace-
operator and its (fractional) powers. Let us consider the K -functional for the pair
(L p(T),Wα

p (T)), where T is the circle and Wα
p (T) is the fractional Sobolev space

defined via the Weyl derivative of order α > 0, i.e.,

K ( f , δα; L p,W
α
p ) = inf

g∈Wα
p (T)

(‖ f − g‖L p(T) + δα‖g(α)‖L p(T)). (1.1)

It is well-known that if 1 ≤ p ≤ ∞, then this K -functional is equivalent to the classical
modulus of smoothness of order α, see [8] for the case α ∈ N and [4] for arbitrary
α > 0. A similar result for the Riesz derivative and special modulus of smoothness
was established in [21]. Properties and applications of the K -functionals between
the space L p on the torus T

d or R
d and the corresponding smooth function space

Wψ
p with a particular homogeneous function ψ were studied in [2], [6], [14], [19],

[25]. Also, there are many works dedicated to the study of K -functionals in different
quasi-normed Hardy spaces Hp, 0 < p < 1, see, e.g., [10], [11], [16], [17, Ch. 4]. In
particular, as in the case of the Banach spaces L p, the K -functional of type (1.1) in the
quasi-normedHardy spaces is equivalent to the correspondingmodulus of smoothness
of integer or fractional order, see, e.g., [10], [11], [17, Ch. 4].

In contrast to the case of Banach spaces and quasi-normed Hardy spaces, the K -
functionals in L p with 0 < p < 1 are no longer relevant. Namely, it was shown in [5]
that the K -functional (1.1) with 0 < p < 1 and the derivative of integer order α ∈ N

is identically zero. In [19], exploiting the approach from [5], the same property was
established for the K -functional between the space L p(T

d) and the smooth function

spaceWψ
p (Td), whereψ is a homogeneous function of orderα ≥ 1 if d = 1 andα ≥ 2

if d ≥ 2. Note that the restriction on the parameter α is due to the fact that the proof
of the above property in [19] is essentially based on the results in [5] obtained for the
derivatives of integer orders. But it is well known that a solution of problems involving
fractional smoothness in L p with 0 < p < 1 usually is more involved than its integer
counterparts and very often requires development essentially new approaches, see,
e.g., [3], [20], [12], [13].

In the papers [14] and [16], it was stated without the proof that the K -functional
K ( f , t; L p(Ω),Wα

p (Ω)), where Ω = T
d or R

d , is identically zero for any positive
α > 0 and 0 < p < 1. But, as it was pointed by S. Artamonov, this fact has not
yet been established anywhere. The purpose of the present paper is to improve this
drawback by showing that in the case 0 < p < 1, the K -functional is identically zero
for various differential operators ψ(D) generated by a homogeneous function ψ of
any order α > 0. Our approach is different from the one presented in [5] and [19] and
is based on properties of the de la Vallée Poussin kernels and the quadrature formulas
for trigonometric polynomials and entire functions of exponential type.
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1018 Y. Kolomoitsev, T. Lomako

2 Notation and definitions

Let R
d be the d-dimensional Euclidean space with elements x = (x1, . . . , xd), and

(x, y) = x1y1 + · · · + xd yd , |x | = (x, x)1/2. Let N be the set of positive integers, Zd

be the integer lattice in R
d , and T

d = R
d/2πZ

d . By {e j }dj=1 we denote the standard

basis in R
d . For n ∈ N, the space of trigonometric polynomials of degree at most than

n is defined by

Tn = span{ei(k,x) : k ∈ [−n, n]d}.

As usual, the space L p(Ω) consists of all measurable functions f such that
‖ f ‖L p(Ω) < ∞, where

‖ f ‖L p(Ω) =

⎧
⎪⎪⎨

⎪⎪⎩

( ∫

Ω

| f (x)|pdx
) 1

p

, 0 < p < ∞,

ess sup
x∈Ω

| f (x)|, p = ∞.

Note that ‖ f ‖L p(Ω) for 0 < p < 1 is a quasi-norm satisfying ‖ f + g‖p
L p(Ω) ≤

‖ f ‖p
L p(Ω) + ‖g‖p

L p(Ω). By C0(R
d), we denote the set of all continuous functions f

such that lim|x |→∞ f (x) = 0. For any q ∈ (0,∞], we set

q1 =
{
q, 0 < q < 1,
1, 1 ≤ q ≤ ∞.

If f ∈ L1(T
d), then its k-th Fourier coefficient is defined by

f̂ (k) = 1

(2π)d

∫

Td
f (x)e−i(x,k)dx .

ByΔr
h f , where r ∈ N and h ∈ R

d , we denote the symmetric difference of the function
f ,

Δr
h f (x) =

r∑

ν=0

(−1)ν
(
r

ν

)

f (x + (r − 2ν)h) .

We say that a function ψ belongs to the class Hα , α ∈ R, if ψ(ξ) 	= 0 for
ξ ∈ R

d \ {0}, ψ ∈ C∞(Rd \ {0}), and ψ is a homogeneous function of order α,
i.e.,

ψ(τξ) = ταψ(ξ), τ > 0, ξ ∈ R
d .
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Any functionψ defined onZ
d \{0} generates theWeyl-type differentiation operator

as follows:

ψ(D) :
∑

k∈Zd

cke
i(k,x) →

∑

k∈Zd\{0}
ψ(k)cke

i(k,x).

Important examples of the Weyl-type operators generated by homogeneous functions
are the following:

– the linear differential operator

Pm(D) f =
∑

k1+···+kd=m

k∈Zd+

ak D
k f , Dk = ∂k1+···+kd

∂xk11 · · · ∂xkdd
,

with

ψ(ξ) =
∑

k1+···+kd=m

k∈Zd+

ak(iξ1)
k1 . . . (iξd)

kd ;

– the fractional Laplacian (−Δ)α/2 f with ψ(ξ) = |ξ |α , ξ ∈ R
d ;

– the classical Weyl derivative f (α) with ψ(ξ) = (iξ)α , ξ ∈ R.

Letψ ∈ Hα , α > 0 and 0 < p ≤ 1. ByWψ
p (Td)we denote the space ofψ-smooth

functions in L p(T
d), i.e.,

Wψ
p (Td) =

{
g ∈ L1(T

d) : ψ(D)g ∈ L p(T
d)

}

with

|g|
Wψ

p
= ‖ψ(D)g‖L p(Td ).

3 Main result in the periodic case

Theorem 1 Let 0 < p < 1, 0 < q ≤ ∞, α > max{0, d(1 − 1
q )}, and ψ ∈ Hα . Then,

for any f ∈ L p(T
d) and δ > 0, we have

K
(
f , δ, Lq(T

d),Wψ
p (Td)

) = 0.

To prove this theorem, we need the following auxiliary results and notations. In
what follows, the de la Vallée Poussin type kernel is defined by

Vn(x) :=
∑

k∈Zd

v

(
k

n

)

ei(k,x),
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1020 Y. Kolomoitsev, T. Lomako

where v ∈ C∞(Rd), v(ξ) = 1 for ξ ∈ [−1, 1]d and v(ξ) = 0 for ξ ∈ R
d \ [−2, 2]d .

Lemma 1 (See [24, Ch. 4 and Ch. 9].) Let 0 < p ≤ 1 and ϕ ∈ C∞(Rd) have a
compact support. Then

sup
ε>0

ε
d(1− 1

p )

∥
∥
∥
∥

∑

k∈Zd

ϕ(εk)ei(k,x)
∥
∥
∥
∥
L p(Td )

< ∞.

In particular, ‖Vn‖L p(Td ) ≤ cpn
d(1− 1

p ).

We will also use the following quadrature formula and the Marcinkiewicz–
Zygmund inequality.

Lemma 2 Let Tn ∈ Tn, tk,n = 2πk
2n+1 , k ∈ [0, 2n]d , and 0 < p < ∞. Then

1

(2π)d

∫

Td
Tn(x)dx = 1

(2n + 1)d
∑

k∈[0,2n]d
Tn

(
tk,n

)
(3.1)

and

1

(2n + 1)d
∑

k∈[0,2n]d

∣
∣Tn

(
tk,n

)∣
∣p ≤ Cp‖Tn‖p

L p(Td )
. (3.2)

Proof Equality (3.1) can be obtained by applying the univariate quadrature formu-
las for trigonometric polynomials in [26, Ch. X, (2.5)] to each variable one after
another. Similarly, using the univariate Marcinkiewicz–Zygmund inequality in [18,
Theorem 2], we can prove (3.2). 
�
Proof of Theorem 1. Inwhat follows, for simplicity, wewrite ‖ f ‖p = ‖ f ‖L p(Td ). Note
that in view of the obvious inequality

K
(
f , tδ, Lq(T

d),Wψ
p (Td)

)

≤ max{1, t}K (
f , δ, Lq(T

d),Wψ
p (Td)

)
, δ, t > 0,

(3.3)

it is enough to prove the theorem only for the case δ = 1. Let ε > 0 be fixed and let
Tμ ∈ Tμ be such that

‖ f − Tμ‖q1q <
ε

3
.

It is clear that

K
(
f , 1, Lq(T

d),Wψ
p (Td)

)q1 <
ε

3
+ K

(
Tμ, 1, Lq(T

d),Wψ
p (Td)

)q1 . (3.4)
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Let m > μ, m ∈ N. We set

V2m (x) = −1

4

d∑

j=1

Δ2
e j V2m (x)

=
∑

k∈Zd

(sin2 k1 + · · · + sin2 kd)v

(
k

2m

)

ei(k,x)

and

ψ1(ξ) = ψ(ξ)

sin2 ξ1 + · · · + sin2 ξd
, ξ ∈ Z

d \ {0}.

Then, denoting

ψ̃(ξ) = 1

ψ(ξ)
, ξ ∈ R

d \ {0},

we see that equality (3.1) implies

Tμ(x) = 1

(2π)d

∫

Td
ψ1(D)Tμ(t) · ψ̃(D)V2m (x − t)dt + T̂μ(0)

= 1

(2M + 1)d
∑

�∈[0,2M]d
ψ1(D)Tμ(t�) · ψ̃(D)V2m (x − t�) + T̂μ(0),

(3.5)

where M = μ + 2m+1 and t� = t�,M = 2π�
2M+1 .

Let n > m, n ∈ N. From the definition of the K -functional, it follows that

K
(
Tμ, 1, Lq(T

d),Wψ
p (Td)

)

≤
∥
∥
∥
∥Tμ − 1

(2M + 1)d
∑

�∈[0,2M]d
ψ1(D)Tμ(t�) · ψ̃(D)V2n (x − t�) − T̂μ(0)

∥
∥
∥
∥
q

+
∥
∥
∥
∥

1

(2M + 1)d
∑

�∈[0,2M]d
ψ1(D)Tμ(t�) · V2n (x − t�)

∥
∥
∥
∥
p

= I1 + I2. (3.6)
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1022 Y. Kolomoitsev, T. Lomako

Using (3.5), (3.2), and a telescopic sum, we obtain

I q11 =
∥
∥
∥
∥

1

(2M + 1)d
∑

�∈[0,2M]d
ψ1(D)Tμ(t�) · ψ̃(D)

(
V2n (x − t�) − V2m (x − t�)

)
∥
∥
∥
∥

q1

q

≤ 1

(2M + 1)dq1

∑

�∈[0,2M]d
|ψ1(D)Tμ(t�)|q1

× ∥
∥ψ̃(D)

(
V2n (x − t�) − V2m (x − t�)

)∥
∥q1
q

≤ Cq1(2M + 1)d(1−q1)‖ψ1(D)Tμ‖q1q1
∥
∥ψ̃(D) (V2n − V2m )

∥
∥q1
q

≤ Cq1(2M + 1)d(1−q1)‖ψ1(D)Tμ‖q1q1
n−1∑

ν=m

∥
∥ψ̃(D)

(
V2ν+1 − V2ν

) ∥
∥q1
q .

(3.7)

Next, denoting

N2ν (x) =
∑

k∈Zd

η

(
k

2ν

)

ei(k,x) with η(ξ) =
⎧
⎨

⎩

v(
ξ
2 ) − v(ξ)

ψ(ξ)
, ξ ∈ R

d \ {0},
0, ξ = 0,

we get

ψ̃(D)
(
V2ν+1(x) − V2ν (x)

)

= 1

2αν

∑

k∈Zd

(sin2 k1 + · · · + sin2 kd)η

(
k

2ν

)

ei(k,x)

= − 1

2αν+2

d∑

j=1

Δ2
e jN2ν (x)

and hence

∥
∥ψ̃(D)

(
V2ν+1 − V2ν

) ∥
∥q1
q = 1

2(αν+2)q1

∥
∥
∥
∥

d∑

j=1

Δ2
e jN2ν

∥
∥
∥
∥

q1

q

≤ 41−q1d

2ανq1

∥
∥N2ν

∥
∥q1
q .

(3.8)

If 0 < q ≤ 1, then with the help of Lemma 1, we obtain

∥
∥N2ν

∥
∥q
q ≤ cq,η

2d(1−q)ν
, (3.9)

where we have used the fact that η ∈ C∞(Rd) and supp η is compact. Next, for
1 < q ≤ ∞, exploiting the Nikolskii inequality of different metrics (see, e.g., [24,
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4.3.6]) and again Lemma 1, we get

∥
∥N2ν

∥
∥
q ≤ 2d(1− 1

q )ν
∥
∥N2ν

∥
∥
1 ≤ c1,η

2d( 1q −1)ν
. (3.10)

Thus, inequalities (3.7), (3.8), (3.9), (3.10), and the condition α > max{0, d(1 − 1
q )}

imply that, for sufficiently large m > m0(Tμ,ψ, q, ε),

I q11 ≤ 2q1(α+d( 1q −1))+2(1−q1)dCq1cq1,η

2q1(α+d( 1q −1)) − 1
‖ψ1(D)Tμ‖q1q1

× (2m+2 + 2μ + 1)d(1−q1)

2q1(α+d( 1q −1))m
<

ε

3
.

(3.11)

Now we estimate I2. An application of the Marcinkiewicz-Zygmund inequality (3.2)
and Lemma 1 yields

I p2 ≤ 1

(2M + 1)dp
∑

�∈[0,2M]d
|ψ1(D)Tμ(t�)|p‖V2n‖p

p

≤ 4dCp(2M + 1)d(1−p)‖ψ1(D)Tμ‖p
p‖V2n‖p

p

≤ 4dcpCp(2M + 1)d(1−p)‖ψ1(D)Tμ‖p
p · 2d(p−1)n <

(ε

3

)p/q1

(3.12)

for sufficiently large n > n0(Tμ,m, ψ, p, ε).
Finally, combining (3.4), (3.6), (3.11), and (3.12) for appropriate n > n0 and

m > m0, we obtain that K
(
f , 1, Lq(T

d),Wψ
p (Td)

)q1 < ε. This proves the theorem.

�

4 Main result in the non-periodic case

To formulate an analogue of Theorem 1 for non-periodic functions, we introduce
additional notations. As usual, by S and S ′ we denote the Schwartz space of infinitely
differentiable rapidly decreasing functions on R

d and its dual (the space of tempered
distributions), respectively. The Fourier transform and the inverse Fourier transform
of f ∈ L1(R

d) are given by

F f (ξ) = f̂ (ξ) = 1

(2π)d/2

∫

Rd
f (x)e−i(x,ξ)dx

and

F−1 f (ξ) = 1

(2π)d/2

∫

Rd
f (x)ei(x,ξ)dx .
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1024 Y. Kolomoitsev, T. Lomako

The convolution of two appropriate functions f and g is defined by

f ∗ g(x) =
∫

Rd
f (y)g(x − y)dx .

For f ∈ S ′, we define the Fourier transform f̂ and the inverse Fourier transformF−1 f
by 〈 f̂ , ϕ〉 = 〈 f , ϕ̂〉 and 〈F−1 f , ϕ〉 = 〈 f ,F−1ϕ〉, ϕ ∈ S. Next, by Bσ,p = Bσ,p(R

d)

with σ > 0 and 0 < p ≤ ∞, we denote the Bernstein space of entire functions of
exponential type σ . That is, f ∈ Bσ,p if f ∈ L p(R

d) ∩ S ′(Rd) and suppF f ⊂
[−σ, σ ]d .

Similarly as in the periodic case, by Wψ
p (Rd) we denote the space of ψ-smooth

functions in L p(R
d), that is,

Wψ
p (Rd) =

{
g ∈ S(Rd) : ψ(D)g ∈ L p(R

d)
}

with

|g|
Wψ

p (Rd )
= ‖ψ(D)g‖L p(Rd ), where ψ(D)g = F−1(ψ ĝ).

Theorem 2 Let 0 < p < 1, 0 < q ≤ ∞, α > max{d( 1p −1), d(1− 1
q )}, andψ ∈ Hα .

Then, for any f ∈ L p(R
d) ( f ∈ C0(R

d) if q = ∞) and δ > 0, we have

K
(
f , δ, Lq(R

d),Wψ
p (Rd)

) = 0. (4.1)

To prove Theorem 2, we will need the following analogue of Lemma 2 for entire
functions of exponential type.

Lemma 3 1) Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, and σ > 0. Then, for all g ∈ Bπσ,p

and h ∈ Bπσ,q , we have

(g ∗ h)(x) = 1

σ d

∑

k∈Zd

g

(
k

σ

)

h

(

x − k

σ

)

, x ∈ R
d . (4.2)

The series on the right-hand side of (4.2) converges absolutely for all x ∈ R
d and this

converges is uniform on each compact subset of R
d .

2) Let 0 < p < ∞ and σ > 0. Then, for all g ∈ Bπσ,p, we have

1

σ d

∑

k∈Zd

∣
∣
∣
∣g

(
k

σ

)∣
∣
∣
∣

p

≤ Cp‖g‖p
L p(Rd )

. (4.3)

Equality (4.2) can be found, e.g., in [22, Lemma6.2]. For the Plancherel–Polya-type
inequality (4.3), see, e.g., [24, 4.3.1].

Recall also the following convolution inequality, see, e.g., [23, 1.5.3].
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Lemma 4 Let 0 < p ≤ 1 and σ > 0. Then, for all f , g ∈ Bσ,p, we have

‖ f ∗ g‖L p(Rd ) ≤ cpσ
d( 1

p −1)‖ f ‖L p(Rd )‖g‖L p(Rd ).

Proof of Theorem 2. The proof of the theorem is similar to the one of Theorem 1.
However, because several steps are different, we present a detailed proof.

In what follows, we denote ‖ · ‖p = ‖ · ‖L p(Rd ). By the same arguments as in (3.3),
we can restrict ourselves to the case δ = 1. Let ε > 0 be fixed and let gμ ∈ S, μ > 1,
be such that supp ĝμ ⊂ [−2μ, 2μ]d and

‖ f − gμ‖q1q <
ε

3
.

Then, as in the periodic case, we have

K
(
f , 1, Lq(R

d),Wψ
p (Rd)

)q1 <
ε

3
+ K

(
gμ, 1, Lq(R

d),Wψ
p (Rd)

)q1 . (4.4)

For λ > μ and m > μ, λ,m ∈ N, we introduce the following functions:

fμ,λ(x) = F−1 (
v(2λξ)ĝμ(ξ)

)
(x),

gμ,λ(x) = gμ(x) − fμ,λ(x),

and

V2m (x) = F−1(vm(ξ))(x) with vm(ξ) = v
(
2−mξ

)
.

Further we denote

r2 =
{ �α�, d = 1,
2�α

2 �, d ≥ 2,

where �·� is the ceil function, and consider the functions

V2m (x) = 1

(2i)r2

d∑

j=1

Δ
r2
2−μe j

V2m (x)

= F−1((sinr2 2−μξ1 + · · · + sinr2 2−μξd)vm(ξ)
)
(x),

ψ2(ξ) =
⎧
⎨

⎩

ψ(ξ)

sinr2 2−μξ1 + · · · + sinr2 2−μξd
, ξ ∈ [−2μ+1, 2μ+1]d \ {0},

0, otherwise,

and

ψ̃(ξ) =
{ 1

ψ(ξ)
, ξ ∈ R

d \ {0},
0, ξ = 0.
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1026 Y. Kolomoitsev, T. Lomako

Let us show that there exists q > 1 such that

ψ2(D)gμ,λ ∈ Lq(R
d) (4.5)

and

ψ̃(D)V2m (x) ∈ Lq ′(Rd), (4.6)

where 1/q + 1/q ′ = 1. Indeed, relation (4.5) is obvious since ψ2 ĝμ,λ ∈ S. To
verify (4.6), we use the following representation

ψ̃(ξ)

⎛

⎝
d∑

j=1

sin 2−μξ j

⎞

⎠ vm(ξ) =
d∑

j=1

h j (ξ)ϕ j (ξ), (4.7)

where

h j (ξ) = ξ
r2
j

ψ(ξ)
∈ C∞(Rd \ {0}) and ϕ j (ξ) =

(
sin 2−μξ j

ξ j

)r2

vm(ξ) ∈ S.

Since h j is a homogeneous function of order r2 − α ≥ 0, we have that ĥ j belongs
to C∞(Rd \ {0}) and it is homogeneous of order −(r2 − α + d), see, e.g. [9, Theo-
rems 7.1.16 and 7.1.18]. Thus, applying the properties of convolution and choosing
σm such that supp vm ⊂ {|ξ | < σm}, we obtain

|F(h jϕ j )(ξ)| = |〈ĥ j , ϕ̂ j (ξ − ·)〉| =
∣
∣
∣
∣

∫

Rd
ĥ j (y)ϕ̂ j (ξ − y)dy

∣
∣
∣
∣

≤
∫

|ξ−y|≤σm

|ĥ j (y)ϕ̂ j (ξ − y)|dy

≤ max|ξ−y|≤σm
|ĥ j (y)|

∫

Rd
|ϕ̂ j (y)|dy

≤ c′
m max|ξ−y|≤σm

|y|−(r2−α+d) ≤ c′′
m |ξ |−γ

(4.8)

for |ξ | > 2σm and γ = r2 − α + d ≥ d. Moreover, since h jϕ j ∈ L1(R
d), it

follows from the standard properties of the Fourier transform, thatF(h jϕ j ) ∈ C0(R
d).

Therefore, F(h jϕ j ) ∈ Ls(R
d) for all s > 1. In particular, we have that F−1(h jϕ j ) ∈

Lq ′(Rd), which together with equality (4.7) implies (4.6).
Now, taking into account (4.5)–(4.6), we can apply Lemma 3, which yields

gμ,λ(x) = gμ(x) − fμ,λ(x)

=
∫

Rd
ψ2(D)gμ,λ(y)ψ̃(D)V2m (x − y)dy

= M−d
∑

�∈Zd

ψ2(D)gμ,λ(t�)ψ̃(D)V2m (x − t�),

(4.9)
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where M = μ + 2m+1 and t� = �
M .

Let n > m, n ∈ N. We have

K
(
gμ, 1, Lq(R

d),Wψ
p (Rd)

)

≤
∥
∥
∥
∥gμ − M−d

∑

�∈Zd

ψ2(D)gμ,λ(t�)ψ̃(D)V2n (x − t�) − fμ,λ

∥
∥
∥
∥
q

+
∥
∥
∥
∥M

−d
∑

�∈Zd

ψ2(D)gμ,λ(t�)V2n (x − t�) + ψ(D) fμ,λ

∥
∥
∥
∥
p

= I1 + I2.

(4.10)

Using (4.9) and the Plancherel–Polya-type inequality (4.3), we obtain

I q11 =
∥
∥
∥
∥M

−d
∑

�∈Zd

ψ2(D)gμ,λ(t�) · ψ̃(D)
(
V2n (x − t�) − V2m (x − t�)

)
∥
∥
∥
∥

q1

q

≤ M−dq1
∑

�∈Zd

|ψ2(D)gμ,λ(t�)|q1

× ∥
∥ψ̃(D)

(
V2n (x − t�) − V2m (x − t�)

)∥
∥q1
q

≤ Cq1M
d(1−q1)‖ψ2(D)gμ,λ‖q1q1

∥
∥ψ̃(D) (V2n − V2m )

∥
∥q1
q

≤ Cq1M
d(1−q1)‖ψ2(D)gμ,λ‖q1q1

n−1∑

ν=m

∥
∥ψ̃(D)

(
V2ν+1 − V2ν

) ∥
∥q1
q .

(4.11)

Note that in the above relations ψ2(D)gμ,λ ∈ Lq1(R
d) because ψ2 ĝμ,λ ∈ S. Next,

denoting

N2ν (x) = F−1 (
η

(
2−νξ

))
(x) with η(ξ) =

⎧
⎨

⎩

v(
ξ
2 ) − v(ξ)

ψ(ξ)
, ξ ∈ R

d \ {0},
0, ξ = 0,

we get

ψ̃(D)
(
V2ν+1(x) − V2ν (x)

)

= 1

2αν
F−1 (

(sinr2 2−μξ1 + · · · + sinr2 2−μξd)η
(
2−νξ

))
(x)

= 1

2αν(2i)r2

d∑

j=1

Δ
r2
2−μe j

N2ν (x).
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Thus, taking into account that η ∈ C∞(Rd) and supp η is compact, we obtain

∥
∥ψ̃(D)

(
V2ν+1 − V2ν

) ∥
∥q1
q = 1

2(αν+r2)q1

∥
∥
∥
∥

d∑

j=1

Δ
r2
2−μe j

N2ν

∥
∥
∥
∥

q1

q

≤ 2(1−q1)r2d

2ανq1

∥
∥N2ν

∥
∥q1
q = 2(1−q1)r2d‖η̂‖q1q

2q1(α+d( 1q −1))ν
= cq,η

2q1(α+d( 1q −1))ν
.

(4.12)

Then, combining (4.11) and (4.12), it is easy to see that

I q11 ≤ 2q1(α+d( 1q −1))Cq1cq1,η

2q1(α+d( 1q −1)) − 1
‖ψ2(D)gμ,λ‖q1q1

× (2m+2 + 2μ + 1)d(1−q1)

2q1(α+d( 1q −1))m
<

ε

3

(4.13)

for sufficiently large m > m0(gμ,λ, ψ, q, ε).
Further we find

I p2 ≤
∥
∥
∥
∥M

−d
∑

�∈Zd

ψ2(D)gμ,λ(t�)V2n (x − t�)

∥
∥
∥
∥

p

p
+ ‖ψ(D) fμ,λ‖p

p

= J p
1 + J p

2 .

(4.14)

First we estimate J2. Taking into account thatF−1(ψv) ∈ B2,p(R
d) for α > d(1/p−

1), see, e.g., [20] (this can also be verified as (4.8)) and applying Lemma 4, we obtain

J2 = 2−αλ
∥
∥F−1 (

ψ(2λ·)v(2λ·)ĝμ

) ∥
∥
p = 2−αλ‖F−1(ψ(2λ·)v(2λ·)) ∗ gμ‖p

≤ cp2
−αλ+d( 1

p −1)(μ+1)‖F−1(ψ(2λ·)v(2λ·))‖p‖gμ‖p

= cp2
−αλ+d( 1

p −1)(μ+1)+d( 1
p −1)λ‖F−1(ψv)‖p‖gμ‖p.

Thus, for sufficiently large λ > λ0(gμ,ψ, p, ε), we get

J p
2 <

1

2

(ε

3

)p/q1
. (4.15)

Next, the Plancherel–Polya-type inequality (4.3) yields

J p
1 ≤ M−dp

∑

�∈Zd

|ψ2(D)gμ,λ(t�)|p‖V2n‖p
p

≤ 2r2dCpM
d(1−p)‖ψ2(D)gμ,λ‖p

p‖V2n‖p
p

= 2r2dCpcp(μ + 2m+1)d(1−p)‖ψ2(D)gμ,λ‖p
p‖̂v‖p

p · 2d(p−1)n

<
1

2

(ε

3

)p/q1

(4.16)
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for sufficiently large n > n0(gμ,λ,m, ψ, p, ε), which together with (4.14), (4.15),
and (4.16) implies that

I q12 <
ε

3
. (4.17)

Finally, combining (4.4), (4.10), (4.13), and (4.17) for appropriate λ > λ0, n > n0,
and m > m0, we obtain that K

(
f , 1, Lq(R

d),Wψ
p (Rd)

)q1 < ε, which proves the
theorem. 
�
Remark 1 If we suppose that 0 < q ≤ 1 in Theorem 2, then (4.1) holds for any α > 0.
Indeed, according to [1, Theorem 5.1 and Corollary 2.2], there exists gμ ∈ S such
that supp ĝμ ⊂ [−2μ, 2μ]d \ [−1, 1]d and ‖ f − gμ‖qq < ε

3 . Thus, in the proof of
Theorem 2, we can put λ = 1, gμ = gμ,1, and fμ,λ = 0, which implies that we do
not need to estimate the term J2, where the restriction α > d(1/p − 1) appears.
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