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Abstract
We consider a class of generalized time-fractional evolution equations containing a
fairly general memory kernel k and an operator L being the generator of a strongly
continuous semigroup. We show that a subordination principle holds for such evolu-
tion equations and obtain Feynman-Kac formulae for solutions of these equations with
the use of different stochastic processes, such as subordinate Markov processes and
randomly scaled Gaussian processes. In particular, we obtain some Feynman-Kac for-
mulae with generalized grey Brownian motion and other related self-similar processes
with stationary increments.
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1 Introduction

In this paper, we study a general class of evolution equations

u(t) = u0 +
∫ t

0
k(t, s)Lu(s)ds, t > 0, (1.1)

where k is a fairly general memory kernel and L is the infinitesimal generator of a
strongly continuous semigroup (Tt )t≥0 acting on some Banach space X . In particular,
the operator L may be the generator L0 of a Markov process ξ on some state space Q,
or L := L0+b∇+V for a suitable potential V and drift b.Moreover, L may be the gen-
erator of a subordinate semigroup or a Schrödinger type group. This class of evolution
equations includes in particular time- and space- fractional heat and Schrödinger type
equations as well as equations with generalized time-fractional derivatives of Caputo
type (cf. Remarks 1, 2 below). Such equations are widely discussed in the literature
(see, e.g., [2, 10, 14, 18, 19, 24–27] and references therein), in particular, in connec-
tion with models of anomalous diffusion. We refer to [4] for additional background
information and for detailed discussion of the considered memory kernels k.

In this paper, we show that the solution operator of equation (1.1) can be written in
the form

Dom(L) → X , u0 �→
∫ ∞

0
(Tau0)PA(t)(da)

for a family (PA(t))t≥0 of probabilitymeasures on the positive real line, which depends
on k only.We, thus, consider this representation as a subordination principle associated
to the memory kernel k. We state the subordination principle in Section 2, and in par-
ticular discuss how to obtain stochastic representations of the solution, if the operator
L is (a Bernstein function of) the infinitesimal generator of a Markov process (plus a
potential). The most natural stochastic reprensentations of such an approach are given
in terms of time-changed Markov processes. In Section 3, we explain, however, how
to arrive at representations in terms of non-Markovian processes such as generalized
grey Brownianmotion or even in terms of solutions of stochastic differential equations
driven bymore general randomly scaled fractional Brownianmotions. Such stochastic
processes are attractive for modelling since they are self-similar and with stationary
increments (cf. [26, 27]). Finally, the proofs are provided in Section 4. While the main
results can be considered as generalizations of our previous results in [4] beyond the
case of pseudo-differential operators L associated to Lévy processes, the proofs are
completely different, relating (an approximate version of) the subordination principle
to a family of Volterra equations via the Hille-Phillips functional calculus.

2 Main results

Assumption 1 Let X be a Banach space with a norm ‖ · ‖X . Let (Tt )t≥0 be a strongly
continuous semigroup on X with generator (L,Dom(L)).
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1820 C. Bender et al.

We consider the evolution equation (1.1) with operator L as in Assumption 1, with
u0 ∈ Dom(L), u : [0,∞) → X and k satisfying the following Assumptions 2–3.

Assumption 2 We consider a Borel-measurable kernel k : (0,∞) × (0,∞) → R

satisfying the condition: ∃ α∗ ∈ [0, 1) and ∃ ε > 0 such that for each T > 0

KT := sup
0<t≤T

tα
∗− 1

1+ε ‖k(t, ·)‖L1+ε((0,t)) < ∞.

In order to identify the family of probability measures (PA(t))t≥0 for the subordi-
nation, we specify their Laplace transform in terms of the memory kernel k. To this
end we define the function Φ : [0,∞) × C → C via

Φ(t, λ) :=
∞∑
n=0

cn(t)λ
n, (2.1)

c0(t) := 1 ∀ t ≥ 0 and

cn(t) :=
{∫ t

0 k(t, s)cn−1(s)ds, ∀ t > 0,
0, t = 0,

n ∈ N. (2.2)

It has been shown in [4] that, under Assumption 2, the function Φ is well-defined and,
for fixed t , entire in λ.

Assumption 3 Let the function Φ be constructed from the kernel k via formu-
las (2.1), (2.2). We assume that the restriction of the function Φ(t,−·) on (0,∞)

is completely monotone for all t ≥ 0, i.e., for each t ≥ 0, there exists a nonnegative
random variable A(t) whose distribution PA(t) has the Laplace transform given by
Φ(t,−·):

∫ ∞

0
e−λaPA(t)(da) = Φ(t,−λ), ∀ λ ∈ C, 
λ ≥ 0. (2.3)

Note that PA(0) = δ0 and A(0) = 0 a.s. since Φ(0,−λ) ≡ 1.

Typical examples of kernels k satisfying Assumptions 2–3 are kernels of convo-
lution type and homogeneous kernels related to operators of generalized fractional
calculus (cf. [4]). Recall that a kernel k is homogeneous of degree θ − 1 for some
θ > 0 if k(t, ts) = tθ−1k(1, s), t ∈ (0,∞), s ∈ (0, 1).

Theorem 1 Let Assumption 1 hold. Let k satisfy Assumption 2 and assume that the
corresponding function Φ satisfies Assumption 3. Then:
(i) For each t ≥ 0, the operator Φ(t, L) given by the Bochner integral

Φ(t, L)ϕ :=
∫ ∞

0
Taϕ PA(t)(da), ϕ ∈ X , (2.4)

is well defined, and it is a bounded linear operator on X.
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Subordination principle... 1821

(ii) For each t > 0 and each u0 ∈ Dom(L), the function

u(t) := Φ(t, L)u0 (2.5)

solves equation (1.1) and it holds limt↘0 u(t) = u0.
(iii) Suppose additionally that k is homogeneous of order θ − 1 for some θ > 0. Then
one can choose A(t) := Atθ in (2.4), where A is a nonnegative random variable such
that

∫ ∞

0
e−λaPA(da) = Φ(1,−λ), ∀λ ∈ C, 
λ ≥ 0. (2.6)

We next wish to apply the semigroup (Tt )t≥0 associated to a generator L in order
to represent the solution of the evolution equation with memory kernel k and the
(space-)fractional operator −(−L)γ . We use subordination in the sense of Bochner
[5, 30] which is a random time change of a given process (ξt )t≥0 by an inde-
pendent subordinator, i.e. an 1-dimensional increasing Lévy process (with killing)
(η

f
t )t≥0. Any subordinator can be characterized in terms of its Laplace exponent f :

E

[
e−λη

f
t

]
= e−t f (λ); any such f is aBernstein function and is determined uniquely by

its Lévy-Khintchine representation f (λ) = a + bλ + ∫
(0,∞)

(
1 − e−λs

)
ν(ds), where

a, b ≥ 0 and ν is a measure on (0,∞) satisfying
∫
(0,∞)

min(s, 1)ν(ds) < ∞. Let
(Tt )t≥0 be as in Assumption 1 and additionally a contraction semigroup. The family
of operators (T f

t )t≥0 defined by the Bochner integral

T f
t ϕ :=

∫ ∞

0
Tsϕ P

η
f
t
(ds), ϕ ∈ X ,

is said to be subordinate to (Tt )t≥0 with respect to the convolution semigroup of

measures
(
P

η
f
t

)
t≥0

, where P
η
f
t
is the distribution of η

f
t . The family (T f

t )t≥0 is

again a strongly continuous contraction semigroup on the space X whose generator
(L f ,Dom(L f )) is the closure of the operator (− f (−L),Dom(L)), where

− f (−L)ϕ := −aϕ + bLϕ +
∫

(0,∞)

(Tsϕ − ϕ) ν(ds), ϕ ∈ Dom(L).

If (Tt )t≥0 is the transition semigroup of a Feller process (ξt )t≥0 and (η
f
t )t≥0 is an inde-

pendent subordinator, then (T f
t )t≥0 is the transition semigroup of the (again Feller)

process (ξ
η
f
t
)t≥0. Further information on subordination in the sense of Bochner and

all related objects can be found e.g. in [31].
Consider now the function Φ f (t,−·) := Φ(t,− f (·)). If the function Φ(t,−·) is

completely monotone, so is the function Φ f (t,−·), as a composition of a Bernstein
function f and a completely monotone function Φ(t,−·). Hence there exists a family
of nonnegative random variables whose Laplace transform is given by Φ f (t,−·), t ≥
0. Using distributions of these random variables and a strongly continuous contraction
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1822 C. Bender et al.

semigroup (Tt )t≥0 with generator (L,Dom(L)), one can define the operatorΦ f (t, L)

analogously to (2.4).

Corollary 1 Let Assumption 1 hold and (Tt )t≥0 be a contraction semigroup. Let k
satisfy Assumption 2 and the corresponding function Φ satisfy Assumption 3. Let
(A(t))t≥0 be a family of nonnegative random variables satisfying (2.3). Let (η

f
t )t≥0

be a subordinator corresponding to a Bernstein function f which is independent from
(A(t))t≥0. Then

Φ f (t, L)ϕ =
∫ ∞

0
Tsϕ P

η
f
A(t)

(ds) = Φ(t, L f )ϕ, ϕ ∈ X . (2.7)

Moreover, for each t > 0 and each u0 ∈ Dom(L f ), the function u(t) := Φ f (t, L)u0
solves the evolution equation

u(t) = u0 +
∫ t

0
k(t, s)L f u(s)ds, t > 0,

lim
t↘0

u(t) = u0. (2.8)

If the semigroup (Tt )t≥0 has a stochastic representation, then the family (Φ f (t, L))t≥0
as well has a stochastic representation due to (2.7).

Example 1 Let Q be a separable completely metrizable topological space endowed
with a Borel σ -field B(Q). Let (Ω,F ,Px , (ξt )t≥0)x∈Q be a (universal) Markov
process with state space (Q,B(Q)). Assume that the corresponding transition semi-
group (T 0

t )t≥0, T 0
t u0(x) := E

x [u0(ξt )] , is a strongly continuous semigroup on
some Banach space X ⊂ Bb(Q) (where Bb(Q) is the space of all bounded Borel
measurable functions on Q). Let (L0,Dom(L0)) be the generator of (T 0

t )t≥0. Let
V : Q → (−∞, 0] be a Borel measurable function such that the (closure of the)
operator (L0 +V ,Dom(L0 +V )) generates a strongly continuous semigroup (Tt )t≥0
on X with stochastic representation

Ttu0(x) := E
x
[
u0(ξt ) exp

(∫ t

0
V (ξs)ds

)]
, t ≥ 0, x ∈ Q, u0 ∈ X . (2.9)

Note that (2.9) is the classical Feynman-Kac formula which holds under very mild
assumptions on processes and potentials, cf., e.g., [6, 7, 21]. Let assumptions of
Corollary 1 hold and (ξt )t≥0 be independent from (A(t))t≥0 and (η

f
t )t≥0. Then for

u0 ∈ Dom((L0 + V ) f ) the function

u(t, x) := E
x

[
u0

(
ξ
η
f
A(t)

)
e
∫ η

f
A(t)

0 V (ξs )ds

]
(2.10)
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solves the evolution equation

u(t, x) = u0(x) +
∫ t

0
k(t, s) (L0 + V ) f u(s, x)ds. (2.11)

Suppose additionally that k is homogeneous of order θ − 1 for some θ > 0. Let A be
a nonnegative random variable which satisfies (2.6) and is independent from (η

f
t )t≥0

and (ξt )t≥0. Then we can take A(t) := Atθ in (2.10).

Remark 1 Theorem 1 (and Corollary 1) can be applied also to generalized time-
fractional Schrödinger type equations.Note, that different types of fractional analogues
of the standard Schrödinger equation have been discussed in the literature, see, e.g.,
[2, 10, 14]. Such equations seem to be physically relevant; in particular, some of them
arise from the standard quantum dynamics under special geometric constraints [19,
29]. So, let X := L2(Rd) be the Hilbert space of complex-valued square integrable
functions; X plays the role of the state space of a quantum system.Let (H,Dom(H)) be
a (bounded from below) self-adjoint operator in X playing the role of the Hamiltonian
(energy operator) of this quantum system. Then (L,Dom(L)) := (−iH,Dom(H))

does generate a strongly continuous contraction semigroup (TH
t )t≥0 on X by the Stone

theorem. Let k, Φ, (A(t))t≥0 be as in Theorem 1. Then, by Theorem 1,

u(t, x) := E

[
TH
A(t)u0(x)

]
(2.12)

solves the generalized time-fractional Schrödinger type equation

u(t, x) = u0(x) − i
∫ t

0
k(t, s)Hu(s, x)ds, (2.13)

where the equality above is understood as the equality of two elements of the space
X . For a few particular choices of the Hamiltonian, some stochastic representations
of the corresponding semigroup (TH

t )t≥0 are known in the literature (see, e.g., [8, 9,
18]). Inserting these stochastic representations into (2.12), one obtains Feynman-Kac
formulae (whichmay be local in the space variables) for the corresponding generalized
time-fractional Schrödinger type equation (2.13).

Remark 2 (i) Consider k(t, s) := K(t − s), where K is such that its Laplace transform
L[K] = 1/h for some Bernstein function h. Then this k satisfies Assumptions 2, 3.
And one may take an inverse subordinator corresponding to h as (A(t))t≥0 in this case
(cf. Sec. 2.3 of [4]). Moreover, evolution equation (1.1) is then equivalent (what can
be shown by applying the Laplace transform w.r.t. time-variable to both equations) to
the Cauchy problem

Dh
t u(t, x) = Lu(t, x), u(0, x) = u0(x), x ∈ R

d , t > 0, (2.14)

where Dh
t is a generalized time-fractional derivative of Caputo type, which is defined

(for sufficiently good functions v : (0,∞) → R of time variable t) via the Laplace
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1824 C. Bender et al.

transform (cf. [1]) by

(
L

[
Dh

t v
])

(σ ) = h(σ )(Lv)(σ ) − h(σ )

σ
v(+0).

Therefore, the results of Theorem 1 and Corollary 1 provide solutions for evolution
equations of the form (2.14) with generalized time-fractional derivatives of Caputo
typeDh

t . In the case h(σ ) := σβ , β ∈ (0, 1), the generalized time-fractional derivative
Dh

t coincides with the Caputo derivative of order β. The kernel K1 below corresponds
to a mixture of Caputo time-fractional derivatives of orders β, β1, . . . , βm . In the case
ofBernstein function h(σ ) := ∫ 1

0 σβμ(dβ)with a finiteBorelmeasureμ concentrated
on the interval (0, 1), the corresponding derivative Dh

t is known as distributed order
fractional derivative.

(ii) Let us mention the following functions K1 and K2 providing kernels k as in part
(i) (cf. [3]): for 1 ≥ β > β1 > . . . > βm > 0, b j > 0, j = 1, . . . ,m

K1(t) := tβ−1

Γ (β)
+

m∑
j=1

b j
tβ j−1

Γ (β j )

with the corresponding Bernstein function h1(σ ) :=
(
σ−β + ∑m

j=1 b jσ
−β j

)−1
and

K2(t) := tβ−1E(β−β1,...,β−βm ),β

(−b1t
β−β1 , . . . ,−bmt

β−βm
)

with multinomial Mittag-Leffler function [13, 17] (for z j ∈ C, β ∈ R, α j > 0,
j = 1, . . . ,m)

E(α1,...,αm ),β(z1, . . . , zm) :=
∞∑
n=0

∑
n1 + . . . + nm = n

n1 ∈ N0, . . . , nm ∈ N0

n!
n1! · · · nm !

∏m
j=1 z

n j
j

Γ
(
β + ∑m

j=1 α j n j

) .

The kernel K2 corresponds to the Bernstein function h2(σ ) := σβ + ∑m
j=1 b jσ

β j .
The corresponding functions Φ1(t,−λ) and Φ2(t,−λ) are found in [3] in terms of
the multinomial Mittag-Leffler function:

Φ1(t,−λ) := E(β,β1,...,βm ),1
(−λtβ,−λtβ1 , . . . ,−λtβm

)
,

Φ2(t,−λ) := 1 − λtβE(β,β−β1,...,β−βm ),β+1
(−λtβ,−λtβ1 , . . . ,−λtβm

)
.
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3 Feynman-Kac formulae with randomly scaled Gaussian processes

Due to Corollary 1, the most natural stochastic representations for evolution equations
of the form (1.1) with L being (a Bernstein function of) the generator of a Markov
process (plus a potential term) are given in terms of time-changed Markov processes.
In the special casewhen thememory kernel k is homogeneous, onemay sometimes use
randomly scaled Gaussian processes in the obtained stochastic representations. For
this recall first a class of memory kernels k from [4] which satisfy Assumptions 2-3
and are homogeneous.

Example 2 Let b > 0, a ≥ b, μ ≥ b
a − 1, ν > max {a − b,−aμ}. Consider the

Marichev-Saigo-Maeda kernel (cf. Sec. 4 in [4])

k(t, s) := ata−νsν−1(ta − sa)
b
a −1

Γ
( b
a

) F3

(
ν

a
− 1,

b

a
, 1, μ,

b

a
, 1 −

( s
t

)a
, 1 −

(
t

s

)a)
,

(3.1)

where 0 < s < t and F3 is Appell’s third generalization of the Gauss hypergeometric
function. The kernel k is homogeneous of degree b−1 and satisfies Assumptions 2, 3.
The corresponding function Φ has the following form: Φ(t, λ) = Γ (q2)E

q3
q1,q2(λt

b),
where q1 := b

a , q2 := ν
a + μ, q3 := 1 + ν−a

b , and Eq3
q1,q2 is the three parameter

Mittag-Leffler function Eq3
q1,q2(λ) := ∑∞

n=0
(q3)n

Γ (q1n+q2)n! λn .As corresponding random

variables (A(t))t≥0 onemay take A(t) := Ab,a,μ,ν tb, where Ab,a,μ,ν is a non-negative
random variable whose Laplace transform is given by Γ (q2)E

q3
q1,q2(−λ). In the spe-

cial case μ := 0, b := α, a := α
β
, ν := a for some α ∈ (0, 2), β ∈ (0, 1], the

Marichev-Saigo-Maeda kernel (3.1) reduces to the kernel which appears in the gov-
erning equation for generalized grey Brownian motion:

k(t, s) := α

βΓ (β)
s

α
β
−1

(
t

α
β − s

α
β

)β−1
, β ∈ (0, 1], α ∈ (0, 2). (3.2)

The corresponding function Φ reduces to the classical Mittag-Leffler function:
Φ(t, λ) = Eβ(λtα). And, as the corresponding random variables (A(t))t≥0, one may
take A(t) := Aβ tα , where Aβ is a non-negative random variable with Laplace trans-
form Eβ(−·).

Let us now present some Feynman-Kac formulae for evolution equations of
type (1.1) with homogeneous kernel k on the base of randomely scaled Gaussian
processes.

Example 3 (i) Under the assumptions of Corollary 1 consider the Bernstein function
f (λ) := λγ , γ ∈ (0, 1]. Then, in the case γ ∈ (0, 1), the operator L f is the fractional
power of the operator L , i.e. L f = −(−L)γ (cf. [31]), and (η

f
t )t≥0 is a γ -stable

subordinator. In the case γ = 1, we take η
f
t := t , t ≥ 0. Let k be homogeneous of

degree θ − 1 for some θ > 0 and take A(t) = Atθ according to Corollary 1 and The-
orem 1 (iii). Then the random variable η

f
A(t) has the same distribution as A1/γ η

f
1 t

θ/γ .
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1826 C. Bender et al.

We may replace the “subordinator”
(
η
f
A(t)

)
t≥0

in (2.10) by a new “subordinator”(Atθ/γ
)
t≥0 with

A := A1/γ η
f
1 . (3.3)

This allows to split randomness and time-dependence in the random time-change.
Thus, we obtain the following Feynman-Kac formula

u(t, x) : = E
x

[
u0

(
ξAtθ/γ

)
exp

(∫ Atθ/γ

0
V (ξs)ds

)]

= E
x
[
u0

(
ξAtθ/γ

)
exp

(
A θ

γ

∫ t

0
s

θ
γ

−1V (ξAsθ/γ )ds

)]
(3.4)

for the evolution equation

u(t, x) = u0(x) −
∫ t

0
k(t, s) (−L0 − V )γ u(s, x)ds.

(ii) Let k, A, (η
f
t )t≥0 and A be as in part (i) of this example. Let V := c for some

c ≤ 0, ξt := x + Bt + wt under Px , where (Bt )t≥0 is a standard d-dimensional
Brownian motion, which is independent from A and (η

f
t )t≥0, and w ∈ R

d is some

fixed vector. Let XA,γ,θ
t := BAtθ/γ or XA,γ,θ

t := √ABtθ/γ , or, if H := θ
2γ ∈ (0, 1),

XA,γ,θ
t := √ABH

t , where
(
BH
t

)
t≥0 is a d-dimensional fractional Brownian motion

with Hurst parameter H which is independent from A and (η
f
t )t≥0. Note that all

three options of the process (XA,γ,θ
t )t≥0 have the same one-dimensional marginal

distributions. Then, due to Feynman-Kac formula (3.4),

u(t, x) = E

[
u0

(
x + XA,γ,θ

t + Awtθ/γ
)
ecAtθ/γ

]
, (3.5)

solves the evolution equation

u(t, x) = u0(x) −
∫ t

0
k(t, s)

(
−1

2
Δ − w∇ − c

)γ

u(s, x)ds. (3.6)

Therefore, we have obtained a Feynman-Kac formula (3.5) for the evolution equa-
tion (3.6) in terms of two different classes of randomly scaled Gaussian processes:

randomly scaled slowed-down / speeded-up Brownian motion
(√ABtθ/γ

)
t≥0

and (if

H := θ
2γ ∈ (0, 1)) randomly scaled fractional Brownian motion

(√ABH
t

)
t≥0

. If k is

a Marichev-Saigo-Maeda kernel (3.1) then θ = b, A = Ab,a,μ,ν in distribution. In the
special case of the GGBM-kernel (3.2), we have θ = α, A = Aβ in distribution, and
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Subordination principle... 1827

hence we may use generalized grey Brownian motion in formula (3.5) as the process
(XA,γ,θ

t )t≥0.

The result of Example 3 (ii) can be generalized beyond the case of a constant
diffusion coefficient, as detailed in the case of dimension d = 1 in space in the
proposition below. As can be seen from the proof, this generalization requires to move
from a Brownian motion to a stochastic differential driven by a Brownian motion in
the Stratonovich sense in order to apply Corollary 1.

Proposition 1 Let γ ∈ (0, 1] and suppose the kernel k is homogeneous of order θ − 1
for some θ > 0 and Assumption 2, Assumption 3 are satisfied. LetA be a non-negative
random variable constructed by (3.3) in Example 3 (i). Assume w ∈ R, c ≤ 0, and
σ ∈ C2(R) is a bounded function with bounded first and second derivatives. Consider
the linear operator (L(σ,w),Dom(L(σ,w))) in C∞(R) which is defined by

L(σ,w)ϕ(x) := σ 2(x)

2

d2

dx2
ϕ(x)+

(
w+ 1

2
σ ′(x)

)
σ(x)

d

dx
ϕ(x), ϕ ∈ Dom(L(σ,w)),

Dom(L(σ,w)) :=
{
ϕ ∈ C2(R) : ϕ, L(σ,w)ϕ ∈ C∞(R)

}
.

Let u0 ∈ Dom(L(σ,w)) and denote by gσ : [0,∞) × R → R the solution to the
parametrized family of ODEs

∂

∂ y
gσ (y, x) = σ(gσ (y, x)), gσ (0, x) = x . (3.7)

Let (Bt )t≥0 bea standardBrownianmotion independent fromA. Let XA,γ,θ
t := BAtθ/γ

or XA,γ,θ
t := √ABtθ/γ , or, if H := θ

2γ ∈ (0, 1), XA,γ,θ
t := √ABH

t , where
(
BH
t

)
t≥0

is a 1-dimensional fractional Brownian motion with Hurst parameter H which is
independent from A. Then

u(t, x) = E

[
u0

(
gσ

(
XA,γ,θ
t + wAtθ/γ , x

))
ecAtθ/γ

]
(3.8)

= E

[
u0

(
gσ

(
XA,γ,θ
t , x

))
e
Atθ/γ

(
c− w2

2

)
+wXA,γ,θ

t

]
(3.9)

solves the evolution equation

u(t, x) = u0(x) −
∫ t

0
k(t, s)

(−L(σ,w) − c
)γ

u(s, x)ds. (3.10)

The proof of Proposition 1 will be given in Section 4.

Remark 3 Let H := θ
2γ ∈ (0, 1) and XA,γ,θ

t := √ABH
t , where

(
BH
t

)
t≥0 is a

1-dimensional fractional Brownian motion with Hurst parameter H as in Proposi-
tion 1. We now interpret the Feynman-Kac formula (3.9) from the point of view
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of stochastic differential equations with respect to
(
XA,γ,θ
t

)
t≥0

in the rough path

sense. Note that almost every path of
(
XA,γ,θ
t

)
t≥0

is Hölder continuous with each

index less than H . Assume H > 1/3. Consider now Xt,s := 1
2

(
XA,γ,θ
t − XA,γ,θ

s

)2
.

Then X := (XA,γ,θ ,X) is a lift to a geometric rough path (see [12]). Consider

Zx
t := gσ

(
XA,γ,θ
t , x

)
. Then, by the Itô formula for geometric rough paths, see again

[12],

Zx
t = x +

∫ t

0
σ(Zx

s )dXA,γ,θ
s , (3.11)

since gσ ∈ C3(R). Hence, the stochastic representation for the solution of (3.10) in
(3.9) can be rewritten in the form

u(t, x) = E

[
u0

(
Zx
t

)
e
Atθ/γ

(
c− w2

2

)
+wXA,γ,θ

t

]
.

This form resembles the classical Feynman-Kac formula for parabolic Cauchy prob-
lems in terms of stochastic differential equations driven by a Brownian motion.
However, the stochastic differential equation (3.11) is driven by a randomly scaled
fractional Brownian motion, which is neither a semimartingale nor a Markov process
(unless H = 1/2), to account for the memory kernel and the space fractionality in
(3.10), while maintaining the stationary increment property of the driving process.

4 Proofs

Proof of Theorem 1 (i) Let Assumptions 1, 2 and 3 hold. Since the function Φ(t, ·),
t ≥ 0, is entire by Theorem 1 in [4], the function Φ(t, i(·)) is also entire and is
the characteristic function of the distribution PA(t), which is concentrated on [0,∞).
Therefore, we have by the Raikov theorem (cf. Theorem 3.2.1 in [22])

∫
R

er |a|PA(t)(da) =
∫ ∞

0
eraPA(t)(da) < ∞, ∀ r > 0. (4.1)

Further, for any strongly continuous semigroup (Tt )t≥0 there exist constants M ≥ 1,
c ≥ 0 such that ‖Tt‖ ≤ Mect , ∀ t ≥ 0, and the mapping t �→ Ttϕ is continuous
for any ϕ ∈ X . Thus, we have

∫ ∞
0 ‖Taϕ‖XPA(t)(da) < ∞ and the Bochner integral

in the r.h.s. of (2.4) is well defined for any ϕ ∈ X . Moreover, the operator Φ(t, L)

defined by (2.4) is a bounded linear operator on X and Φ(0, L) = Id.
(ii) Recall that the following statement was proved in [4] (cf. Corollary 1 of [4]):

Lemma 1 Let Assumption 2 hold. Then, for each λ ∈ C, there exists a unique solution
Φ(·,−λ) ∈ Bb([0, T ],C), ∀ T > 0, of the following Volterra equation of the second
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kind

Φ(t,−λ) = 1 − λ

∫ t

0
k(t, s)Φ(s,−λ)ds, t > 0. (4.2)

Moreover, limt↘0 Φ(t,−λ) = 1 locally uniformly with respect to λ ∈ C, Φ(t, ·) is an
entire function for all t ≥ 0 and equalities (2.1) and (2.2) hold.

Our aim is to lift the equality (4.2) to the level of operators Φ(t, L). To this aim we
use the so-called Hille-Phillips functional calculus. Let us recall the main facts about
this functional calculus (cf. [15, 16]).

Let (Tt )t≥0 be as in Assumption 1. Consider first the case when (Tt )t≥0 is uniformly
bounded (i.e. ‖Tt‖ ≤ M for some M ≥ 1 and all t ≥ 0). Denote by LS(C+) the space
of functions that are Laplace transforms of complexmeasures on ([0,∞),B([0,∞))).
Let g ∈ LS(C+) and mg be the (unique) complex measure whose Laplace transform
L[mg] is given by g. One defines the operator g(−L) as follows:

g(−L)ϕ :=
∫ ∞

0
Taϕ mg(da), ϕ ∈ X . (4.3)

The right hand side of (4.3) is a well-defined Bochner integral and g(−L) is a bounded
linear operator on X , i.e. g(−L) ∈ L(X). The mapping CT : LS(C+) → L(X),
g �→ g(−L), is called the Hille-Phillips calculus for −L . Note that CT is an algebra
homomorphism and hence CT (g1g2) = g1(−L) ◦ g2(−L) = g2(−L) ◦ g1(−L) and
CT (ag1 + bg2) = ag1(−L) + bg2(−L) for any g1, g2 ∈ LS(C+), a, b ∈ R.

Consider now the case when (Tt )t≥0 is of type c ≥ 0 (i.e., ‖Tt‖ ≤ Mect for some
M ≥ 1, c ≥ 0 and all t ≥ 0). Then the rescaled semigroup (T c

t )t≥0, T c
t := Tte−ct ,

is uniformly bounded, strongly continuous and has generator (L − c,Dom(L)). Then
one may use the Hille-Phillips calculus CT c for −(L − c). Consider now the space
LS(C+ − c) := {g : g(· − c) ∈ LS(C+)}. Let g ∈ LS(C+ − c) and mc

g be the
(unique) complex measure with L[mc

g] = g(· − c). One defines the operator g(−L)

as follows:

g(−L)ϕ := CT c
(
g(· − c)

)
ϕ ≡

∫ ∞

0
T c
a ϕ mc

g(da), ϕ ∈ X .

Let now m be a complex measure such that ecam(da) is again a complex measure.
Let g∗ := L[m]. Then it holds L[ecam(da)](λ) = ∫ ∞

0 e−λaecam(da) = g∗(λ −
c). Hence g∗ ∈ LS(C+ − c) and mc

g∗(da) = ecam(da). Therefore, g∗(−L)ϕ =∫ ∞
0 T c

a ϕ mc
g∗(da) = ∫ ∞

0 Taϕ m(da), ϕ ∈ X . Thus, the operator Φ(t, L) defined

in (2.4) can be interpreted as CT c
(
Φ(t,−(· − c))

)
in terms of Hille-Phillips calculus

due to (4.1).
Now we are ready to transfer equality (4.2) to the level of operators by means of

Hille-Phillips calculus. Let (Tt )t≥0 be of type c ≥ 0 and ρ(L) be the resolvent set of
operator L , i.e. the resolvent operator Rλ(L) := (λ − L)−1 is a well defined bounded
operator on X for each λ ∈ ρ(L). Let γ > c. Hence γ ∈ ρ(L). And equality (4.2)
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implies the equality: ∀t > 0, ∀λ ∈ C : 
λ ≥ −c

γ · Φ(t,−λ) − 1

γ + λ
= −λ · γ

γ + λ
·
∫ t

0
k(t, s)Φ(s,−λ)ds. (4.4)

Let us present each component of (4.4) as the Laplace transform of some complex
measure on ([0,∞),B([0,∞))). As we have already discussed

Φ(t,−λ) = L(PA(t))(λ)
CT c←→ Φ(t, L) =

∫ ∞

0
Ta PA(t)(da).

Furthermore, we have with Dirac delta-measure δ0 and with exponential distribution
Exp(γ ):

1 = L(δ0)(λ)
CT c←→ L(δ0)(−L) :=

∫ ∞

0
T c
a δ0(da) = I d,

γ

γ + λ
= L(Exp(γ ))(λ)

CT c←→ L(Exp(γ ))(−L) :=
∫ ∞

0
T c
a γ e−γ aecada

=
∫ ∞

0
Taγ e

−γ ada = γ · (γ − L)−1 = γ · Rγ (L).

Note that Rγ (L) is a bounded operator since γ ∈ (c,∞) ⊂ ρ(L) (cf. [11, 28]) and
‖γ Rγ (L)ϕ − ϕ‖X → 0 as γ → ∞ for any ϕ ∈ X . Further,

−λγ

γ + λ
= −γ · 1 + γ · γ

γ + λ
= −γ · L(δ0)(λ) + γ · L(Exp(γ ))(λ)

CT c←→
− γ · L(δ0)(−L) + γ · L(Exp(γ ))(−L) = −γ · I d + γ 2Rγ (L) =: Lγ .

Note that Lγ is the so-called Yosida-Approximation of L (cf. [11, 28]); Lγ is a bounded
operator and ‖Lϕ − Lγ ϕ‖X → 0 as γ → +∞ for each ϕ ∈ Dom(L).

Without loss of generality we now assume k(t, s) ≥ 0 (else divide into negative
and nonnegative part) and define a family of measures on ([0,∞),B([0,∞))) via

νt (B) :=
∫ t

0
k(t, s)PA(s)(B)ds, B ∈ B([0,∞)).

The right hand side in the above formula is well-defined since the mapping s �→
PA(s)(B) is a bounded Borel-measurable function on [0,∞) for any B ∈ B([0,∞)).
Indeed, the mapping s �→ Φ(s,−λ) is Borel measurable for any λ ∈ C due to
Assumption 2 and representation formulas (2.1), (2.2). And for any s, x ≥ 0 holds
(cf. Lemma 1.1 and the proof of Prop. 1.2 in [31])

PA(s)([0, x]) = lim
λ→∞

∑
k≤λx

(−1)k
∂kΦ(s,−λ)

∂λk

λk

k! .
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Further, it holds for measurable g : [0,∞) → [0,∞)

∫ ∞

0
g(a)νt (da) =

∫ t

0
k(t, s)

∫ ∞

0
g(a)PA(s)(da)ds, (4.5)

which can be seen via approximation of g by step functions from below and the use
of Beppo Levi’s Theorem. By choosing g(a) := e−λa we see that

∫ ∞

0
e−λaνt (da) =

∫ t

0
k(t, s)

∫ ∞

0
e−λaPA(s)(da)ds

=
∫ t

0
k(t, s)Φ(s,−λ)ds =: �(t,−λ).

Thereby �(t,−λ) is the Laplace transform of an appropriate measure and we get the
correspondence

�(t,−λ)
CT c←→ �(t, L) :=

∫ ∞

0
T c
a νct (da)

where νct (da) := ecaνt (da). Note that νct is a bounded measure on the measurable
space ([0,∞),B([0,∞))) due to (4.1). Furthermore, similar to property (4.5), it holds
for any Bochner-integrable function g : [0,∞) → X

∫ ∞

0
g(a)νct (da) =

∫ t

0
k(t, s)

∫ ∞

0
g(a)ecaPA(s)(da)ds,

and therefore, for any ϕ ∈ X ,

�(t, L)ϕ =
∫ ∞

0
T c
a ϕ νct (da) =

∫ t

0
k(t, s)

∫ ∞

0
T c
a ϕ ecaPA(s)(da)ds

=
∫ t

0
k(t, s)Φ(s, L)ϕds.

Thereby, all components of (4.4) have been transferred. Taking everything together
and using that for u0 ∈ Dom(L) holds (cf. [16])

Lγ �(t, L)u0 = γ LRγ (L)�(t, L)u0 = �(t, L)γ LRγ (L)u0 = �(t, L)Lγ u0,

we get

γ Rγ (L) (Φ(t, L) − I d) u0 = �(t, L)Lγ u0 ∀ u0 ∈ Dom(L). (4.6)
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Taking the limit γ → +∞ we obtain (with Φ(s, L)Lu0 = LΦ(s, L)u0 for all
u0 ∈ Dom(L))

(Φ(t, L) − I d)u0 = �(t, L)Lu0 =
∫ t

0
k(t, s)Φ(s, L)Lu0ds =

∫ t

0
k(t, s)LΦ(s, L)u0ds

⇔ Φ(t, L)u0 = u0 +
∫ t

0
k(t, s)LΦ(s, L)u0ds.

Therefore, the function u(t) := Φ(t, L)u0 solves evolution equation (1.1) for any
u0 ∈ Dom(L).

For continuity at zero we evaluate equality (2.3) at λ = −c − iρ, ρ ∈ R, resulting
in

∫ ∞
0 eiρaecaPA(t)(da) = Φ(t, iρ + c), ∀(t, ρ) ∈ [0,∞)×R. According to Lemma

1

lim
t↘0

∫ ∞

0
eiρaecaPA(t)(da) = lim

t↘0
Φ(t, iρ + c) = 1 ∀ρ ∈ R,

and by Lévy’s Continuity Theorem it follows that ecaPA(t)(da)
weakly−−−−→ δ0(da), t ↘ 0.

We now write

‖u(t) − u0‖X =
∥∥∥∥
∫ ∞

0
(Tau0 − u0)PA(t)(da)

∥∥∥∥
X

≤
∫ ∞

0
‖Tau0 − u0‖Xe−caecaPA(t)(da) =

∫
R

f (a)ecaPA(t)(da),

where f : R → R, f (a) := ‖Tau0 − u0‖Xe−ca for a ≥ 0 and f (a) := 0 for a < 0,
is a bounded and continuous function. Now

lim
t↘0

‖u(t) − u0‖X ≤ lim
t↘0

∫
R

f (a)ecaPA(t)(da) = f (0) = 0

by weak convergence and thus continuity at zero is shown.
(iii) Let k behomogeneous of order θ−1 for some θ > 0.By the recursion formula (2.2)
for all t > 0, n ∈ N

cn(t) = tθ
∫ 1

0
k(1, s)cn−1(ts)ds = tnθ

∫ 1

0
k(1, s)cn−1(s)ds = tnθcn(1).

And, thus, we have for all t ≥ 0, λ ∈ C (cf. Theorem 2 in [4]):

Φ(1,−tθλ) =
∞∑
n=0

cn(1)
(−tθλ

)n =
∞∑
n=0

t−nθcn(t)(−tθλ)n

=
∞∑
n=0

cn(t)(−λ)n = Φ(t,−λ).
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Let A(t) := Atθ , where A is a nonnegative random variable satisfying (2.6). Then

L(PA(t))(λ) = E

[
e−λAtθ

]
= L(PA)(λtθ ) = Φ(1,−λtθ ) = Φ(t,−λ). Therefore,

A(t) := Atθ has the required distribution. And Theorem 1 is proved. ��

Proof of Corollary 1 (i) (T f
t )t≥0 is a strongly continuous contraction semigroup on the

Banach space X . Therefore, (T f
t )t≥0, k and Φ fulfill all assumptions of Theorem 1

and thus

Φ(t, L f )ϕ :=
∫ ∞

0
T f
s ϕPA(t)(ds), ϕ ∈ X ,

is well-defined. Let now (A(t))t≥0 and (η
f
t )t≥0 be as in the statement of Corollary 1.

Consider the family of random variables
(
η
f
A(t)

)
t≥0

. Then

E

[
e−λη

f
A(t)

]
=

∫ ∞

0
E

[
e−λη

f
a
]
PA(t)(da) =

∫ ∞

0
e−a f (λ)PA(t)(da) = Φ(t,− f (λ)).

Starting with the strongly continuous contraction semigroup (Tt )t≥0 and the com-
pletely monotone function Φ f (t,−·) := Φ(t,− f (·)), one may define

Φ f (t, L)ϕ :=
∫ ∞

0
Tsϕ P

η
f
A(t)

(ds), ϕ ∈ X .

Due to Fubini’s theorem

Φ(t, L f )ϕ =
∫ ∞

0
T f
s ϕ PA(t)(ds) =

∫ ∞

0

∫ ∞

0
Taϕ P

η
f
s
(da)PA(t)(ds)

=
∫ ∞

0
Taϕ P

η
f
A(t)

(da) = Φ f (t, L)ϕ, ϕ ∈ X .

Therefore, for any u0 ∈ Dom(L f ), equation (2.8) is solved by Φ(t, L f )u0 =
Φ f (t, L)u0 according to Theorem 1 (ii).

(ii) Since V ≤ 0, (Tt )t≥0 is a strongly continuous contraction semigroup and so is
(T f

t )t≥0. It follows from Theorem 1 (ii) that u(t, x) := Φ(t, (L + V ) f )u0 solves

123



1834 C. Bender et al.

evolution equation (2.11) and due to Fubini’s theorem

Φ(t, (L + V ) f )u0 =
∫ ∞

0
T f
a u0PA(t)(da)

=
∫ ∞

0

∫ ∞

0
E
x
[
u0(ξs)exp

(∫ s

0
V (ξv)dv

)]
P

η
f
a
(ds)PA(t)(da)

=
∫ ∞

0
E
x

[
u0(ξη

f
a
)exp

(∫ η
f
a

0
V (ξv)dv

)]
PA(t)(da)

= E
x

[
u0(ξη

f
A(t)

)exp

(∫ η
f
A(t)

0
V (ξs)ds

)]
.

(iii) Follows immediately from Theorem 1 (iii). ��

Proof of Proposition 1 First, note that, under our assumptions on σ , the operator
(L(σ,w),Dom(L(σ,w))) does generate a strongly continuous semigroup onC∞(R) (cf.
[23], Sec. 3.1.2). Second, consider the pair

(
(ξt )t≥0, (P

x )x∈R
)
where (ξt )t≥0 solves the

Stratonovich SDE with respect to a standard 1-dimensional Brownian motion (Bt )t≥0

dξt = σ(ξs) ◦ dBt + wσ(ξt )dt

with ξ0 = x under Px . By Remark 5.2.22 in [20], the pair
(
(ξt )t≥0, (P

x )x∈R
)
is a

Markov process with generator L(σ,w). We apply the Doss-Sussmann technique to
find an explicit expression for (ξt )t≥0. So, let (Bt )t≥0 be a standard 1-dimensional
Brownian motion with respect to some probability measure P. Let gσ be as in the
statement of Proposition 1. Then, by the Itô formula for the Stratonovich integral

gσ (Bt + wt, x) = x +
∫ t

0
σ
(
gσ (Bs + ws, x)

) ◦ dBs +
∫ t

0
wσ

(
gσ (Bs + ws, x)

)
ds.

Hence Law
(
(gσ (Bt + wt, x))t≥0,P

) = Law
(
(ξt )t≥0,P

x
)
for every x ∈ R. In view

of Corollary 1 and Example 3, there is a nonnegative random variableA (constructed
from k and γ as in (3.3)) which is independent of (Bt )t≥0 and such that

u(t, x) = E

[
u0

(
gσ

(
BAtθ/γ + wAtθ/γ , x

))
ecAtθ/γ

]

solves the evolution equation (3.10). Note that
(
BAtθ/γ + wAtθ/γ

)
t≥0, condi-

tionally on A, is a Gaussian process with mean wAtθ/γ and variance Atθ/γ .

The process
(√ABtθ/γ + wAtθ/γ

)
t≥0

and, if H := θ
2γ ∈ (0, 1), the process(√ABH

t + wAtθ/γ
)
t≥0

have the same conditional law, where (BH
t )t≥0 is a 1-

dimensional fractional Brownian motion independent of A. Hence Feynman-Kac
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formula (3.8) is shown. Further, we have

u(t, x) = E

[
u0

(
gσ

(√
ABtθ/γ + wAtθ/γ , x

))
ecAtθ/γ

]

=
∫ ∞

0

∫
R

u0
(
gσ (

√
az + watθ/γ , x)

)
eact

θ/γ

(2π tθ/γ )−
1
2 exp

(
− z2

2tθ/γ

)
dz PA(da)

=
∫ ∞

0

∫
R

u0
(
gσ (

√
ay, x)

)
e
atθ/γ

(
c− w2

2

)
+w

√
ay

(2π tθ/γ )−
1
2 exp

(
− y2

2tθ/γ

)
dyPA(da)

= E

[
u0

(
gσ

(√
ABtθ/γ , x

))
e
Atθ/γ

(
c− w2

2

)
+w

√ABtθ/γ

]
.

Hence Feynman-Kac formula (3.9) is shown. ��
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