
Fractional Calculus and Applied Analysis (2022) 25:1837–1851
https://doi.org/10.1007/s13540-022-00086-4

ORIG INAL PAPER

Impulse response of commensurate fractional-order
systems: multiple complex poles

Dalibor Biolek1,2 · Roberto Garrappa3,4 · Viera Biolková5

Received: 24 May 2022 / Revised: 30 August 2022 / Accepted: 30 August 2022 /
Published online: 14 September 2022
© The Author(s) 2022

Abstract
The impulse response of a fractional-order system with the transfer function
sδ/[(sα − a)2 + b2]n , where n ∈ N, a ∈ R, b ∈ R

+, α ∈ R
+, δ ∈ R, is derived via

real and imaginary parts of two-parameter Mittag-Leffler functions and their deriva-
tives. With the aid of a robust algorithm for evaluating these derivatives, the analytic
formulas can be used for an effective transient analysis of fractional-order systems
with multiple complex poles. By some numerical experiments it is shown that this
approach works well also when the popular SPICE-family simulating programs fail
to converge to a correct solution.
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1 Introduction

Evaluation of impulse or transient response of a linear fractional-order system from
its transfer function is often part of designing and verifying the operation of analog
circuits, especially frequencyfilters [1], oscillators [2], and generalizedPIDcontrollers
(i.e., controllers including non-integer-order elements) [3].

In principle, this calculation can be performed in three ways: 1) in the environment
of a standard analog circuit simulation program, as for instance SPICE; 2) using a
universal program for scientific and technical calculations, e.g. MATLAB; 3) using
customized software, e.g. SNAP, for the analysis of fractional-order circuits [4].

SPICE offers the possibility of a direct time response evaluation from a transfer
function specified via controlled Laplace sources. However, serious numerical errors
may arise because SPICE is not primarily designed for analyzing systemswith dynam-
ics of non-integer order. Another solutionmay be to use known efficient algorithms (or
develop new ones) for transient analysis of fractional-order systems and implement
them, for example, in MATLAB. An analog designer may prefer the analysis in a dif-
ferent software environment that would allow working in a similar style to SPICE, but
with added capabilities such as the so-called (semi)symbolic analysis of the transfer
function from the circuit diagram [4] or software-generated analytical formula of the
impulse response using Mittag-Leffler (ML) functions [3].

The computation of the impulse response of a linear commensurate fractional-order
system whose transfer function K (s) contains the s operator with non-integer powers
of the form αk = pk/qk , pk ∈ N0, qk ∈ N, can then proceed in the following steps:

– converting the transfer function to the domain of the operatorw = sα withα = 1/q
and q the least common multiple of the qk coefficients [5];

– decomposing the transfer function K (w) into partial fractions;
– converting each partial fraction from Laplace to time domain by means of ML
functions and their derivatives [3].

For the case of real simple andmultiplew-domain poles, commonly used correspon-
dences between the Laplace and time domains are available, which can be summarized
by the correspondence [6]

sδ

(sα − a)k
� tαk−δ−1

(k − 1)! E
(k−1)
α,α−δ(at

α), (1.1)

where k ∈ N, a ∈ R, α ∈ R
+, δ ∈ R and E (m)

α,β (z) denotes the m-th order derivative
of the ML function (see Section 2).

The case of complex poles corresponding to the denominators ofw-domain transfer
functions with second-order polynomials has received marginal attention in the liter-
ature so far. One possible reason is that the corresponding impulse responses can be
obtained indirectly also using (1.1) if decomposition into partial fractions is performed
for the corresponding conjugate pairs of complex poles, i.e. with the denominators in
the form of binomials with complex coefficients instead of trinomials with real coef-
ficients. One of the few attempts at a direct solution is given in [7] for simple poles,

123



Impulse response of commensurate fractional-order systems… 1839

where a correspondence is found to exist between the Laplace transform of the form
b/(s2α + asα + b) and the corresponding impulse response formula expressed via the
ML function. In [8], impulse responses for the transfer function 1/(s2α +asα +b)γ are
analyzed, but only for 0 < γ < 2. Moreover, the impulse response formula is found
only for a special, not a general, constellation of parameters. It is also known that the
impulse response corresponding to the “three-term transfer function” or “three-term
differential equation” can be expressed using an infinite series of ML functions [6];
however, using series ofML functions is not very efficient for numerical computations.

There are two main contributions in this work:

– finding the missing Laplace-time correspondence for multiple complex poles;
– suggesting a reliable algorithm for evaluating two-parameter ML functions and
their derivatives.

This builds a basis for an algorithmic generation of the analytic formulas of the
impulse or step responses, involving the basal functions (ML functions and their
derivatives as functions of time) associated with arbitrary transfer functions K (w). By
evaluating these formulas, numerical results are then obtained.

Since the relation (1.1) is used to derive the above missing correspondence, its
validity is first analyzed in Section 3.1 with respect to the range of values of the
relevant parameters a,α andβ. Then, in Sections 3.2 and 3.3, the relationships between
Laplace transforms and time responses are derived for a conjugate pair of simple and
also multiple complex w-domain poles. Section 4 shows examples of the numerical
analysis of time responses, using the derived relations and algorithms for evaluating
two-parameter ML functions and their derivatives. A comparison with the outputs of
three types of SPICE simulators illustrates the robustness of the proposed procedure
even in cases of a fatal failure of the SPICE algorithms.

2 TheMittag–Leffler function and its derivatives

For α ∈ C with Re(α) > 0, β ∈ C, and any complex argument z, the ML function is
defined by means of its series expansion

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, (2.1)

and it is an entire function of order 1/Re(α) and type 1, [9]. Its derivatives can be
easily determined after derivation of each term in the series as

E (m)
α,β (z) = dm

dzm
Eα,β(z) =

∞∑

j=0

( j + m)!
j !

z j

Γ (α j + αm + β)
, (2.2)

wherem ∈ N0. For the purpose of analyzing fractional-order systems, one can restrict
the definition domain of parameters α and β to the set of real numbers. Then (2.1) and
(2.2) hold for α ∈ R

+, β ∈ R and m ∈ N0.
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1840 D. Biolek et al.

Derivatives of the two-parameter ML function (2.2) can be more conveniently
represented in terms of the three-parameter ML function (also known as the Prabhakar
function [10, 11])

Eγ
α,β(z) =

∞∑

j=0

(γ ) j

j !
z j

Γ (α j + β)
,

where (γ ) j = γ (γ +1) · · · (γ + j−1) = Γ (γ + j)/Γ (γ ) is the Pochhammer symbol,
in view of the relationship

E (m)
α,β (z) = m!Em+1

α,αm+β(z)

and since for m ∈ N0 it is Γ (m + 1) = m!.
Specific numerical methods [12–19] have been devised to evaluate ML functions

and their derivatives. The availability of corresponding MATLAB implementations
[20–23] allows to apply the outlined procedure to the transfer function and determine
the impulse and step response.

3 Impulse responses in terms of ML functions

To provide a proper representation of the impulse response of a linear commensurate
fractional-order systemwe examine different cases according to the nature of the poles
of the transfer function.

3.1 Multiple real poles

After substituting (2.2) into the right-hand side of (1.1) and applying the Laplace
transform, we get

L
(
tαk−δ−1

(k − 1)! E
(k−1)
α,α−δ(at

α) ; s
)

= 1

(k − 1)!
∞∑

j=0

( j + k − 1)!a j

j ! L
(

tαk+α j−δ−1

Γ (α j + αk − δ)
; s

)

= 1

(k − 1)!
∞∑

j=0

( j + k − 1)!a j

j !sα j+αk−δ
= 1

sαk−δ

∞∑

j=0

(
j + k − 1

j

)( a

sα

) j

whenever Re(α j + αk − δ) > 0, namely for Re(δ) < k Re(α). The above infinite
series converges absolutely, and

∞∑

j=0

(
j + k − 1

j

) ( a

sα

) j =
(
1 − a

sα

)−k
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for sufficiently large |s|, namely when

|sα| > |a|. (3.1)

Hence, after rearranging some terms, one easily obtains

L
(
tαk−δ−1

(k − 1)! E
(k−1)
α,α−δ(at

α) ; s
)

= sδ

(sα − a)k
(3.2)

which is the relation (1.1) holding for arguments a ∈ C as well. It follows from the
above derivations that, when condition (3.1) is satisfied, and if we restrict (just for
simplicity) to real parameters α ∈ R

+ and δ ∈ R, the relations (1.1) and (3.2) hold in
general for any k ∈ N and δ < kα. Thus, (1.1) can be also used for calculations of
time responses for complex w-domain poles.

Parameters α ∈ R
+ and δ ∈ R can be however chosen independently, without the

additional coupling condition δ < kα. This means, for instance, that (3.2) also holds
for δ ≥ kα when the order of the numerator of the transfer function is greater than or
equal to the order of the denominator, which is an indication that the corresponding
time response will contain derivatives of the Dirac impulse of non-integer order.

The q-th order derivative of the Dirac impulse can be indeed written in the form
[24, 25]

L−1
(
sq ; t

)
= 1

Γ (−q)

1

tq+1 , q ∈ R
+, t > 0,

and these derivatives can be directly included in the time function on the right-hand
side of (1.1) when δ > kα.

This procedure can be illustrated by a simple example for k = 1 and δ ≥ α via the
following arrangement:

sδ

sα − a
= sδ−α sα

sα − a
= sδ−α

(
1 + a

sα − a

)
= sδ−α + a

sδ−α

sα − a

� 1

Γ (α − δ)

1

tδ−α+1 + at2α−δ−1Eα,2α−δ(at
α).

The first term in the time response represents the derivative of the Dirac impulse
of order δ − α. If the inequality δ − α ≥ α (or, equivalently, δ ≥ 2α) holds, then this
would mean that the second term could be used to split off another derivative of the
Dirac impulse of order δ − 2α.

sδ

sα − a
� 1

Γ (α − δ)

1

tδ−α+1 + a

Γ (2α − δ)

1

tδ−2α+1 + a2t3α−δ−1Eα,3α−δ(at
α).

The same procedure can be repeated until the time response is decomposed into a
sequence of derivatives ofDirac impulses and a residual functionwhose corresponding

123
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Laplace transform has a pseudo-polynomial in the denominator of higher order than in
the numerator. Then theML function occurring in the residual function has the second
parameter greater than 0.

3.2 Simple complex poles

To analyze transfer functions with simple complex poles, let us consider a conjugate
pair of complex w-domain poles with multiplicity 1, i.e. w1 = c, w2 = c�, where

c = a + ib, c� = a − ib (3.3)

and the corresponding transfer function with its decomposition into partial fractions
is

b

(w − a)2 + b2
= b

(w − c)(w − c�)
= i

2

(
1

w − c�
− 1

w − c

)
. (3.4)

After substituting w = sα , and imposing the condition

|s| > |c|1/α, (3.5)

the terms within the brackets in (3.4) can be converted to the time domain according
to (1.1). Then

b

(sα − a)2 + b2
= i

2

(
1

sα − c�
− 1

sα − c

)
� i

2
tα−1

(
Eα,α

(
c�tα

) − Eα,α

(
ctα

))
.

After multiplying the Laplace transform (3.4) by the term sδ and applying the
relation (1.1), we get

bsδ

(sα − a)2 + b2
� i

2
tα−δ−1

(
Eα,α−δ

(
c�tα

) − Eα,α−δ

(
ctα

))
.

For any z ∈ C, by writing z = ρ cos θ + iρ sin θ , with ρ = |z| and θ = arg(z), it
is elementary to observe that

Eα,β

(
z
) − Eα,β

(
z�

) =
∞∑

j=0

[
ρ j cos jθ + iρ j sin jθ

Γ (α j + β)
− ρ j cos jθ − iρ j sin jθ

Γ (α j + β)

]

= 2i
∞∑

j=0

ρ j sin jθ

Γ (α j + β)
= 2i Im

(
Eα,β(z)

)

and, hence, a minor rearrangement yields the correspondence

bsδ

(sα − a)2 + b2
� tα−δ−1 Im

(
Eα,α−δ(ct

α)
)

(3.6)
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which is the basic formula for the correspondence between the Laplace and time
domains for the case of simple complex poles.

Since numerical algorithms for the computation of ML functions [21, 23] usually
make use of complex arithmetic, the relation (3.6) can be directly used for efficient
time response computations.

3.3 Multiple complex poles

For the analysis of transfer functions with multiple complex poles of multiplicity
n ∈ N, we consider again the conjugate pair of complex poles (3.3) and the transfer
function

sδ

[
(sα − a)2 + b2

]n = sδ

(sα − c)n(sα − c�)n

with its partial fractional decomposition

sδ

[
(sα − a)2 + b2

]n =
n∑

k=1

Pk

(
sδ

(sα − c)k
+ (−1)k

sδ

(sα − c�)k

)
, (3.7)

where

Pk = (−1)n−k
(
2n − k − 1

n − k

)
1

(2ib)2n−k
. (3.8)

Each of the terms in the right-hand side of (3.7) can be converted to the time
domain thanks to the relation (1.1), after replacing the real pole with a complex one
and considering the convergence condition (3.5), i.e.

sδ

[
(sα − a)2 + b2

]n �
n∑

k=1

Pk
tαk−δ−1

(k − 1)!
[
E (k−1)

α,α−δ(ct
α) + (−1)k E (k−1)

α,α−δ(c
�tα)

]
. (3.9)

By using (2.2), and following the same reasoning in the previous Section, it is
possible to see that

E (m)
α,β (z) + (−1)m+1E (m)

α,β (z�) = (
1 + (−1)m+1)

∞∑

j=0

( j + m)!
j !

ρ j cos jθ

Γ (α j + αm + β)
+

+ (
1 − (−1)m+1)i

∞∑

j=0

( j + m)!
j !

ρ j sin jθ

Γ (α j + αm + β)
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where, again, we exploited the representation z = ρ cos θ + iρ sin θ for z ∈ C.
Therefore, we are able to evaluate

E (k−1)
α,α−δ(ct

α) + (−1)k E (k−1)
α,α−δ(c

�tα) =
⎧
⎨

⎩
2Re

(
E (k−1)

α,α−δ(ct
α)

)
k even

2i Im
(
E (k−1)

α,α−δ(ct
α)

)
k odd

thanks to which formula (3.9) can be rearranged into the series

sδ

[
(sα − a)2 + b2

]n �

� − A1

0! t
α−δ−1 Im

(
Eα,α−δ

(
ctα

)) − A2

1! t
2α−δ−1 Re

(
E (1)

α,α−δ

(
ctα

))

+ A3

2! t
3α−δ−1 Im

(
E (2)

α,α−δ

(
ctα

)) + A4

3! t
4α−δ−1 Re

(
E (3)

α,α−δ

(
ctα

))

− A5

4! t
5α−δ−1 Im

(
E (4)

α,α−δ

(
ctα

)) − A6

5! t
6α−δ−1 Re

(
E (5)

α,α−δ

(
ctα

)) + . . .

whose last n-th term contains the n-th derivative of the two-parameter ML function
of the real or the imaginary part of the argument, depending on whether n is even or
odd. Coefficients Ak are derived from the Pk coefficients (3.8) as follows

Ak = 2(−i)k Pk = 2(−1)k
(
2n − k − 1

n − k

)
1

(2b)2n−k
, k = 1, 2, . . . , n. (3.10)

For convenience, the above series can be written in the more compact form

sδ

[
(sα − a)2 + b2

]n �

� tα−1
[(n−1)/2]∑

k=0

(−1)k+1A2k+1
t2kα−δ

(2k)! Im
(
E (2k)

α,α−δ

(
ctα

))

+ tα−1
[n/2−1]∑

k=0

(−1)k+1A2(k+1)
t (2k+1)α−δ

(2k + 1)! Re
(
E (2k+1)

α,α−δ

(
ctα

))

(3.11)

with [x] denoting the integer part of x .

4 Numerical simulations

The relationships (3.6) and (3.11) between the Laplace and the time domains for
complex poles will be used in this section to test the accuracy and robustness of the
numerical transient analysis of fractional-order systemswith different types of transfer
functions, with both simple and multiple w-domain poles.
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To exploit the relations (3.6) and (3.11) numerical algorithms are needed to evaluate
two-parameter ML functions, and their derivatives, with complex arguments and for
different sets of real parameters α and β.

Despite the special role played by ML functions in analysis and computation of
fractional-order systems (essentially, the same role of the exponential function for
integer-order systems), programming languages and computational packages usually
do not provide built-in functions for the computation ofML functions and their deriva-
tives; therefore it is necessary to rely on routines devised in the context of other research
works.

One of the first available codes is theMatlabmlf.m function by I. Podlubny andM.
Kacenak [23]; this is a code based on a mix of asymptotic expansions and numerical
integration of an integral representation of the ML function, in accordance with the
analysis previously provided in [14]. It is of historical importance since it has been
the first available Matlab tool for computing ML functions and it made possible to
begin investigations based on this function. However the code [23] is not designed
to evaluate derivatives of the ML function and therefore it is not suitable to handle
systems with multiple poles.

In [3] it was devised an algorithm to evaluate derivatives of the ML function by
truncating the series representation (2.2); this method, however, can suffer from unex-
pected numerical cancellation due to the possible presence of series terms with large
absolute value and alternating sign.

The problem of specifically computing derivatives of the ML functions was faced
in [13] as well; essentially this work concerns with the computation of ML functions
with matrix arguments, by exploiting the Schur-Parlett algorithm [26], which, in turns,
demands for the computation of (possibly high-order) derivatives of theML function in
arguments related to the eigenvalues of the matrix argument, and, hence, in the whole
complex plane. The algorithm proposed in [13] is based on the numerical inversion of
the Laplace transform of the derivative of the ML function, thus generalizing previous
algorithms devised in [12] and [19]. To improve stability of the algorithms, when
high-order derivatives are requested, the algorithm in [13] exploits a formula for the
representation of higher-order derivatives in terms of lower-order derivatives. The
Matlab function ml_deriv(z, α, β, k), extracted from the code devised in [13], and
evaluating the k-th order derivative of the ML function with two parameters α and β

at each entry of the vector z, is therefore used in the numerical experiments and the
corresponding results are simply denoted as ML.

The results are hence compared with those obtained from the transient analysis in
popular SPICE-family simulating programs, namely PSPICE, LTSpice, and Micro-
Cap (and labelled, respectively, as PS, LT andMC), which enable a direct specification
of the transfer function of a fractional-order system using the controlled Laplace
source. SPICE evaluates the respective time waveforms via the convolution of the
driving signal and the impulse response, the latter being computed from samples of
the corresponding frequency response. The transient analysis of classical integer-order
systems then leads to known errors associated with specific types of transfer functions,
leading to a “no causal” impulse response.
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1846 D. Biolek et al.

As a benchmark for the transient analysis, we consider the transfer function

K (s) = sδ

[
a2 + b2

(sα − a)2 + b2

]n
(4.1)

with the parameters a = −628.319, b = 6252 chosen so that the transfer function
(4.1) corresponds for n = 1 and α = 1 to a 2-nd order system with a characteristic
frequency of 1 kHz and a quality factor of 5. The time waveforms corresponding to
(4.1) for this constellation of parameters are well known and the results of the transient
analysis are therefore easy to verify.

Errors in the transient analysis of more complex transfer functions can also be
detected by testing the limiting values of the response for t → 0+ and t → ∞. The
denominator in (4.1) has all s-roots in the closed left-hand complex half-plane if

a <
b

tan (απ/2)
, α > 0. (4.2)

Then, according to the final value theorem, the time waveform f (t), corresponding
to the Laplace transform (4.1), for t → ∞ converges to 0 when δ > −1, and to 1
when δ = −1. For δ < −1 this limit is improper since the term sδ then represents a
multiple pole at zero.

The limit value of the impulse characteristic at t → 0+ is, according to the initial
value theorem, f (0+) = 0 for δ < 2nα−1 and f (0+) = (a2 +b2)n for δ = 2nα−1.
For δ > 2nα − 1 the limit takes infinity values.

In the transient analysis, the fractional-order system modeled by the transfer func-
tion (4.1)was driven by a unit step. Then, to obtain the impulse response, it is necessary
to multiply the transfer function by the s operator. Since different modifications of the
corresponding algorithms are implemented in the above SPICE-family programs, it
was interesting to compare the results obtained.

The comparisons are shown in Figures 1 and 2 in a uniform coordinate system,
namely the response f (t) vs. time t .

The results (a)-(f) in Figure 1 for n = 1 are obtained for the fixed parameters α,
a, b while varying the parameter δ. They confirm the stable behavior of procedures
based on the computation of the ML function. The case (a) represents a double pole
at zero, which leads to unbounded growth of the response over time. From among the
SPICE programs, only Micro-Cap correctly evaluates this unstable behavior. PSpice
generates a fundamentally wrong response and the simulation in LTSpice does not run
at all (the Laplacian is singular at DC).

The simulations (b) and (c) satisfy the test for the limiting values f (0+) = 0 and
f (∞) = 1. For the case (d), i.e. δ = 0.8, the limiting value changes at the origin
to f (0+) = a2 + b2 = 3.948 × 107, which is confirmed for all the computational
methods. However, the results show that all SPICE simulators introduce an error in
the steady state calculation.

The simulation for the parameters in the plot (e) for δ = 1 is handled by SPICE
programs only with large errors, while the ML algorithm based on the Mittag-Leffler
functions gives accurate results.When the parameter δ is increased further (see the plot
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Impulse response of commensurate fractional-order systems… 1847

Fig. 1 Waveforms corresponding to the transfer function (4.1) with simple complex poles (n = 1) for
α = 0.9, a = −628.319 (if not specified otherwise) and b = 6252. The waveforms are computed in
MATLAB via the algorithm [13] (ML), via the transient analysis in PSpice 16.5 (PS), LTSPICE XVII (LT),
and Micro-Cap 12 (MC). Failing methods are marked by a strikeout (e.g. PS)
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1848 D. Biolek et al.

Fig. 2 Waveforms corresponding to the transfer function (4.1) with multiple complex poles (n = 3) for
α = 0.9, a = −628.319 (if not specified otherwise) and b = 6252. The waveforms are computed in
MATLAB via the algorithm [13] (ML), via the transient analysis in PSpice 16.5 (PS), LTSPICE XVII (LT),
and Micro-Cap 12 (MC). Failing methods are marked by a strikeout (e.g. PS)
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(f)), the SPICE programs start to fail fatally. Only the ML method exhibits problem-
free behavior.

Plot (g) shows the simulation results for a = 990, which is just below the 990.22
threshold between the stable andunstable response as given in (4.2). The corresponding
oscillating response is confirmed by the ML method as well as by the PS and MC
simulations. The PS simulation fails in this case. Finally plot (h) shows amore complex
case of unstable behavior, simultaneously induced by a conjugate pair of complex
poles in the instability region for a = 1500 and a double pole at zero. The response is
correctly calculated only by the ML and MC methods.

Figure 2 shows examples of testing the methods of transient analysis for the more
complex case of multiple poles, in this case n = 3.

Plots (a)-(g) are again ordered for increasing values of δ, which implies a successive
differentiation of the responses with respect to time. All tested methods show satis-
factory results for δ = −1 and δ = 0. Outside this interval errors can be successively
observed for all SPICE programs without exception. When δ = 4.4 is reached (see
plot (e)), the limiting value of f (0+) goes from 0 to (a2 + b2)3 = 5.972 × 1022,
which is confirmed by the ML, LT and MC methods. The PSPICE does not converge
for these parameters and even for higher values of δ. Plots (f) and (g) exhibit a high
sensitivity of the results from LT and MC to δ increasing above the critical value of
4.4. Then only the ML method generates usable outputs.

Figure (h) finally shows the simulation of system (4.1) for n = 3 when it is set
to be close to the instability limit by the parameter a = 990. Only the ML and MC
methods passed this challenging test successfully.

The outputs of these simulations for gradually increasing values of δ also illustrate
the robustness of the balancing derivatives algorithm implemented in [13] and used
by the ML method; this method indeed generates correct results even for high values
of δ, when instead SPICE programs fail.

5 Concluding remarks

The dictionary of current Laplace-time correspondences for fractional-order systems
is completed by adding the missing correspondences (3.6) and (3.11) for single and
multiple w-domain poles. This addition now allows the automated generation of ana-
lytical formulas of impulse responses using two-parameter ML functions and their
derivatives for any constellation of poles, i.e., real and complex, simple and with arbi-
trary multiplicity. It can also be potentially used for developing useful software tools
for the symbolic analysis of analog networks containing fractional-order elements.

The MATLAB code for evaluating the derivatives of two-parameter ML functions,
based on the algorithm described in [13], is used and its robustness is demonstrated
on benchmark simulations.
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