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Abstract
We derive a fundamental solution E to a space-fractional diffusion problem on the
half-line. The equation involves the Caputo derivative. We establish properties of E
as well as formulas for solutions to the Dirichlet and fixed slope problems in terms of
convolution ofE with data.We also study integrability of derivatives of solutions given
in this way. We present conditions, which are sufficient for uniqueness of solutions.
Finally, we show the infinite speed of signal propagation.

Keywords Caputo derivative · Space-fractional diffusion operator · Fundamental
solution · Regularity of solutions · Decay of solutions · Speed of propagation
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1 Introduction

In [13] and [20] the authors studied the following equation,

∂u

∂t
− ∂

∂x
Dα
xC u = 0 (x, t) ∈ Ω × (0,∞), (1.1)
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where Ω is bounded interval, i.e. Ω = (0, l), augmented with the boundary data and
initial conditions. Here Dα

xC is the fractional Caputo derivative with respect to the
spacial variable x . The interest in such problems stems from the fact that eq. (1.1)
appears in the Green-Ampt infiltration models of subsurface flows, see [22]. In fact,
(1.1) is a simplification of free boundary problem, which was studied in [21].

Interestingly, problems involving Caputo derivative could be derived as limits of
the classical diffusion. More information about that could be found in [1].

In this note we derive in Theorem 1 a formula for E , a self-similar solution to (1.1)
considered onR+×R+ (here wewriteR+ for (0,∞)). Studying self-similar solutions
or travelling fronts is important, when we wish to gain insight into the structure of
solutions and in particular their long time behavior.

This function E is smooth and it is a classical solution to (1.1). We show that

E (x, t) = a0

t
1

1+α

Eα,1+1/α,1/α

(
− x1+α

(1 + α)t

)
,

where Eα,1+1/α,1/α is the 3-parameter generalized Mittag-Leffler function, see (2.8).
An extensive study of the Mittag-Leffler functions is presented in [5].

We show that E is positive and integrable over R+ for fixed t > 0. The role of
the prefactor in the definition of E is to guarantee that the integral of E (·, t) does not
depend on t > 0. In fact, E is a fundamental solution of (1.1), namely solutions to
the Dirichlet and fixed slope problems for Ω = R+ may be expressed by means of
convolution of the initial condition with E , this is the content of Theorem 2. Here, we
call the boundary condition ux (0, t) = f (t) a fixed slope problem. We do so in order
to avoid confusion with the situation, when we set the flux. For the problem we study,
the flux is not the normal derivative of u.

The problem of existence of a fundamental solution to various versions of time-
fractional problems has already been addressed in the literature. We name just a few
papers dealing with this issue, see [4, 9, 12, 17, 18]. The tools used there are different
from ours. However, it is not surprising that generalized Mittag-Leffler functions play
a role. We could justify the positivity of E on the grounds of the theory of Mittag-
Leffler functions, (actually we do this in the Appendix). However, we would like to
stress that our proof of positivity of E is entirely based on a PDE tool, which is the
maximum principle, we use this idea after [19].

Let us mention that the discussion of fundamental solutions comprises just a part
of the large field of studies related to existence of solutions of equations involving
fractional differential operators. There is a number of monographs devoted to this
topic, the following books are among them, [3, 15, 16]. Of course, we do not pretend
that this list is exhaustive.

Let us stress that the justification of formulas for solutions based on the convolution
requires establishing a number of properties of E (·, 1). In particular, we show that
E (·, 1) is monotone. For this purpose we use a PDE tool, which is the maximum
principle. We also show some sort of decay, namely xE (x, 1) is uniformly bounded,
see Lemma 8. These properties of E seem to be of independent interest.

Once we have a convolution formula for solutions to (1.1), we may study their
properties, when Ω = R+. An urging question is about uniqueness of solutions
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Special solutions to the space fractional diffusion 2141

given in this way. We show that if the initial conditions are sufficiently regular, i.e.
they are absolutely continuous with compact support, then solutions enjoy sufficient
regularity for employing the method of testing the equation with the solution itself, see
Proposition 2. This technique immediately yields uniqueness and decay of solutions.

The statement in the previous paragraph takes integrability of ∂u
∂t ,

∂u
∂x , D

α
xC u for

granted. This is indeed true for the integer derivatives, if the initial condition is in
W 1,1, but Dα

xC u is only in L∞ as it is shown in Lemma 9. This result is not automatic
due to poor integrability of E . This is distinctively different from the behavior of
solutions to the heat equation.

Eq. (1.1) contains a parameter α, so does E . Due to analyticity of Eα,1+1/α,1/α we
deduce that if uα is a solution to (1.1) onR+, then uα → uα0 in L1(R+), when α goes
to α0 ∈ (0, 1]. We explicitly exclude α0 = 0, which is due to the fact that Eα,1+1/α,1/α
has no limit on R+ when α → 0. However, this case is covered by [13, Theorem 6.1]
for viscosity solutions by a different method.

With this observation we may address here the issue of the speed of the signal
propagation. This is a bit puzzling because for α = 1, eq. (1.1) becomes the heat
equation with the infinite speed of propagation, while for α = 0 problem (1.1) is the
transport equation for which the speed is finite.

Our numerical experiments presented in [14] show that an initial pulse moves to
the left with a finite speed. The same conclusions are drawn on the basis of numerical
simulations by the authors of [11] who dealt with the time-fractional diffusion-wave
equation. However, our Proposition 5 stated for (1.1) with Ω = R+ and the fixed
slope boundary condition shows that actually the speed of the signal is infinite, i.e.
the support of the solution instantly becomes equal to [0,∞). This is shown with
the help of the explicit formulas employing the fundamental solution, E constructed
here. Thus, regarding the speed of propagation, the solutions share properties of the
transport and heat equations.

After presenting the content we describe the organization of this article. In Section 2
we recall the fundamentals of the fractional calculus. Section 3 is devoted to the
derivation of a formula for a self-similar solution E . Here we also study its properties
collected in Theorem 1 and we derive the formulas for the integral representation
of unique solutions. In the Appendix we present the derivation of E which is based
on the properties of the generalized Mittag-Leffler function Eβ,k,l and not the series
manipulation. We also show a short proof of positivity of E , which follows from the
theory of the generalized Mittag-Leffler function.

2 Preliminaries

We recall the definitions of the Caputo and Riemann-Liouville fractional derivatives.
For a function f ∈ L1(0, l) and α ∈ (0, 1) we introduce the fractional integration
operator by

(I α f )(x) = 1

Γ (α)

∫ x

0
(x − z)α−1 f (z) dz. (2.1)
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For an absolutely continuous function u ∈ AC[0, L] we define the Caputo fractional
derivative of order α ∈ (0, 1) by the following formula

Dα
Cu(x) = (I 1−αu′)(x) = 1

Γ (1 − α)

∫ x

0

u′(s)
(x − s)α

ds, (2.2)

while the Riemann-Liouville fractional derivative has the form

Dα
RLu = d

dx
(I 1−αu). (2.3)

Later, we will consistently write Dα
C to denote the fractional Caputo derivative of a

single variable function, Dα
xC will mean a partial derivative with respect to variable x .

We notice that if u is absolutely continuous and u(0) = 0, then we have

d

dx

(
I 1−αu

)
= I 1−α d

dx
u i.e. Dα

Cu = Dα
RLu. (2.4)

The following formula explains the relationship between the two types of derivatives
for a general function u ∈ AC[0, L],

Dα
xRL u = Dα

xC u + x−α

Γ (1 − α)
u(0). (2.5)

The fractional integration is the inverse of the Caputo derivative up to a constant,

I αDα
xC u(x) = u(x) − u(0). (2.6)

In our analysis we will need a more convenient representation of the operator
(Dα

xC u)x . For this purpose we need to recall:

Lemma 1 (see [13, Proposition 2.1]) Let u : [0, l) → R be such that u ∈ C2(0, l) ∩
C[0, l) and u′ ∈ L1(0, l). Then, (Dα

xC u)x exists everywhere in (0, l) and

(Dα
xC u)x (x) = 1

Γ (1 − α)

(
α(u(0) − u(x)) + (α + 1)u′(x)x

xα+1

+α(α + 1)
∫ x

0
[u(x − z) − u(x) + u′(x)z] dz

zα+2

) (2.7)

for x ∈ (0, l).

With the help of this lemma we will evaluate the action of (Dα
xC u)x on scaled

functions:

Corollary 1 Let u : [0, l) → R be such that u ∈ C2(0, l) ∩ C[0, l) and u′ ∈ L1(0, l).

If λ > 0 and we set vλ(x) = u(λ
1

1+α x), then (Dα
xC vλ)x (x) = λ(Dα

yC u)y(λ
1

1+α x).
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Proof We use Lemma 1 to calculate (Dα
xC vλ)x ,

(Dα
xC vλ)x (x)

= 1

Γ (1 − α)

(
α(vλ(0) − vλ(x)) + (α + 1)(vλ)x (x)x

xα+1

+α(α + 1)
∫ x

0
[vλ(x − z) − vλ(x) + (vλ)x (x)z] dz

zα+2

)

= 1

Γ (1 − α)

(
α(u(0) − u(λ

1
1+α x)) + (α + 1)λ

1
1+α uy(λ

1
1+α x)x

xα+1

+α(α + 1)
∫ x

0
[u(λ

1
1+α (x − z)) − u(λ

1
1+α x) + λ

1
1+α uy(λ

1
1+α x)z] dz

zα+2

)

= 1

Γ (1 − α)

(
α(u(0) − u(λ

1
1+α x)) + (α + 1)uy(λ

1
1+α x)(λ

1
1+α x)

λ−1(λ
1

1+α x)α+1

+α(α + 1)
∫ x

0
[u(λ

1
1+α (x − z)) − u(λ

1
1+α x) + uy(λ

1
1+α x)(λ

1
1+α z)] dz

zα+2

)
.

Changing the variable of integration by λ
1

1+α z = ξ we see dz/zα+2 = λdξ/ξ2+α .
Hence that the last term of the right-hand-side (RHS) is equal to

α(α + 1)λ

Γ (1 − α)

∫ λ
1

1+α x

0
[u(λ

1
1+α x − ξ) − u(λ

1
1+α x) + uy(λ

1
1+α x)ξ ] dξ

ξα+2 .

Therefore applying Lemma 1 again yields

(Dα
xC vλ)x (x) = λ1(Dα

yC u)y(λ
1

1+α x).

��
In our construction of the self-similar solution we will use a three-parameter gen-

eralized Mittag-Leffler function Eβ,m,l . It is defined by the following series for z ∈ C

(see [8, formula (1.9.19)])

Eβ,m,l(z) =
∞∑
n=0

cβml
n zn, 	β > 0, m ∈ (0,+∞), l ∈ C, −β(km + l) /∈ N \ {0},

(2.8)

where 	β denotes the real part of a complex number β and

cβml
n =

n−1∏
k=0

Γ (β(km + l) + 1)

Γ (β(km + l + 1) + 1)
.
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2144 T. Namba et al.

It is worth recalling that due to [6, Theorem 1], see also [8, page 48], we know that
Eβ,m,l is an entire function of order (	β)−1 and type m−1, i.e. for any ε > 0,

|Eβ,m,l(z)| < exp((m−1 + ε)|z|1/β) (2.9)

holds for |z| ≥ r0(ε), where r0(ε) is sufficiently large.
In several places we will use the following observation concerning the Mittag-

Leffler functions. Let us set,

Φ(x) = Eα,1+1/α,1/α

(
− x1+α

1 + α

)
. (2.10)

We recall:

Proposition 1 (see [8, Example 4.11], [7, Theorem4])The functionΦ defined in (2.10)
satisfies the following fractional ordinary differential equation,

Dα
yC v(y) + 1

1 + α
yv(y) = 0, y > 0, v(0) = 1. (2.11)

3 The fundamental solution and its properties

We will derive a self-similar solution, E , to the following equation,

∂u

∂t
− ∂

∂x
Dα
xC u = 0 (x, t) ∈ (0,∞)2. (3.1)

This is done in the theorem below, where we also present the basic properties of E .

Theorem 1 There is a function E : (0,∞)2 → R with the following properties:
(1) E ∈ C2((0,∞)2) and E is a self-similar solution to (3.1), i.e. it is invariant under

the transformation (x, t) �→ (λ
1

1+α x, λt) for λ > 0.
(2) E is positive for all x, t > 0.
(3) For all t > 0 function E (·, t) is decreasing.
(4) For all t > 0 function E (·, t) is in L1(0,∞) and

∫ ∞
0 E (x, t) dx = 1

2 .
Moreover, function E is given by the following formula,

E (x, t) = a0t
− 1

1+α Eα,1+1/α,1/α

(
− x1+α

(1 + α)t

)
, (3.2)

where

1

a0
= 2

∫ ∞

0
Eα,1+1/α,1/α(−x1+α/(1 + α)) dx . (3.3)
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Remark 1 Using Φ defined in (2.10) we can write E shortly as follows,

E (x, t) = a0t
− 1

1+α Φ

(
x

t
1

1+α

)
.

The way we stated this theorem suggests that it is sufficient to plug in the formula for
E into the equation. To some extent, this is what we do in the Appendix, where we
use Proposition 1 to prove Lemma 3 below. However, we think it is more instructive
to go through the process of derivation of (3.2).

Properties of E , among them positivity or monotonicity on (0,∞), are not easy to
check by inspection of the formula given by a series. This is why we employ methods
typical for PDE, like the maximum principle.

Our first task, however, is to construct a self-similar solution to (1.1). We do this in
a couple of steps. Here is the first observation:

Lemma 2 Let us suppose that u ∈ C2((0,∞)2). Then, u is a solution to (3.1) if and
only if uλ given by

uλ(x, t) = u(λ
1

1+α x, λt)

is a solution to (3.1).

Proof Now, it is straightforward to see that

(uλ)t (x, t) = λ1us(λ
1

1+α x, λt).

For the purpose of computing the fractional derivative (Dα
xC uλ)x of a scaled function

uλ we will use Corollary 1, which applies to single variable functions. This is why we

introduce vλ defined as vλ(x) = u(λ
1

1+α x, λt), where t is just a fixed parameter. This
leads us to the identity

(Dα
xC uλ)x (x, t) = (Dα

xC vλ)x (x) = λ1(Dα
yC u)y(λ

1
1+α x, λt).

Thus, we see that u satisfies (3.1) if and only if uλ fulfills

(uλ)t (x, t) − (Dα
xC uλ)x (x, t) = 0

for all x > 0, t > 0. ��

The above lemma tells us that self-similar solutions depend only on ξ = xt−
1

1+α .
However, if we want to obtain a solution, whose average over R+ is independent of
time, then we must consider E of the form

E (x, t) = a0t
γ v(x1+α/t), (3.4)
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where v is integrable. It is easy to see that for

γ = − 1

1 + α

and t2 �= t1 > 0 we have

∫ ∞

0
E (x, t2) dx =

∫ ∞

0
E (x, t1) dx .

We are now ready to derive the form of E .Wemake an informed guess that v appearing
in (3.4) should be analytic, since this is the case of the classical heat equation. It turns
out that we are right.

Lemma 3 Let us assume that v appearing in (3.4) is analytic and v(0) = 1. Then,

v(z) = Eα,1+1/α,1/α

(
− z

1 + α

)
,

where Eβ,m,l is the generalized Mittag-Leffler function defined in (2.8).

Proof Let us suppose that

v(z) =
∞∑
n=0

cnz
n .

Then, inserting E defined by (3.4) into (3.1) yields

∞∑
n=0

cn(γ − n)
x (1+α)n

tn−γ+1 =
∞∑
n=1

cn
Γ ((1 + α)n + 1)[(1 + α)(n − 1) + 1]

Γ ((1 + α)(n − 1) + 2)

x (1+α)(n−1)

tn−γ
,

where we took into account that Dα
Cx

β = Γ (β+1)
Γ (β+1−α)

xβ−α.Hence, we find the formula
for cn ,

cn = (−1)n

(1 + α)n
bn, n ≥ 1,

where we set c0 = 1 and

bn =
n−1∏
i=0

Γ (αi + i + 2)

Γ (α(i + 1) + i + 2)
. (3.5)

Hence,

v(z) =
∞∑
n=0

(−1)nbn

(
z

1 + α

)n

.
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If we take into account the form of bn’s, then we realize that

v(z) = Eα,1+1/α,1/α

(
− z

1 + α

)
,

where Eβ,m,l is a generalized Mittag-Leffler function defined in (2.8). Thus, we reach
E of the form (3.2), where the multiplicative constant a0 has to be determined by other
means. ��
Remark 2 The argument above is based on the series manipulation. In the Appendix,
we present the proof of this lemma,which is based only on the theory of the generalized
Mittag-Leffler function Eβ,m,l . It is more elegant, but less informative.

An important step in our analysis is checking thatE is indeed positive. The argument
we use is based on the use of the maximum principle for (1.1). This idea was used first
in the proof of a similar result in [19]. We provide our own and extended version of
the argument. We find this type of argument very important for creation of a toolbox
for analysing properties of solutions to (1.1). However, in the Appendix we present
a short proof of the same result, which is of independent interest. It is based on the
theory of the three-parameter Mittag-Leffler function.

Lemma 4 The function Φ defined in (2.10) is positive for all x > 0.

Proof Let us set

u(x, t) :=
∫ xt

− 1
1+α

0
Φ(z) dz.

We will see that

(
∂

∂t
− ∂

∂x
Dα
xC

)
u < 0. (3.6)

Indeed, ∂u
∂t (x, t) = − 1

t(1+α)
yΦ(y), where y = xt−

1
1+α and by Corollary 1 we see that

∂
∂x D

α
xC u(x, t) = 1

t
∂
∂ y D

α
yC u(y, t). Thus, due to

∂

∂x
Dα
xC u = Dα

xRL

∂

∂x
u

and (2.5) we obtain

(
∂

∂t
− ∂

∂x
Dα
xC

)
u(x, t) = −1

t

(
yΦ(y)

1 + α
+ Dα

yRLΦ(y)

)

= −1

t

(
yΦ(y)

1 + α
+ Dα

yCΦ(y)

)
− y−α

tΓ (1 − α)
.
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Now, we invoke Proposition 1 to conclude that the expression in parenthesis vanishes.
Thus, (3.6) follows.

Let us suppose our claim is not valid and the set

A = {x > 0 : Φ(x) < 0}

is not empty. Since Φ(0) = 1, we see that inf A =: x0 > 0. Due to the continuity of
Φ there is x1 > x0 such that

u(x, 1) > 0 for x ∈ (0, x1).

Let us set

Ω = {(x, t) ∈ (0,∞)2 : x ∈ (0, x1t
1/(1+α)), t ∈ (1, 2)}. (3.7)

By the weak maximum principle for (3.6) in non-cylindrical regions, see [21, Lemma
8], we have

sup{u(x, t) : (x, t) ∈ Ω} = max{u(x, t) : (x, t) ∈ ∂Ω \ ({2} × R+)} =: M .

However, since u(0, t) = 0 and u(x1t1/(1+α), t) = u(x1, 1) < u(x0, 1) for t ∈ [1, 2],
then we see that

M = u(x0, 1).

If we had the strong maximum principle, then we would have reached a contradiction.
But we do not have it, thus, we have to continue our argument. For a positive ε and
(x, t) ∈ R+ × (1,∞) we set,

vε(x, t) = εcαx
1+α + ε(t − 1),

where cα = 1
(1+α)Γ (1+α)

. Due to the choice of cα we see that ∂vε

∂t − ∂
∂x D

α
xC vε = 0.

Thus, the sum u + vε satisfies (3.6) and we may apply the weak maximum principle,
see [21, Lemma 8], which yields,

Mε := sup{(u + vε)(x, t) : (x, t) ∈ Ω}
= max{(u + vε)(x, t) : (x, t) ∈ ∂Ω \ ({2} × R+)}. (3.8)

Wewant to select such ε that Mε = max(u+vε)(x, 1). We notice that (u+vε)(0, t) =
ε(t − 1) ≤ ε and we may restrict ε so that ε < u(x1, 1). We take even smaller ε so
that

∂

∂x
(u + vε)(x1, 1) < 0.
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Special solutions to the space fractional diffusion 2149

Hence, there is x2 ∈ (x0, x1) such that

max{(u + vε)(x, 1) : x ∈ (0, x1)} = (u + vε)(x2, 1)

We want to guarantee that Mε equals (u + vε)(x2, 1) = u(x2, 1) + εcαx
1+α
2 .

We look at u + vε on the last part of the parabolic boundary of Ω ,

γ = {(x1t1/(1+α), t) : t ∈ (1, 2)}.

For (x, t) ∈ γ we have

(u + vε)(x1t
1/(1+α), t) = u(x1, 1) + ε(cαx

1+α
1 t + t − 1)

= u(x1, 1) + εcαx
1+α
1 + (t − 1)ε(cαx

1+α
1 + 1).

We see that RHS above is greater than (u + vε)(x1, 1) for t ∈ (1, 2). At the same time
we see that the left-hand-side attains its maximum for t = 2 and we may take ε so
small that

ε(cαx
1+α
1 + 1) + (u + vε)(x1, 1) < (u + vε)(x2, 1) = Mε .

Now, we shall see that supΩ(u + vε) > Mε . Let us consider points (x, t) of the
following form, (x2t1/(1+α), t), t ∈ (1, 2). Now, we compute values of (u + vε) there
for t > 1. We obtain,

(u + vε)(x2t
1/(1+α), t) = u(x2, 1) + εcαx

1+α
2 t + ε(t − 1)

= u(x2, 1) + εcαx
1+α
2 + ε(t − 1)(cαx

1+α
1 + 1)

> (u + vε)(x2, 1) = Mε .

But this inequality violates (3.8). Thus, our claim follows. ��
In fact, in the course of proof of Lemma 4, we established the following facts:

Lemma 5 Let U ∈ C1+α([0,∞)) and set u(x, t) = U (xt−
1

1+α ).
(1) If u satisfies inequality (3.6) in Ω defined in (3.7), where x1 > 0 is now arbitrary,
then u(x, 1) ≡ U (x) cannot attain a maximum inside (0, x1).
(2) If u satisfies the inequality

(
∂

∂t
− ∂

∂x
Dα
xC

)
u > 0 (3.9)

in Ω defined in (3.7), where x1 > 0 is now arbitrary, then u(x, 1) ≡ U (x) cannot
attain a minimum inside (0, x1).

These observations immediately imply part (3) of Theorem 1.

Lemma 6 Let us fix any t > 0, then the functionR+ � x �→ E (x, t) ∈ R is decreasing.
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Proof Since E is a self-similar solution, we may restrict our attention to t = 1. Let us
suppose our claim is false and E (·, 1) attains a minimum at x0. We can find x1 > x0
such that E (x1, 1) > E (x0, 1). We define vε by the formula,

vε(x, t) = E (x, t) − εxt−
1

1+α , (x, t) ∈ D = {(x, t) : t ∈ [1, 2], x ∈ (0, x1t
1

1+α )}.

Now, we choose ε > 0 sufficiently small that so that vε(·, 1) attains its minimum at
x2 ∈ (x0, x1), hence vε(x2, 1) < vε(x1, 1). Moreover, for all ε > 0 inequality (3.9)
is satisfied. As a result we may apply Lemma 5 part 2) to vε to deduce that vε(·, 1)
cannot attain any minimum in (0, x1).

We observe that for no positive x0 function Φ(·) = E (·, 1) is increasing on (0, x0).
If such a point existed, then Dα

CΦ ≥ 0 on (0, x0), but this contradicts (2.11) due to
positivity of Φ. Hence, vε cannot attain any maximum in (0,∞).

These observations imply that vε(·, 1) is decreasing. Indeed, sinceΦ is defined as a
series its inspection tells us thatΦ ′(0) < 0. Hence, there is x3 > 0 such that vε(·, 1) is
decreasing on (0, x3). If there were 0 < x3 < x4 and vε(x3, 1) < vε(x4, 1) would be
true then, taking into account that vε(0, 1) > vε(x3, 1) we would deduce that vε(·, 1)
must attain a minimum in the interval (0, x4) but this is impossible. Hence, the claim
follows.

Finally, we notice that E (x, 1) = lim
ε→0+vε(x, 1), which implies monotonicity of

E (·, 1). ��
Now, we will show that E is integrable over the positive half-line.

Lemma 7 The function Φ defined in (2.10) is bounded with a bound uniform in α and
it is integrable over (0,∞) for each α ∈ (0, 1).

Proof We will show first the boundedness of Φ by a different method, which is useful
for further considerations. Due to Proposition 1 and Lemma 4, we notice that

Dα
CΦ(x) = − x

1 + α
Φ(x) < 0.

Wemay apply the fractional integration operator Iα to both sides of the above inequal-
ity. Due to (2.6) we obtain,

Φ(x) − Φ(0) = I αDα
CΦ(x) < 0. (3.10)

Hence,

Φ(x) ≡ Eα,1+1/α,1/α(− x1+α

1 + α
) < Φ(0) = 1. (3.11)

Let us stress that the estimate (3.11) is uniform in α.

Now, we shall see that boundedness of Φ implies its integrability. For this purpose
we rewrite (2.11) using (2.5) as follows,

1

1 + α
Φ(x) = x−1−α

Γ (1 − α)
− x−1

Γ (1 − α)

d

dx

∫ x

0

Φ(t)

(x − t)1−α
dt .
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We integrate it over [1, R] and we reach,

Γ (1 − α)

1 + α

∫ R

1
Φ(s) ds ≤

∫ R

1

dx

x1+α
+

∣∣∣∣
∫ R

1
x−1 d

dx

∫ x

0

Φ(t)

(x − t)1−α
dtdx

∣∣∣∣ = J1 + |J2|.

In the second term we integrate by parts. This yields,

J2 =
∫ R

1
x−2

∫ x

0

Φ(t)

(x − t)1−α
dtdx + x−1

∫ x

0

Φ(t)

(x − t)1−α
dt

∣∣∣∣
x=R

x=1
.

Now, we use (3.11) and positivity of Φ to see that

J2 ≤ 1 − Rα−1

α(1 − α)
+ Rα

αR
<

1

α(1 − α)
.

If we combine it with an easy estimate on J1 we arrive at

∫ R

1
Φ(s) ds ≤ (2 − α)(1 + α)

α(1 − α)Γ (1 − α)
.

Our claim follows. ��
We notice that the estimate for the integral of Φ blows up at α = 0.
We are now ready to finish the proof of Theorem 1. The derivation is performed

in Lemmas 2 and 3. The properties of Φ were established in Lemmas 4, 6 and 7. In
particular, they guarantee that the integral

1

a0
= 2

∫ ∞

0
Eα,1+1/α,1/α(−x1+α/(1 + α)) dx

is finite and positive. Hence, the definition of a0 given in (3.3) is correct and E is
well-defined with the properties we stated. ��
Remark 3 Actually, our proof shows that E (·, t) ∈ C1+α([0,∞)) for all t > 0 we
have and this regularity is optimal. This is indeed the case is if inspect the Taylor
expansion of Eα,1+1/α,1/α , see (2.8). We notice that cα,1+1/α,1/α

1 �= 0. As a result the
space regularity of E is the same as the space regularity of x1+α .

4 Integral representation and properties of solutions

We constructed E on R2+. In order to discuss its properties leading to a justification of
the name ’fundamental solution’ we have to extend E to R × R+, without changing
the notation. Actually, the function x1+α is naturally defined for negative argument as
|x |1+α . We also set E equal to zero on R × (−∞, 0], so finally

E (x, t) = E (|x |, t)χR+(t).
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We do not want to discuss the action of Dα
xC on D ′(R) so we will not try to show

that ( ∂
∂t − ∂

∂x D
α
xC )E = δ0. Indeed, this requires extra consideration, because the

convolution kernel in the definition of the Caputo derivative it is not symmetric by
itself. This topic is interesting, but outside the scope of the present paper.

Instead we will justify the representation formulas for solution to (3.1) augmented
with the initial and boundary data. In fact, we will reuse the well-known formula
derived with the help of the reflection principles for solutions to the heat equation on
the half line.

Theorem 2 Let us suppose that g ∈ L p(0,∞), where p ∈ [1,∞) and g has compact
support, (resp. g ∈ C0

c ([0,∞)) and we set

Et (x) = E (x, t).

We define functions w1, w2 by the following formulas,

w1(x, t) =
∫ ∞

0
(Et (x − y) − Et (x + y))g(y) dy, (4.1)

w2(x, t) =
∫ ∞

0
(Et (x − y) + Et (x + y))g(y) dy. (4.2)

Then,
(a) For all t, R > 0 functions w1(·, t) and w2(·, t) belong to C1+α([0, R]), they are
classical solutions to

∂w

∂t
− ∂

∂x
Dα
xCw = 0 x, t > 0,

w(x, 0) = g(x) x > 0.

(4.3)

In additionw1 (resp.w2) satisfies the Dirichlet (resp. fixed slope) boundary condition,

w(0, t) = 0, (resp. wx (0, t) = 0) for t > 0. (4.4)

(b) The functions w1 and w2 belong to L∞(R+; L p(R+)) if p < ∞ (resp. w1, w2 ∈
L∞(R+;C(R+)), when g ∈ C0

c ([0,∞))). The initial condition is satisfied in the sense
below. However, when g is continuous, we require g(0) = 0 in case of the Dirichlet
data,

lim
t→0

‖w1(·, t) − g‖L p = 0, (resp. lim
t→0

‖w2(·, t) − g‖L∞ = 0). (4.5)

Proof We will first check that w1 and w2 are well-defined, for this reason we begin
with the first part of (b). We will rewrite w1 and w2 as a convolution of the data on
R+ with Et ,

w1(x, t) =
∫
R

Et (x − y)g̃(y) dy, w2(x, t) =
∫
R

Et (x − y)ḡ(y) dy, (4.6)

123



Special solutions to the space fractional diffusion 2153

where g̃ (resp. ḡ) is an odd extension, i.e. g̃(−y) = −g(y) (resp. even extension, i.e.
ḡ(−y) = g(y)) for y > 0. Since Et ∈ L1(R) and

∫
R
Et dx = 1, then Young inequality

for convolutions imply that Et ∗ g̃,Et ∗ ḡ ∈ L p(R), when p < ∞ and

‖Et ∗ g̃‖L p(R) ≤ 2‖g‖L p(R+), ‖Et ∗ ḡ‖L p(R) ≤ 2‖g‖L p(R+).

When g is bounded, then

‖Et ∗ g̃‖L∞ ≤ ‖g‖L∞, ‖Et ∗ ḡ‖L∞ ≤ ‖g‖L∞ .

We conclude that w1 and w2 are well-defined.
Let us argue thatw1,w2 are solutions to (4.3). We will provide some details forw1,

(the proof for w2 is the same). We first notice that the kernel Et is a composition of an
analytic function with x �→ |x |1+α , hence the convolution appearing in the definition
of wi , i = 1, 2 shares this kind of smoothness. Since w1 is a C1+α-function we may
apply Dα

xC to v defined above. We obtain,

Dα
xCw1(x, t) = 1

Γ (1 − α)

∫ x

0

dy

(x − y)α

∫ ∞

−∞
∂

∂ y
Et (y + s)g̃(s) ds,

where we could interchange the integral over R with the differentiation due to the
integrability of ∂

∂ yEt (y + s)g̃(s) with respect s for all y ∈ R. Now, we notice that
we may invoke the Fubini Theorem to interchange the order of integrals. Thus, we
conclude that the partial integration operator I 1−α and the integration over R+ with
respect to y commute and we see,

Dα
xCw1(x, t) =

∫ ∞

−∞
Dα
xCEt (x + y)g̃(y) dy.

Here, a comment on the integrand is in order. Since, Et is defined over R its argument
may be negative. However, in accordance with the definition of the Caputo derivative
with respect to x , the argument x is always positive.

Now, due to regularity of Et we see that

∂

∂x
Dα
xCw1 =

∫ ∞

−∞
∂

∂x
Dα
xCEt (x + y)g̃(y) dy.

Thus, we conclude that ( ∂
∂t − ∂

∂x D
α
xC )w1 = 0.

Now, we check the boundary conditions. Since w1(·, t) is continuous up to x = 0
for t > 0 we see that

w1(0, t) =
∫ ∞

0
(Et (−y) − Et (y))g(y) dy = 0.

The RHS vanishes because Et is even.
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The argument for w2 is similar. We use that ∂w2
∂x (·, t) is continuous up to {x = 0}

for t > 0. For positive x we have

− 1

1 + α

∂w2

∂x
(x, t)

=
∫ ∞

0

(
∂Et
∂x

(x − y)sgn (x − y)|x − y|α + ∂Et
∂x

(x + y)sgn (x − y)|x − y|α
)
g(y) dy.

Thus,

lim
x→0+

∂w2

∂x
(x, t) = −(1 + α)

∫ ∞

0

(
−∂Et

∂x
(−y)yα + ∂Et

∂x
(y)yα

)
g(y) dy = 0.

Now, we turn our attention to the initial condition. We recall that (4.5) follows from
the standard properties of convolution with a kernel whose integral is one. ��

We present here convolution formulas to solve the non-homogeneous problem.
After establishing them we may say that indeed E is a fundamental solution, because
it behaves like one.

Corollary 2 Let us suppose that f ∈ C1([0,∞)2) and f has a compact support. We
set (in case of w3 below we require that f (0, t) = 0 for all t > 0),

w3(x, t) =
∫ t

0

∫ ∞

0
(E (x − y, t − s) − E (x + y, t − s)) f (y, s) dyds,

w4(x, t) =
∫ t

0

∫ ∞

0
(E (x − y, t − s) + E (x + y, t − s)) f (y, s) dyds.

Then, for all R > 0 we have w j ∈ C1+α([0, R] × (0, R]) and w j (x, ·) ∈ C∞(0,∞)

for all x > 0, j = 3, 4. Moreover, w3, w4 are solutions (in the sense explained below)
to

∂w

∂t
− ∂

∂x
Dα
xCw = f x, t > 0,

w(x, 0) = 0 x > 0.

(4.7)

In addition, w3 (resp. w4) satisfies the Dirichlet (resp. fixed slope) boundary condi-
tions.

Proof We will present an argument for w3. The proof for w4 goes along the same
lines.

We extend f by odd reflection, f̃ (−y, t) = − f (−y, t), for y > 0. Then, w3 takes
the following form, where we use the commutativity of the convolution,

w3(x, t) =
∫ t

0

∫
R

E (x − y, t − s) f̃ (y, s) dyds =
∫ t

0

∫
R

E (y, s) f̃ (x − y, t − s) dyds.
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Due to the compactness of the support of f̃ , we will be able to show that the weak
derivative ∂w3

∂t exists and for all R > 0 it belongs to L1(R+ × (0, R)) =: YR . For any
h > 0 we set

wh
3 (x, t) =

∫ t−h

0

∫
R

E (y, s) f̃ (x − y, t − s) dyds.

We notice that for any R > 0 functionwh
3 converges tow3 in YR . Due to the regularity

of f we may compute ∂w3
∂t , we have

∂w3

∂t
(x, t) =

∫
R

E (y, t) f̃ (x − y, 0) dy +
∫ t

0

∫
R

E (y, s)
∂ f̃

∂t
(x − y, t − s) dyds

=
∫
R

E (y, t) f̃ (x − y, 0) dy −
∫ t

0

∫
R

E (x − y, s)
∂ f̃

∂s
(y, t − s) dyds.

Again using the compactness of the support of f and regularity of E we saw in the
course of proof of Theorem 2 that we may interchange Dα

xC and the integration in the
definition of wh

3 .

Dα
xCwh

3 (x, t) =
∫ t−h

0

∫
R

Dα
xCE (x − y, t − s) f̃ (y, s) dyds.

Subsequently we may also apply the differential operator ∂
∂x to both sides of the

equality above to reach,

∂

∂x
Dα
xCwh

3 (x, t) =
∫ t−h

0

∫
R

∂

∂x
Dα
xCEt−s(x − y) f̃ (y, s) dyds (4.8)

= −
∫ t−h

0

∫
R

∂

∂ y
Dα
xCEt−s(x − y) f̃ (y, s) dyds.

Here and further onwewrite Et (x) instead of E (x, t) to emphasize that t is a parameter
of a function whose argument is x . This remark is particularly important when we
compute the action of the fractional derivative of w3.

The last equality follows from the fact ∂
∂x g(x − y) = − ∂

∂ y g(x − y). We may apply
the integration by parts to the RHS of (4.8). In this way we obtain,

∂

∂x
Dα
xCwh

3 (x, t) =
∫ t−h

0

∫
R

Dα
xCEt−s(x − y)

∂

∂ y
f̃ (y, s) dyds.

Passing with h to zero in the YR-norm we see that the weak spacial derivative of w3
exists and

∂

∂x
Dα
xCw3(x, t) =

∫ t

0

∫
R

Dα
xCEt−s(x − y)

∂

∂ y
f̃ (y, s) dyds.
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Now, we compute ( ∂
∂t − ∂

∂x D
α
xC )w3. We obtain

(
∂

∂t
− ∂

∂x
Dα
xC

)
w3 =

∫
R

Et (y) f̃ (x − y, 0) dy − lim
h→0+ RHS(h),

where

RHS(h) =
∫ t

h

∫
R

Es(x − y)
∂ f̃

∂s
(y, t − s) dyds

−
∫ t−h

0

∫
R

Dα
xCEt−s(x − y)

∂

∂ y
f̃ (y, s) dyds.

Then, we integrate by parts to see that

RHS(h) = −
∫ t

h

∫
R

∂

∂s
Es(x − y) f̃ (y, t − s) dyds +

∫
R

Es(x − y) f̃ (y, t − s)
∣∣s=t
s=h

+
∫ t−h

0

∫
R

∂

∂ y
Dα
xCEt−s(x − y) f̃ (y, s) dyds

=
∫
R

Et (x − y) f̃ (y, 0) dy −
∫
R

Eh(x − y) f̃ (y, t − h) dy

−
∫ t−h

0

∫
R

∂

∂x
Dα
xCEt−s(x − y) f̃ (y, s) dyds

+
∫ t−h

0

∫
R

∂

∂s
Et−s(x − y) f̃ (y, s) dyds.

Combining these computations gives us

(
∂

∂t
− ∂

∂x
Dα
xC

)
w3(x, t) = lim

h→0+

∫
R

Eh(x − y) f̃ (y, t − h) dy = f̃ (x, t).

Hence,w3 is a solution to (4.7). It is such that Dα
xCw3 exists in the classical sense and for

all R > 0 andweakderivatives ∂w3
∂t ,

∂
∂x D

α
xCw3 exist and theybelong to L1(R+×(0, R))

for all R > 0.
An argument used in the proof of Theorem 2 shows that w3 satisfies the Dirich-

let boundary condition. Now, we shall investigate the initial condition. Due to the
boundedness of f we see that

|w3(x, t)| ≤
∫ t

0

∫
R

Es(y)‖ f ‖L∞ dyds ≤ t‖ f ‖L∞ .

Our claims follow. ��
Weconstructed solutions to (3.1)with the help of the convolution of the fundamental

solution with the data. Since this case is not covered neither in [13] nor in [20] we have
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to show uniqueness separately. The difficulty with the classical method of testing the
equationwith the solution is that integrability of the derivatives (fractional and integer)
of E is different than one might expect. Here, we present an observation which turns
out very useful.

Lemma 8 Let us suppose that Φ is given by (2.10). Then, for all x > 0 we have,

0 < x Φ(x) ≤ 4.

Proof We combine (2.11) and (3.10) to obtain

Φ(0) − Φ(x) = 1

Γ (α)(1 + α)

∫ x

0

zΦ(z) dz

(x − z)1−α
.

Taking into account the positivity of Φ, we obtain for x > 1 that

1 = Φ(0) ≥ 1

Γ (α)(1 + α)

∫ x

x−1

zΦ(z) dz

(x − z)1−α
.

Since Theorem 1 (3) guarantees monotonicity of Φ, then we obtain the estimate

Γ (α)(1 + α) ≥ (x − 1)Φ(x)
∫ x

x−1

dz

(x − z)1−α
= 1

α
(x − 1)Φ(x).

Hence, for x ∈ [0, 2] we have xΦ(x) ≤ 2. For x > 2 we obtain

xΦ(x) ≤ Γ (2 + α)
x

x − 1
≤ 4.

��
Wewill use the above lemma to show limited integrability of the derivatives of solutions
constructed in Theorem 2.

Lemma 9 Let us suppose that g ∈ W 1,1(0,∞), g(0) = 0 andw1 is given by (4.1) and
w2 is given by (4.2). We also assume that g in the definition of w1 satisfies g(0) = 0.
Then,
(1) ∂

∂t wi (·, t) ∈ L1(0,∞) for all t > 0 and i = 1, 2;
(2) Dα

xCwi (·, t) ∈ L∞(0,∞) for all t > 0 and i = 1, 2;

(3) ∂
∂x wi (·, t) ∈ L1(0,∞) for all t > 0 and i = 1, 2.

Proof Wewill use the representation formulas (4.6). The argument is conducted simul-
taneously for g̃ and ḡ. For the sake of simplicity of notation we will write here g for
both g̃ and ḡ and also w will denote w1 and w2.
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We will check that (1) holds. Let us compute ∂
∂t w, we will express it in term of Φ

introduced in (2.10),

∂

∂t
w(x, t) = − a0

(1 + α)t1+
1

1+α

∫ ∞

−∞
Φ

(
x − y

t
1

1+α

)
g(y) dy

− a0

(1 + α)t1+
2

1+α

∫ ∞

−∞
dΦ

dξ

(
x − y

t
1

1+α

)
g(y) dy.

The RHS above is well-defined because g has a compact support and Φ is a C1+α-
function. Since g belongs to W 1,1(R+) we may integrate the last term by parts. Here,
in the case of the odd extension of g we use g(0) = 0.

Finally, we reach

∂

∂t
w(x, t) = − 1

(1 + α)t

∫ ∞

0
Et (x − y)g(y) dy − 1

(1 + α)t1+
1

1+α

∫ ∞

0
Et (x − y)g′(y) dy.

The integrability of E , g and g′ implies claim (1) for w.
We are going to establish part (2). We have already seen that Dα

xC commute with
integration, so we have,

Dα
xCw(x, t) =

∫ ∞

−∞
Dα
xCEt (x − y)g(y) dy.

Since Et (x) = a0

t
1

1+α

Φ(xt−
1

1+α ), we have to calculate the Caputo derivative of a scaled

function. Let us suppose that f is absolutely continuous on [0,∞). For λ > 0 we set
fλ(x) = f (λx). We compute Dα

xC fλ,

Dα
xC fλ(x) = 1

Γ (1 − α)

∫ x

0

d fλ
ds

(s)(x − s)−α ds = 1

Γ (1 − α)

∫ x

0
λ

f ′(λs)
(x − s)α

ds.

After changing the variables λs = z we obtain,

Dα
xC fλ(x) = λα

Γ (1 − α)

∫ λx

0

f ′(z)
(λx − z)α

dz = λαDα
yC f (λx). (4.9)

Taking into account (4.9) yields,

Dα
xCw(x, t) = a0

t
2

1+α

∫ ∞

−∞
Dα

ξC
Φ((x − y)t−

1
1+α )g(y) dy.

Now, due to (2.11) and Lemma 8 we conclude that

|Dα
xC v2(x, t)| =

∣∣∣∣a0t− 1
1+α

∫ ∞

−∞
(x − y)

t
1

1+α

Φ

(
(x − y)

t
1

1+α

)
g(y) dy

∣∣∣∣ ≤ a04t
− 1

1+α .
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Part (2) follows.
Part (3) is established along the lines of the proof of (1). Let us compute the derivative

of w, then we see

∂

∂x
w(x, t) =

∫ ∞

−∞
∂

∂x
Et (x + y)g(y) dy = −

∫ ∞

−∞
Et (x + y)g′(y) dy,

where we used the boundedness of the support of g. ��
We would like to state our uniqueness result. For this purpose we define a class of

functions, which we find suitable,

X =C([0,∞)2) ∩ C1+α([0,∞) × (0,∞)) ∩ {u ∈ L∞(R+; L2(R+)) :
for a.e. t > 0 ut (·, t), ux (·, t) ∈ L1(R+), u(·, t), Dα

xC u(·, t) ∈ L∞(R+)}.

The virtue of this definition is that Lemma 9 guarantees that solutions constructed
with the help of the convolution formula will belong to this class.

Proposition 2 If w is a solution to (4.3) with either Dirichlet or fixed slope boundary
data (4.4) and w ∈ X, then w is unique.

Proof We take the difference w of two solutions u1 and u2 from X , we multiply them
by w and integrate over R+. The definition of the class X permits us to write

1

2

d

dt
‖w(t)‖2L2 = 〈wt , w〉 ≡

∫ ∞

0

∂

∂x
Dα
xCw(x, t)w(x, t) dx .

Wewant to integrate by parts, however, performing this operation requires some prepa-
rations. Since the integrand on the RHS is integrable, then for any increasing sequence
Rn converging to infinity we have,

∫ ∞

0

∂

∂x
Dα
xCw(x, t)w(x, t) dx = lim

n→∞

∫ Rn

0

∂

∂x
Dα
xCw(x, t)w(x, t) dx .

Sincew(·, t) is continuous onR+ as well as it is in L2, then there exists a sequence Rn

converging to infinity, such that w(Rn, t)Dα
xCw(Rn, t) goes to zero, when n → ∞.

Thus, after integration by parts over [0, Rn] the RHS above takes the following form,

lim
n→∞

∫ Rn

0

∂

∂x
Dα
xCw(x, t)w(x, t) dx = − lim

n→∞

∫ Rn

0
Dα
xCw(x, t)

∂

∂x
w(x, t) dx,

wherewe also take into account the zeroDirichlet data at x = 0 or vanishing Dα
xCw(0).

In order to estimate the RHS we recall that [10, Proposition 6.10] implies that

∫ Rn

0
Dα
xCw(x, t)

∂

∂x
w(x, t) dx ≥ 0.
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See formula (5) in the proof of [20, Theorem 1] for more details. As a result, we
conclude that

d

dt
‖w(t)‖2L2 ≤ 0.

Hence, for all t > 0 we have ‖w(t)‖2
L2 ≤ ‖w(0)‖2

L2 = 0. ��
It is interesting to check when a solution belongs to class X . We do not offer a full

answer, however, Lemma 9 gives us a hint. We note:

Corollary 3 Let us suppose that f is in Cc(R
2+). Then,

(1) If g is in W 1,1(R+) with bounded support and g(0) = 0, then w1 +w3 is a unique
solution to (4.71) with initial condition (4.32) and boundary condition (4.41).
(2) If g is in W 1,1(R+) with bounded support, then w2 + w4 is a unique solution to
(4.71) with initial condition (4.32) and boundary condition (4.42).

Proof Lemma 9 shows that indeed w1 and w2 are in class X . The calculations we
performed in the course of proof of Theorem 2 show that w3, w4 also belong to X .
Then, we use Proposition 2 to finish the proof. ��

One may ask about the possibility to use the maximum principle to deduce unique-
ness of regular, i.e. sufficiently differentiable solutions. This is indeed possible for the
Dirichlet problem, see Corollary 4 below. However, in the case of fixed slope data
such argument does not seem to be known. The argument applicable for solutions of
the heat equation, [2, Section 5.2] does not work directly for the fractional equations.

Corollary 4 If u1, u2 ∈ C([0,∞)2) ∩ C2((0,∞)2) ∩ L∞((0,∞)2) are solutions to
(4.3) and (4.4)1, then u1 = u2.

Proof Step 1. We first show that u = u1 or u = u2, then

sup
R+×(0,T )

u = sup
R+

u(x, 0). (4.10)

For this purpose we define ΩT = (0, x0) × (0, T ) \ {(x, t) : t + x0 ≤ x}. For a given
ε > 0, we set x0 = (

Γ (2+α)
ε

‖g‖L∞)1/(1+α). Now, the weak maximum principle, see
[21, Lemma 8], for

vε(x, t) = u(x, t) − ε(Γ (2 + α)t + x1+α)

implies that

sup
ΩT

vε(x, t) = max

{
max
t∈[0,T ] vε(0, t), max

x∈[0,x0]
vε(x, 0), max

t∈[0,T ] vε(x0 + t, t)

}
.

However, by the choice of x0 function vε attains on {(x0 + t, t) : t ∈ [0, T ]} val-
ues smaller than supx∈[0,x0] vε(x, 0) and supR+×(0,T ) u − 1

2‖u‖L∞ . As a result, since
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g(0) = 0 we see that

sup
ΩT

vε(x, t) = max
x∈[0,x0]

vε(x, 0).

Now, we pass to the limit with ε → 0. Hence, (4.10) follows.
Step 2. Replacing u (resp. g) with −u (resp. −g) we infer from Step 1 that

inf
R+×(0,T )

u = inf
R+

u(x, 0).

Step 3. Let us now set u = u2 − u1. Steps 1 and 2 applied to u yield that u = 0. ��
Having established an integral representation of solution we may draw conclusions

about their asymptotic behavior. Here we note a decay property.

Proposition 3 Let us suppose that the assumptions of the uniqueness theorem, Propo-
sition 2, hold and g ∈ W 1,1(R+) has bounded support. If u is the unique solution to
(4.3) corresponding solution to g, then

sup
x∈R+

|u(x, t)| ≤ Ct−1/(1+α)‖g‖L1

Proof We use the representation formula and the boundedness of E . ��
We proved in [13] that viscosity solutions depend continuously upon α ∈ [0, 1].

We can use the representation formula to establish the same result. Indeed, we can
show:

Proposition 4 If wα
i , i = 1, 2 then for any α0 ∈ (0, 1]

lim
α→α0

wα
i = w

α0
i , i = 1, 2.

In particular, when α0 = 1, then w
α0
i is the solution to the heat equation.

Proof We notice that due to (2.9) for any R > 0 the family of the Mittag-Leffler
functions Eα,1+1/α,1/α is bounded on the ball {z ∈ C : |z| ≤ R}. Hence, due to the
Montel Theorem for each compact set K ⊂ C this family converges uniformly after
extracting a subsequence. However, the Residue Theorem implies that the limit must
be equal to Eα0,1+1/α0,1/α0 , hence the full sequence converges to Eα0,1+1/α0,1/α0 .

We may pass to the limit under the integral sign due to the compact support of g in
formulas (4.1) and (4.2). ��
Remark 4 This proof breaks down if we try to pass to the limit as α goes to 0. In this
case Eα,1+1/α,1/α converges to 1

1−z for |z| < 1. In addition the convergence result of
[13] does not apply here, because it was established on a finite interval, we have not
proved that solutions we constructed are viscosity solutions either.
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The observation made in the proposition above has a bit surprising consequences. It
suggests that for smallαwe should see phenomena typical for the hyperbolic problems.

We could relate this observation to the behavior the discretization scheme. We pre-
sented in [14] the 1

2 -shifted Grünwald approximation.Wewrite out the scheme, for the
Dirichlet data, in terms of the Grünwald weights. The approximation of u(iΔx, kΔt)
takes the following form,

uk+1
0 = uk0, uk+1

n = ukn,

uk+1
i =

i−1∑
j=0

β(gi+1− j − gi− j )u
k
j + (1 + β(g1 − g0)) u

k
i + βg0u

k
i+1,

(4.11)

where and the Grünwald weights are given by

β = Δt

(Δx)1+α
, g0 = 1, gi = i − 1 − α

i
gi−1, i = 1, 2, . . . . (4.12)

We see that when α → 0, then (4.11)–(4.12) converge to an explicit finite difference
scheme for the transport equation. This suggests a finite speed of propagation. This is
supported by our simulations, presented there which showed an initial pulse tending
toward the left.

There are two sides of the same coin. For α = 1, eq. (3.1) becomes a heat equation,
where the speed of propagation is infinite. It means that if the initial perturbation is
non-negative and it has a compact support, then solutions to (3.1) will be positive
everywhere for t > 0. Interestingly, when α → 1, then (4.11)–(4.12) converges to an
explicit finite difference scheme for the heat equation. We also noticed the smearing
out effect, see Fig. 2 in [14].

Actually, we can show:

Proposition 5 For all α ∈ (0, 1] the speed of signal propagation for solutions to (3.1)
with initial condition u(x, 0) = f (x) and the zero fixed slope data is infinite, i.e. if
f ≥ 0, f �= 0 and supp f ⊂ (0, R), where R > 0, then for all x, t > 0 we have

w2(x, t) > 0.

Proof This is a consequence of the definition of w2 and positivity of E and f . ��
We have chosen the fixed slope data, because of the simplicity of the formula for a

solution.
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Appendix

Here we present a different and more elegant approach to the derivation of E and
its positivity. It depends on the properties of the three-parameter generalized Mittag-
Leffler function and the arguments are shorter.

We first derive the form of E assuming that u defined as

u(x, t) = t−
1

1+α v(xt−
1

1+α )

is a solution to (3.1). Then, Corollary (1) yields,

(Dα
xC u)x (x, t) = t−1− 1

1+α (Dα
y v)y(y),

where y = xt−
1

1+α . Moreover, it is easy to check directly that

ut (x, t) = − 1

1 + α
t−1− 1

1+α (v(y) + yv′(y)).

Combining these observations with (3.1) yields,

− 1

1 + α
(v(y) + yv′(y)) = (Dα

y v)y(y).

This can be rewritten as

d

dy

(
Dα

y v(y) + 1

1 + α
yv(y)

)
= 0.
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Since we are interested in smooth solutions then, due to [14, Proposition 3.1] we see
that

Dα
y v(y) + 1

1 + α
yv(y) = 0, y > 0. (∗)

According to Proposition 1 a solution to this equation is given by the formula

v(y) = v(0)Eα,1+1/α,1/α

(
− y1+α

1 + α

)
.

Here Eα,1+1/α,1/α is a generalized Mittag-Leffler function defined in (2.8).
We can also offer much shorter and easier proof of the positivity of E . It is based

again on the theory of the Mittag-Leffler function and ODEs.
Lemma A. Function (0,∞) � x �→ v(x) ≡ Eα,1+ 1

α
, 1
α
(− x1+α

1+α
) is positive for all

x > 0.

Proof We consider eq. (*) for v with the initial condition v(0) = 1 Then, v(x) ≡
Eα,1+ 1

α
, 1
α
(− x1+α

1+α
) is a solution to (*). Let us suppose our claim is not valid and the

set

A := {x > 0 : v(x) ≤ 0}

is not empty. Due to the continuity of v, there is x0 such that

v(x0) = 0 and v(x) > 0 for x ∈ (0, x0).

However, we have

v(x0) = −1 + α

x0
Dα
x v(x0)

= − 1 + α

x0Γ (1 − α)

(
v(x0) − v(0)

xα
0

+ α

∫ x0

0

v(x0) − v(x0 − z)

zα+1 dz

)

= 1 + α

x0Γ (1 − α)

(
1

xα
0

+ α

∫ x0

0

v(x0 − z)

zα+1 dz

)
> 0.

This is a contradiction. ��
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