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Abstract
We study the asymptotic behaviour of the renormalised s-fractional Gaussian peri-
meter of a set E inside a domain � as s → 0+. Contrary to the Euclidean case, as
the Gaussian measure is finite, the shape of the set at infinity does not matter, but,
surprisingly, the limit set function is never additive.
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1 Introduction

In this paper we consider the fractional Gaussian perimeter

Pγ
s (E; �) :=

∫
E∩�

dγ (x)
∫
Ec∩�

Ks(x, y)dγ (y) (1.1)

+
∫
E∩�

dγ (x)
∫
Ec∩�c

Ks(x, y)dγ (y) +
∫
E∩�c

dγ (x)
∫
Ec∩�

Ks(x, y)dγ (y),

where γ is the standard Gaussian measure in R
N defined in (2.1) and the kernel Ks

is the jumping kernel defined in (2.3) and study the asymptotics of sPγ
s (E;�) as

s → 0+. In this sense this is a parallel study of our previous paper [5], where the
�-limit of (1 − s)Pγ

s (E;�) as s → 1− is studied.
In the Euclidean setting the notion of s-fractional perimeter recovers the classical

perimeter when s → 1− in various senses as proved in [1, 2, 4, 7, 12, 17]. On the other
side when s → 0+ one may wonder if there is convergence to somemeasure related to
the Lebesgue one, and actually it holds true when considering the fractional perimeter
of a set in the whole space (see [15]), but in a domain � the limit of sPγ

s (E;�) does
not always exist, and when it does, as a function of the set E it is not always a measure
as proved in [9].

The main result of this paper consists in the computation of the limit

μ(E) := lim
s→0+ sPγ

s (E;�) (1.2)

and the analysis of the set functionμ. TheGaussian case is different from theEuclidean
case treated in [9]. Indeed, the limit in (1.2) always exists under the only assumption
that Pγ

s0(E;�) < ∞ for some s0 ∈ (0, 1) and it is not affected neither by the behaviour
at infinity of the set E nor on the unboundedness andC1,α regularity of�.Nevertheless,
in the limit cases E ⊂ � or � = R

N we dot not recover at the limit the Gaussian
measure of E , but rather 2γ (E)γ (Ec), a result that is is coherent with the fact that,
whenever it exists, μ(E) = μ(Ec). A related result in the Euclidean setting is the
Maz’ya-Shaposhnikova approximation theorem proved in [15] in the framework of
fractional Sobolev spacesWs,p(RN ).Weprove inTheorem2 an analogous result in the
Gaussian case, p = 2. Our result is intrinsecally different with respect to its Euclidean
counterpart concerning both the methods and the result, since in the Gaussian case
the Ornstein-Uhlenbeck operator has compact resolvent (hence we can use a series
expansion) and the constants are eigenfunctions relative to the 0 eigenvalue.

We point out that, when � = R
N , it is convenient to write the fractional Gaussian

perimeter in terms of the H
s
2
γ -seminorm introduced in Definition 2, namely

Pγ
s (E;RN ) = 1

2
[χE ]2

H
s
2

γ (RN )

.

This allows to prove Theorem 1 in the case � = R
N as a straightforward conse-

quence of Theorem 2. The approach via H
s
2
γ -seminorms has been useful to study the
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1390 A. Carbotti et al.

isoperimetric in this context. For instance we mention [16], where authors introduce
a notion of fractional Gaussian perimeter via extension techniques (see [18]) in the
more general setting of Wiener spaces and then prove that halfspaces are the unique
volume-constrained isoperimetric sets by means of cylindrical approximation and
Ehrhard symmetrization, and also [6] for a quantitative version of the isoperimetric
inequality for Pγ

s (·;RN ) in finite dimension.
In the following, we denote by E the family of sets E ⊂ R

N such that the limit in
(1.2) exists which is defined as

E :=
{
E ∈ M(RN ) s.t. ∃s0 ∈ (0, 1) s.t. Pγ

s0(E;�) < ∞
}

.

We stress that, differently from [9], we do not need to complement E with a control
of the behaviour at infinity of its elements. Let us state the main result of the present
paper.

Theorem 1 Let � ⊂ R
N an open connected set with Lipschitz boundary. Then for

any E ⊂ R
N measurable set such that Pγ

s0(E;�) < ∞ for some s0 ∈ (0, 1) the limit
(1.2) exists and it holds

μ(E) = 2
(
γ (E)γ (� \ E) + γ (E ∩ �)γ (Ec ∩ �c)

)
. (1.3)

In Sect. 2 we introduce the main tools and definitions. In Sect. 3 we firstly prove
Theorem 1 by stating and proving the ancillary Propositions 1 and 2 and we show
some properties of the limit set function μ. In the last Sect. 4 we prove that for the
Gaussian fractional perimeter defined and used in [8] the asymptotics for s → 0+ is
trivial.

2 Notation and preliminary results

For N ∈ N we denote by γ the Gaussian measure on R
N

γ := 1

(2π)N/2 e
− |·|2

2 L N , (2.1)

where L N is the Lebesgue measure. With a little abuse of notation we denote by γ

both the measure and its density with respect toL N . Moreover, in the sequel we use

the measure λ := 1
(2π)N/2 e

− |·|2
4 L N .

In order to define the fractional perimeter, we introduce the Ornstein-Uhlenbeck
semigroup, its generator 	γ , the fractional powers of the generator and the functional
setting.

Definition 1 Let t > 0 and x ∈ R
N . For u ∈ L1

γ (RN ) we define the Ornstein-
Uhlenbeck semigroup as

et	γ u(x) :=
∫
RN

Mt (x, y)u(y)dγ (y),
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Asymptotics of the s-fractional Gaussian... 1391

where Mt (x, y) denotes the Mehler kernel

Mt (x, y) := 1

(1 − e−2t )N/2 exp

(
−e−2t |x |2 − 2e−t x · y + e−2t |y|2

2(1 − e−2t )

)
,

which satisfies

et	γ 1 =
∫
RN

Mt (x, y)dγ (y) = 1,

for any t > 0 and any x ∈ R
N .

The generator of et	γ acts on sufficiently smooth functions as

	γ u = 	u − x · Du

and is called Ornstein-Uhlenbeck operator; see e.g. [13] and the references therein for
the main properties of et	γ and 	γ .

Since −	γ is a positive definite and selfadjoint operator which generates a C0-
semigroup of contractions in L2

γ (RN ), we can define its fractional powers by means
of spectral decomposition via the Bochner subordination formula. In particular, for
s ∈ (0, 1) and x ∈ R

N the fractional Ornstein-Uhlenbeck operator is defined as

(−	γ )su(x) : = 1

�(−s)

∫ ∞

0

et	γ u(x) − u(x)

t s+1 dt

= 1

�(−s)

∫ ∞

0

dt

ts+1

∫
RN

Mt (x, y)(u(y) − u(x))dγ (y)

= 1

|�(−s)|
∫
RN

(u(x) − u(y)) K2s(x, y)dγ (y),

(2.2)

where for σ > 0 we have set

Kσ (x, y) :=
∫ ∞

0

Mt (x, y)

t
σ
2 +1

dt, (2.3)

and the right-hand side in (2.2) has to be intended in the Cauchy principal value sense.
Notice that the integrability of the function

(0,∞) � t 	→ Mt (x, y)

t
sp
2 +1

near zero, for any x, y ∈ R
N , x 
= y, is ensured by the fact that

lim
t→0+

Mt (x, y)

Ht (|x − y|) = (2π)N/2e
|x |2
4 e

|y|2
4 for any x, y ∈ R

N , (2.4)

where, for r ≥ 0, Ht is the Gauss-Weierstrass kernel Ht (r) := e− r2
4t

(4π t)N/2 .
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1392 A. Carbotti et al.

Definition 2 Let s ∈ (0, 1) and 1 ≤ p < ∞. We define the fractional Gaussian
Sobolev space Ws,p

γ (RN ) as

Ws,p
γ (RN ) :=

{
u ∈ L p

γ (RN ); [u]Ws,p
γ (RN ) < ∞

}
,

where

[u]Ws,p
γ (RN ) :=

(∫
RN

dγ (x)
∫
RN

|u(x) − u(y)|pKsp(x, y)dγ (y)

)1/p

,

and Ksp is defined in (2.3) with σ = sp. When p = 2, as usual we use the notation
Hs

γ (RN ) instead of Ws,2
γ (RN ).

For the sake of completeness we recall that the Gaussian perimeter of a measurable
set E in a Lipschitz open connected set � is defined by

Pγ (E;�) = √
2π sup

{∫
E
(divϕ − ϕ · x)dγ (x) : ϕ ∈ C∞

c (�;RN ), ‖ϕ‖∞ ≤ 1
}
. (2.5)

Now, we make more precise the definition of Gaussian fractional perimeter (1.1)
given in Sect. 1.

Definition 3 Let � ⊂ R
N be a connected open set with Lipschitz boundary, and

E ⊂ R
N a measurable set. We define the Gaussian s-perimeter of E in � as

Pγ
s (E;�) := Pγ,L

s (E;�) + Pγ,NL
s (E;�),

where the local part is

Pγ,L
s (E;�) :=

∫
E∩�

dγ (x)
∫
Ec∩�

Ks(x, y)dγ (y),

and the nonlocal part is

Pγ,NL
s (E;�) :=

∫
E∩�

dγ (x)
∫
Ec∩�c

Ks(x, y)dγ (y)

+
∫
E∩�c

dγ (x)
∫
Ec∩�

Ks(x, y)dγ (y).

Using the symmetry of the kernel Ks we immediately notice that Pγ
s (Ec;�) =

Pγ
s (E;�) for any measurable set E . If � = R

N we simply write Pγ
s (E) instead of

Pγ
s (E;RN ). We notice that if E ⊂ � or Ec ⊂ � we have that Pγ

s (E;�) = Pγ
s (E).

In the sequel, for A, B measurable and disjoint sets, we denote with Lγ
s (A, B) the

(s-Gaussian) interaction functional

Lγ
s (A, B) :=

∫
A
dγ (x)

∫
B
Ks(x, y)dγ (y). (2.6)
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Using this notation we have

Pγ
s (E;�) = Lγ

s (E ∩ �, Ec ∩ �) + Lγ
s (E ∩ �, Ec ∩ �c) + Lγ

s (E ∩ �c, Ec ∩ �).

It is useful the following integration by parts formula proved for instance in [5]

1

2
[u]2Hs

γ (RN )
=

∫
RN

u(−	γ )su dγ. (2.7)

The kernel Ks satisfies the following estimates (see [5, Lemmas 2.8, 2.9]).

Lemma 1 For any x, y ∈ R
N and for any s ∈ (0, 1) we have

Ks(x, y) ≥ CN ,s

|x − y|N+s
, (2.8)

where CN ,s := 2s+ N
2 �

( s+N
2

)
, and

Ks(x, y) ≤ e
|x |2
4 e

|y|2
4 K̃s(|x − y|), (2.9)

where, for any r ≥ 0, K̃s denotes the decreasing kernel

K̃s(r) :=
∫ ∞

0
exp

(
− etr2

2(e2t − 1)

)
dt

t
s
2+1(1 − e−2t )N/2

.

3 Main Results

We begin this section by proving the analogue of [15, Theorem 3] in the case p = 2 in
the Gaussian setting. Notice that our proof exploits the Hilbert structure of Hs

γ (RN )

and the compactness of the resolvent of 	γ . For p 
= 2 the proof is more delicate and
requires explicit estimates on the kernel joint with a Hardy-type inequality (see [11,
Subsection 2.1]).

Theorem 2 (Maz’ya-Shaposhnikova approximation in Hs
γ (RN )) Let s0 ∈ (0, 1) and

u ∈ Hs0
γ (RN ). Then it holds that

lim
s→0+ s[u]2Hs

γ (RN )
= 2

(
‖u‖2L2

γ (RN )
−

∣∣∣∣
∫
RN

u dγ

∣∣∣∣
2
)

.

Proof Let us notice that since u ∈ L2
γ (RN ), we canwrite it in terms of the orthonormal

basis B of eigenfunctions of (−	γ )s given by Hermite polynomials (see for instance
[10]), i.e. B = {Hn}n∈N0 , with H0 ≡ 1 on R

N . We recall that on the whole of
R

N the spectral fractional Ornstein-Uhlenbeck operator coincides with the integro-
differential operator in (2.2), and so, by the spectral mapping Theorem, see e.g. [14,
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1394 A. Carbotti et al.

Theorem5.3.1], the latter has discrete spectrumgiven byσ((−	γ )s) = σ((−	γ ))s =
{ns}n∈N0 . With these ideas in mind we have that

u =
∞∑
n=0

(u, Hn)Hn,

(−	γ )su = |�(−s)|
∞∑
n=1

ns(u, Hn)Hn .

We use the integration by parts formula (2.7)

s[u]2Hs
γ (RN )

= 2s
∫
RN

u(−	γ )sudγ = 2�(1 − s)
∞∑
n=1

ns |(u, Hn)|2, (3.1)

where the right-hand side in (3.1) is finite for any s ∈ (0, s0) thanks to the assumption
u ∈ Hs0

γ (RN ). Passing to the limit for s → 0+ in (3.1) we have

lim
s→0+ s[u]2Hs

γ (RN )
= 2

∞∑
n=1

|(u, Hn)|2

= 2

[( ∞∑
n=0

|(u, Hn)|2
)

− |(u, H0)|2
]

= 2

(
‖u‖2L2

γ (RN )
−

∣∣∣∣
∫
RN

u dγ

∣∣∣∣
2
)

,

concluding the proof. ��
Remark 1 Wepoint out that Theorem2 is sufficient to proveTheorem1when� = R

N .
Indeed, by choosing u = χE , where E is a measurable set with Pγ

s0(E) < ∞ for some
s0 ∈ (0, 1), we get

lim
s→0+ sPγ

s (E) = lim
s→0+

s

2
[χE ]2

H
s
2

γ (RN )

= lim
σ→0+ σ [χE ]2Hσ

γ (RN )
= 2

(
γ (E) − γ (E)2

)

= 2γ (E)(1 − γ (E)) = 2γ (E)γ (Ec).

The remaining part of this section is devoted to the proof of Theorem 1 in the
general case.

Proposition 1 Let � ⊂ R
N be an open connected set with Lipschitz boundary and let

E ⊂ R
N be measurable. If Pγ

s0(E;�) < ∞ for some s0 ∈ (0, 1), then

lim sup
s→0+

sPγ
s (E;�) ≤ 2

[
γ (E)γ (� \ E) + γ (E ∩ �)γ (Ec ∩ �c)

]
. (3.2)
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Proof We split

Ks(x, y) =
∫ 1

0

Mt (x, y)

t
s
2+1

dt +
∫ ∞

1

Mt (x, y)

t
s
2+1

dt .

For the first term we have

∫ 1

0

Mt (x, y)

t
s
2+1

dt ≤
∫ 1

0

Mt (x, y)

t
s0
2 +1

dt ≤
∫ ∞

0

Mt (x, y)

t
s0
2 +1

dt = Ks0(x, y), (3.3)

for any x, y ∈ R
N and s ≤ s0. To handle the second term, we write

Mt (x, y) = exp (φt (x, y))

(1 − e−2t )N/2 .

and estimate

exp (φt (x, y)) γ (x)γ (y)

= exp

(
−e−t |x − y|2 + (|x |2 + |y|2)(e−2t − e−t )

2(1 − e−2t )

)
γ (x)γ (y)

= exp

(
−e−t |x − y|2
2(1 − e−2t )

)
exp

(
− (|x |2 + |y|2)(e−2t − e−t )

2(1 − e−2t )

)
γ (x)γ (y)

≤ 1

(2π)N
exp

(
−|x |2 + |y|2

2

(
e−2t − e−t

1 − e−2t + 1

))

= 1

(2π)N
exp

(
−|x |2 + |y|2

2

1

1 + e−t

)
,

(3.4)

for any t > 0 and x, y ∈ R
N . Now, we split again

∫ ∞

1

Mt (x, y)

t
s
2+1

dt =
∫ 1/s

1

Mt (x, y)

t
s
2+1

dt +
∫ ∞

1/s

Mt (x, y)

t
s
2+1

dt .

Using (3.4), we have

sγ (x)γ (y)
∫ 1/s

1

Mt (x, y)

t
s
2+1

dt

≤ s

(2π)N

1

(1 − e−2)N/2 exp

(
−|x |2 + |y|2

2

1

1 + e−1

) ∫ 1/s

1

dt

t
s
2+1

= 1

(2π)N

2

(1 − e−2)N/2

(
1 − ss/2

)
exp

(
−|x |2 + |y|2

2

1

1 + e−1

)
(3.5)
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and

sγ (x)γ (y)
∫ ∞

1/s

Mt (x, y)

t
s
2+1

dt

≤ s

(2π)N

∫ ∞

1/s
exp

(
−|x |2 + |y|2

2

1

1 + e−t

)
dt

t
s
2+1(1 − e−2t )N/2

≤ s

(2π)N

1

(1 − e− 2
s )N/2

exp

(
−|x |2 + |y|2

2

1

1 + e− 1
s

) ∫ ∞

1/s

dt

t
s
2+1

= 1

(2π)N

2

(1 − e− 2
s )N/2

exp

(
−|x |2 + |y|2

2

1

1 + e− 1
s

)
ss/2.

(3.6)

By using (3.3), (3.5) and (3.6), for any s ∈ (0, s0) we obtain

sPγ
s (E;�) ≤sPγ

s0(E;�)

+ 1

(2π)N

2

(1 − e−2)N/2

(
1 − ss/2

)
L f (E ∩ �, Ec ∩ �)

+ 1

(2π)N

2

(1 − e−2)N/2

(
1 − ss/2

)
L f (E ∩ �, Ec ∩ �c)

+ 1

(2π)N

2

(1 − e−2)N/2

(
1 − ss/2

)
L f (E ∩ �c, Ec ∩ �)

+ ss/2

(2π)N

2

(1 − e− 2
s )N/2

Lgs (E ∩ �, Ec ∩ �)

+ ss/2

(2π)N

2

(1 − e− 2
s )N/2

Lgs (E ∩ �, Ec ∩ �c)

+ ss/2

(2π)N

2

(1 − e− 2
s )N/2

Lgs (E ∩ �c, Ec ∩ �),

(3.7)

where for A, B measurable and disjoint sets and for 0 ≤ h ∈ L1(A × B) we have
used the notation

Lh(A, B) =
∫
A
dx

∫
B
h(x, y)dy,

with f (x, y) := exp
(
−|x |2+|y|2

2
1

1+e−1

)
and gs(x, y) := exp

(
−|x |2+|y|2

2
1

1+e− 1
s

)
. To

conclude, passing to the lim sup as s → 0+ in (3.7) it is easily seen that the first four
terms in the right hand-side in (3.7) vanish, and, using the dominated convergence
Theorem, the last three ones approach exactly the right-hand side in (3.2). ��

To complete the asymptotic estimate, we need an estimate frombelow for the liminf.
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Proposition 2 Let � ⊂ R
N be an open connected set with Lipschitz boundary. Then

for any measurable set E ⊂ R
N it holds

lim inf
s→0+ sPγ

s (E;�) ≥ 2
[
γ (E)γ (� \ E) + γ (E ∩ �)γ (Ec ∩ �c)

]
. (3.8)

Proof Let δ > 0 and let R > 0 be such that

γ ((E ∩ �) ∩ BR(0)) ≥ γ (E ∩ �) − δ,

γ
(
(Ec ∩ �) ∩ BR(0)

) ≥ γ
(
Ec ∩ �

) − δ,

γ
(
(E ∩ �c) ∩ BR(0)

) ≥ γ
(
E ∩ �c) − δ,

γ
(
(Ec ∩ �c) ∩ BR(0)

) ≥ γ
(
Ec ∩ �c) − δ.

(3.9)

For any x, y ∈ BR(0) it holds

exp(φt (x, y)) ≥ exp

(
−e−2t |x − y|2

2(1 − e−2t )

)
≥ exp

(
− 2e−2t

1 − e−2t R
2
)

, (3.10)

where φt is as in (3.4) and we used that |x − y|2 ≤ 4R2. Since

1

(1 − e−2t )N/2 > 1

and the map

t 	→ exp

(
− 2e−2t

1 − e−2t R
2
)

is increasing in (0,+∞) and by (3.10) we get, for any x, y ∈ BR(0),

Ks(x, y) ≥
∫ ∞

1/s

Mt (x, y)

t
s
2+1

dt (3.11)

≥
∫ ∞

1/s

1

t
s
2+1(1 − e−2t )N/2

exp

(
− 2e−2t

1 − e−2t R
2
)
dt

≥ exp

(
− 2e−2/s

1 − e−2/s R
2
) ∫ ∞

1/s

dt

t
s
2+1

= 2

s
exp

(
− 2e−2/s

1 − e−2/s R
2
)
ss/2.

We can now estimate from below sPγ
s (E;�)

sPγ
s (E;�)

≥ s
∫

(E∩�)∩BR(0)
dγ (x)

∫
(Ec∩�)∩BR(0)

Ks(x, y)dγ (y)

+ s
∫

(E∩�)∩BR(0)
dγ (x)

∫
(Ec∩�c)∩BR(0)

Ks(x, y)dγ (y)
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+ s
∫

(E∩�c)∩BR(0)
dγ (x)

∫
(Ec∩�)∩BR(0)

Ks(x, y)dγ (y)

≥ 2 exp

(
− 2e−2/s

1 − e−2/s R
2
)
ss/2

[
γ ((E ∩ �) ∩ BR(0)) γ

(
(Ec ∩ �) ∩ BR(0)

)

+ γ ((E ∩ �) ∩ BR(0)) γ
(
(Ec ∩ �c) ∩ BR(0)

)

+ γ
(
(E ∩ �c) ∩ BR(0)

)
γ

(
(Ec ∩ �) ∩ BR(0)

) ]

≥ 2 exp

(
− 2e−2/s

1 − e−2/s R
2
)
ss/2

[
(γ (E ∩ �) − δ)

(
γ

(
Ec ∩ �

) − δ
)

+ (γ (E ∩ �) − δ)
(
γ

(
Ec ∩ �c) − δ

)

+ (
γ

(
E ∩ �c) − δ

) (
γ

(
Ec ∩ �

) − δ
) ]

= 2 exp

(
− 2e−2/s

1 − e−2/s R
2
)
ss/2

×
[
γ (E)γ (� \ E) + γ (E ∩ �)γ (Ec ∩ �c) + 3δ2 − (1 + γ (�))δ

]

≥ 2 exp

(
− 2e−2/s

1 − e−2/s R
2
)
ss/2

×
[
γ (E)γ (� \ E) + γ (E ∩ �)γ (Ec ∩ �c) + 3δ2 − 2δ

]
.

By letting s → 0+ we obtain

lim inf
s→0+ sPγ

s (E;�) ≥ 2
[
γ (E)γ (� \ E) + γ (E ∩ �)γ (Ec ∩ �c) + 3δ2 − 2δ

]
,

thus we get (3.8) in view of the arbitrariness of δ > 0. ��
Proof of Theorem 1 It is an immediate consequence of Proposition 1 and Proposition
2.

In the proof of Theorem 1, the hypothesis Pγ
s0(E;�) < +∞ for some s0 ∈ (0, 1)

is crucial (it is required to prove Proposition 1). Adapting [9, Example 2.10], we show
that there are measurable sets that do not satisfy that requirement.

Example 1 (A measurable set with Pγ
s (E;�) = +∞ for any s ∈ (0, 1)) Let us

consider a decreasing sequence (βk)k ⊂ R with βk > 0 for any k ∈ N such that

M :=
+∞∑
k=1

βk < +∞

but

+∞∑
k=1

β1−s
k = +∞
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for every s ∈ (0, 1) (in [9, Example 2.10] the authors suggest the possible choice
β1 = 1

log2 2
and βk = 1

k log2 k
for any k ≥ 2). Let us define

� := (0, M) ⊂ R, σm :=
m∑

k=1

βk, Im := (σm, σm+1), E :=
+∞⋃
j=1

I2 j .

We claim that Pγ
s (E;�) = +∞ for any s ∈ (0, 1). By recalling that E ⊂ � it holds

Pγ
s (E;�) = Pγ

s (E) ≥ C1,s

+∞∑
j=1

∫ σ2 j+1

σ2 j

dγ (x)
∫ σ2 j+2

σ2 j+1

dγ (y)

|x − y|1+s

≥ 1

2π

e−M2

s(1 − s)

+∞∑
j=1

[
(σ2 j+2 − σ2 j+1)

1−s+ (σ2 j+1 − σ2 j )
1−s− (σ2 j+2 − σ2 j )

1−s
]

= 1

2π

e−M2

s(1 − s)

+∞∑
j=1

[
β1−s
2 j+2 + β1−s

2 j+1 − (β2 j+2 + β2 j+1)
1−s

]
,

where in the first inequality we used (2.8), while in the second inequality we used
that C1,s ≥ 1, the boundedness from below of the Gaussian weights in (σ2 j , σ2 j+1)×
(σ2 j+1, σ2 j+2) for any j ≥ 1 and that for a < b ≤ c < d

∫ b

a
dx

∫ d

c

dy

|x − y|1+s

= 1

s(1 − s)

[
(c − a)1−s + (d − b)1−s − (c − b)1−s − (d − a)1−s

]
.

Since the map t 	→ (1 + t)1−s is concave in [0, 1), it holds

1 + t1−s − (1 + t)1−s ≥ st1−s .

By the choice t = β2 j+2
β2 j+1

we get

β1−s
2 j+2 + β1−s

2 j+1 − (β2 j+2 + β2 j+1)
1−s ≥ sβ1−s

2 j+2

and so,

Pγ
s (E;�) ≥ 1

2π

e−M2

1 − s

+∞∑
j=1

β1−s
2 j+2 = +∞,

concluding the proof of the claim.

Now we state some properties of the set function μ.
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Proposition 3 μ is subadditive on E , i.e.μ(E∪F) ≤ μ(E)+μ(F) for any E, F ∈ E;
μ is not monotone with respect to inclusions.

Proof To show the subadditivity, we proceed as in the proof of [9, Proposition 2.1];
to show the lack of monotonicity, it is sufficient to choose as E a small ball contained
in � or a halfspace such that HN−1(∂E ∩ �) > 0 and F = R

N . ��
Notice that μ is not additive. Indeed, if � = R

N , then, for any pair of measurable
disjoint sets A, B ⊂ R

N

μ(A ∪ B) = 2γ (A ∪ B)γ (Ac ∩ Bc) = 2 (γ (A) + γ (B)) (1 − γ (A) − γ (B))

= 2γ (A) (1 − γ (A)) + 2γ (B) (1 − γ (B)) − 4γ (A)γ (B)

= 2γ (A)γ (Ac) + 2γ (B)γ (Bc) − 4γ (A)γ (B)

= μ(A) + μ(B) − 4γ (A)γ (B).

Otherwise, if � 
= R
N , we proceed as in the proof [9, Proposition 2.3] by using the

following result.

Lemma 2 For any A, B ⊂ R
N measurable disjoint sets there exists C = C(A, B) > 0

such that

sLγ
s (A, B) ≥ C,

for any s ∈ (0, 1).

Proof We firstly assume that A, B are bounded and fix R > 0 sufficiently large such
that A, B ⊂ BR . We have

sLγ
s (A, B) ≥ s

∫
A
dγ (x)

∫
B
dγ (y)

∫ ∞

1

Mt (x, y)

t
s
2+1

dt

≥ s
∫
A
dγ (x)

∫
B
dγ (y)

∫ ∞

1
exp

(
−e−2t (|x |2 + |y|2) − 2e−t (x, y)

2(1 − e−2t )

)
dt

t
s
2+1

≥ s
∫
A
dγ (x)

∫
B
dγ (y)

∫ ∞

1
exp

(
−e−2t |x − y|2

2(1 − e−2t )

)
dt

t
s
2+1

≥ s exp

(
− 2R2

(e2 − 1)

) ∫
A
dγ (x)

∫
B
dγ (y)

∫ ∞

1

dt

t
s
2+1

= 2 exp

(
− 2R2

(e2 − 1)

)
γ (A)γ (B) =: C(A, B). (3.12)

If A, B are unbounded we simply have

sLγ
s (A, B) ≥ sLγ

s (A ∩ BR, B ∩ BR) ≥ C

for any s ∈ (0, 1) and R > 0. ��
Remark 2 We notice that, even if we add in Lemma 2 the hypothesis of strictly positive
distance between A and B, the result is left unchanged.
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4 Final remarks

We conclude by studying the asymptotics for s → 0+ even for the fractional perimeter
defined in [8]

J λ
s (E;�) :=

∫
E∩�

dλ(x)
∫
Ec∩�

dλ(y)

|x − y|N+s

+
∫
E∩�

dλ(x)
∫
Ec∩�c

dλ(y)

|x − y|N+s

+
∫
E∩�c

dλ(x)
∫
Ec∩�

dλ(y)

|x − y|N+s
. (4.1)

We recall that the functional (4.1) is linked to (1.1) by the fact that they have the same
�-limit bymultiplying by 1−s and letting s → 1− ( [5,Main Theorem]); this depends
on the fact that Ks(x, y)γ (x)γ (y) and λ(x)λ(y)

|x−y|N+s approach the Dirac delta in the same
way, up to amultiplicative constant, when |x−y| → 0.Nevertheless, definition (4.1) is
somehow unnatural, because it is not linked to functional calculus as (1.1). Therefore,
we can say that (1.1) is the fractional counterpart of the Gaussian perimeter (2.5),
and we can refer to it as “Fractional Gaussian perimeter”, while (4.1) is a weighted
version of the fractional perimeter defined in [3], and we can refer to it as “Gaussian
fractional perimeter”. As already said in Sect. 1 for the Gaussian fractional perimeter
the asymptotics for s → 0+ is not meaningful. Indeed the following proposition holds.

Proposition 4 For any measurable set E such that J λ
s0(E;�) < ∞ for some s0 ∈

(0, 1) we have

lim
s→0+ sJ λ

s (E;�) = 0.

Proof Let A, B be measurable and disjoint sets such that Lλ
s0(A, B) < ∞ for some

s0 ∈ (0, 1), where

Lλ
σ (A, B) :=

∫
A
dλ(x)

∫
B

dλ(y)

|x − y|N+σ
.

Then, for any s ∈ (0, s0) we have

Lλ
s (A, B) =

∫∫
(A×B)∩{|x−y|≥1}

dλ(y)

|x − y|N+s
dλ(x)

+
∫∫

(A×B)∩{|x−y|<1}
dλ(y)

|x − y|N+s
dλ(x)

≤λ(A)λ(B) +
∫∫

(A×B)∩{|x−y|<1}
dλ(y)

|x − y|N+s0
dλ(x)

≤λ(A)λ(B) + Lλ
s0(A, B) < ∞.

(4.2)
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Therefore

lim
s→0+ sLλ

s (A, B) = 0. (4.3)

By applying (4.3) to the couples of sets (E ∩ �, Ec ∩ �), (E ∩ �, Ec ∩ �c), (E ∩
�c, Ec ∩ �), we completely prove the claim. ��
Remark 3 We notice that even in this case we cannot drop the condition J λ

s0(E;�) <

∞ for some s0 ∈ (0, 1). Indeed [9, Example 2.10] still works with

J λ
s (E;�) ≥ 1

2π

e− M2
2

1 − s

+∞∑
j=1

β1−s
2 j+2 = +∞,

for any s ∈ (0, 1).
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