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Abstract
In this work the Monte Carlo method is introduced for numerical evaluation of
fractional-order derivatives. A general framework for using this method is pre-
sented and illustrated by several examples. The proposed method can be used for
numerical evaluation of the Grünwald-Letnikov fractional derivatives, the Riemann-
Liouville fractional derivatives, and also of the Caputo fractional derivatives, when
they are equivalent to the Riemann-Liouville derivatives. The proposed method can be
enhanced using standard approaches for the classic Monte Carlo method, and it also
allows easy parallelization, which means that it is of high potential for applications of
the fractional calculus.

Keywords Fractional calculus (primary) · Fractional differentiation · Numerical
computations · Monte Carlo method · Stochastic processes

Mathematics Subject Classification 26A33 (Primary) · 65C05 · 65D25

1 Introduction

It is surprising that, to our best knowledge, although there exists a huge amount of
literature onMonte Carlomethod for integration, there are no available works on using
Monte Carlo method for differentiation.

This paper is devoted to introducing the numerical evaluation of the Grünwald-
Letnikov fractional derivatives by the Monte Carlo method.
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It is well known and documented that the Grünwald-Letnikov fractional deriva-
tives play an important role in various numerical methods and approximations of
the Riemann-Liouville and Caputo fractional derivatives, based on fractional-order
differences, see [11] or [1, 2, 9, 10].

In this work we, however, develop a totally different approach. After recalling the
general framework and necessary notions, we introduce a stochastic interpretation of
the Grünwald-Letnikov definition of fractional-order differentiation, and demonstrate,
that the evaluation of a fractional-order derivative at a given point can be replaced by
the study of a certain stochastic process.

Then we outline the basic scheme of the proposed Monte Carlo approach, and
provide the algorithm for computations. Close look at the separate stages of this
algorithmdiscovers an unexpected link between ourMonteCarlomethod for fractional
differentiation, onone side, and theknownfinite differencemethods onnon-equidistant
or nested grids, on the other side. In particular, in both cases the function values are
evaluated at the nodes that are more dense near the current point, and less dense
towards the beginning of the considered interval.

Implementation in the formof a toolbox forMATLABallowed experimentswith the
functions, that are most frequently used in applications of fractional-order modeling,
like Heaviside’s unit step function, power function, exponential function, trigonomet-
rical functions, and the Mittag-Leffler function. The provided examples demonstrated
excellent agreement of the exact fractional-order derivatives of the considered func-
tions and the numerical results by the proposed method.

In the concluding remarks we emphasize two important aspects. First, the pro-
posed method can be enhanced using standard approaches for improving the classical
Monte Carlo method, such as reduction of variance, importance sampling, stratified
sampling, control variates or antithetic sampling. Second, the proposed method allows
parallelization, which means that finally parallel algorithms can be used in the appli-
cations of the fractional calculus.

2 Grünwald-Letnikov fractional derivatives

Let α > 0, and let

F0 = { f ∈ L1 = L1(R) : ∃g ∈ L1 with ĝ(ω) = (−iω)α f̂ (ω), ω ∈ R},

where f̂ is the Fourier transfrom of f . For f ∈ F0 define f (α) = g if g ∈ L1
and (−iω)α f̂ (ω) = ĝ(ω) for ω ∈ R. The function f (α), defined uniquely by the
uniqueness of the Fourier transform, is the Riemann-Liouville fractional derivative of
f .
Similarly, let us define

F+
0 = { f ∈ L1(R+) : ∃g ∈ L1(R+) with ǧ(s) = (−sα) f̌ (s), Re(s) ≤ 0},

where f̌ (s) = ∫ ∞
0 est f (t)dt denotes the Laplace transform of f . For f ∈ F+

0 define

f (α) = g if g ∈ L1(R+) and (−s)α f̌ (s) = ǧ(s) for Re(s) ≤ 0.
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348 N. Leonenko, I. Podlubny

In order to calculate the fractional-order derivative of f , the Grünwald-Letnikov
fractional derivative can be used, that was introduced in [11] as a non-local operator
on L1(R) given by

Dα f (t) = lim
h→0

Aα
h f (t), α > 0, h > 0, (2.1)

where

Aα
h f (t) = 1

hα

∞∑

k=0

γ (α, k) f (t − kh), (2.2)

and

wk = γ (α, k) = (−1)k
�(α + 1)

k! �(α − k + 1)
. (2.3)

When (2.1) is applied to function f ∈ F+
0 , we extend f to L1(R) by setting

f (t) = 0 for t < 0. Hence the operator (2.1) can be regarded as an operator on
L1(R+), see [1, 2, 9, 11] for more details.

In particular, the operator ((2.1) is well defined for a class F of bounded functions
f , such that f and its derivatives of order up to n > 1 + α exist and are absolutely
integrable, and its Fourier transform is (ik)α f̂ (k), see, e.g., [9,pp. 22–23].

Applying the Stirling approximation

�(x + 1) ∼ √
2πxxxe−x as x → ∞,

we have

wk ∼ −α

�(1 − α)

1

kα+1 as k → ∞. (2.4)

The binomial series

(1 − z)α =
∞∑

k=0

wk z
k

converges for any complex |z| ≤ 1 and anyα > 0. Thus for z = 1we have
∑∞

k=0 wk =
(1 − 1)α = 0, and hence

w0 = 1,
∞∑

k=1

wk = −1

This has been noticed by Machado [8].
Denoting pk = −wk (k = 1, 2, . . .), we have

∞∑

k=1

pk = 1,
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where pk = pk(α) > 0 for all 0 < α < 1 (but there ∃k: pk(α) < 0 if 1 < α < 2).
Note that [11]

pk(α) =
(

1 − α + 1

k

)

pk−1(α), k = 1, 2, . . . , with p0(α) = 1.

Using (2.4), we can obtain the following relationship:

�α f (t)

�tα
= 1

(�t)α

[

f (t) +
∞∑

k=1

wk f (t − k�t)

]

= 1

(�t)α

∞∑

k=1

pk [ f (t) − f (t − k�t)]

≈
∞∑

k=1

[ f (t) − f (t − k�t)]
α

�(1 − α)

1

(k�t)1+α

≈
∫ ∞

0
[ f (t) − f (t − y)]

α

�(1 − α)

1

y1+α
dy

which motivates the general form of fractional-order derivative as

GDα f (t) =
∫ ∞

0
[ f (t) − f (t − y)]

α

�(1 − α)

1

y1+α
dy.

Integration by parts gives the Caputo from of fractional derivative:

C Dα f (t) = 1

�(1 − α)

∫ ∞

0

d

dt
f (t − y)

dy

yα
, 0 < α < 1,

which is just the regularized form of the Riemann–Liouville fractional derivative:

RL Dα f (t) = 1

�(1 − α)

d

dt

∫ ∞

0
f (t − y)

dy

yα
, 0 < α < 1.

Thus, the Grünwald-Letnikov fractional derivative can be considered as approxi-
mation of the Caputo of the Riemann-Liouville fractional derivatives in the numerical
analysis of fractional differential equations. In particular, if f ∈ F (or F+) then the
non-local operator Aα

h f defined in (2.2) converges to RL Dα f or C Dα f in L1(R) (or
L1(R+)) norm as h → 0, see [9, 11] for more details.
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3 Monte Carlo approach to the Grünwald-Letnikov fractional
derivatives

Let Y be a discrete random variable such that

P{Y = k} = pk = pk(α) = (−1)k+1 �(α + 1)

k! �(α − k + 1)
, k = 1, 2, . . . (3.1)

Note that EY = ∞, 0 < α < 1. (E denotes the mathematical expectation.)
Given f ∈ F0 (or F

+
0 or F), we define the stochastic process

ξh(t) = f (t − Yh). (3.2)

Then, if E f (t − Yh) < ∞, we have

∞∑

k=0

γ (α, k) f (t − kh) = f (t) −
∞∑

k=1

pk(α)Ff (k) = f (t) − E f (t − Yh), (3.3)

where

Ff (k) = f (t − kh), k = 1, 2, . . .

We assume that for f ∈ F0 (or F
+
0 or F)

E f (t − Yh) < ∞

for any fixed t and h.
Let Y1, Y2,…, Yn , …, are independent copies of the random variable Y ; then by the

strong law of large numbers

1

N

N∑

n=1

f (t − Ynh) −→ E f (t − Yh)

with probability one for any fixed t and h, and hence

Aα
N ,h f (t) = 1

hα

[

f (t) − 1

N

N∑

n=1

f (t − Ynh)

]

−→ Aα
h f (t), 0 < α < 1, N → ∞,

with probability one, where Aα
h f is defined by (2.2).

Moreover, if f ∈ F0 (or F+
0 or F) and Var f (t − Yh) < ∞, then by the central

limit theorem and Slutsky lemma as N → ∞ we have

Bα
N = Aα

N ,h f (t) − Aα
h f (t)√

vN
−→D N (0, 1),
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where −→D means convergence in distributions and N (0, 1) is the standard normal
law.

Here vN is the sample variance

vN = 1

N (N − 1)h2α

N∑

n=1

[

f (t − Ynh) − 1

N

N∑

n=1

f (t − Ynh)

]2

.

Thus, for a given ε > 0

P

{
|Bα

N | ≤ 
1− ε
2

}
= P

{
|N (0, 1)| ≤ 
1− ε

2

}
= 1 − ε,

where 
1− ε
2
is the quantily of the standard normal law, and hence for a large N we

have with probability 1 − ε the following asymptotic confidence interval:

P

{
Aα
N ,h f (t) − 
1− ε

2

√
vN ≤ Aα

h f (t) ≤ Aα
N ,h f (t) + 
1− ε

2

√
vN

}
≈ 1 − ε;

for example, if ε = 0.05, 
1− ε
2

≈ 1.96.

4 The basic scheme of themethod

The above results can be used as the basis of the Monte Carlo method for numerical
approximation and computation of the Grünwald-Letnikov fractional derivatives.

Indeed, we can replace the samples Y1, Y2,…, YN by theirMonte Carlo simulations.
For the simulation of the random variable Y with distribution (3.1), we introduce the
cumulative distribution function

Fj =
j∑

i=1

pi ,

where pk = pk(α) are defined in (3.1). Then

0 = F0 < F1 < . . . < Fj < . . . , and p j = Fj − Fj−1.

If U is a random variable uniformly distributed on [0, 1], then

P(Fj−1 < U < Fj ) = p j ,

and hence, to generate Y ∈ {1, 2, . . .}, we set

Y = k, if Fk−1 ≤ U < Fk . (4.1)
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Each trial (draw) of the proposedMonte Carlo method includes the following steps.

1. Evaluate pi = pi (α) defined in (3.1).

2. Evaluate Fj =
j∑

i=1
pi .

3. Generate N independent uniformly distributed random points, and compute the
values Yi using (4.1).

4. Evaluate the expression

Aα
N ,h f (t) = 1

hα

[

f (t) − 1

N

N∑

k=1

f (t − Ykh)

]

. (4.2)

After repeating steps 1–4 K times (trials), the mean of the obtained K values gives
an approximation of the value of the fractional derivative of order α, 0 < α ≤ 1, at
point t .

5 Close look at the stages of implementation

The proposed algorithm has been implemented in MATLAB [13]; this allows useful
visualizations and numerical experiments with the functions that are frequently used
in the fractional calculus and in fractional-order differential equations.

Obviously, the approximation (4.2) involves themeanof the values of f (t) evaluated
at points tk = t −Ykh (k = 1, . . . , N ), where t is the current point of interest. In other
words, all necessary function values are taken with the same weight.

The values Fj divide the interval [0, 1] into subintervals of unequal length. In Fig. 1
those divisions of [0, 1] are shown for orders α = 0.3, α = 0.5, and α = 0.7. The
first point is equal to α, and then the density of points Fj increases towards 1. This
naturally produces larger values of Yk towards 0, and smaller values of Yk towards 1.

As a result, the points tk , at which the function f (t) is evaluated, are distributed over
the interval [0, t] non-uniformly. In Fig. 2, Fig. 3, and Fig. 4 are shown examples of

Fig. 1 Distribution of the values of Fj within [0, 1] for α = 0.3, α = 0.5, and α = 0.7, for N = 2000
points of division
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Fig. 2 Examples of random distribution of the nodes tk , at which the function values are computed in the
interval 0 ≤ t ≤ 5, for α = 0.3 and N = 2000 points of division

Fig. 3 Examples of random distribution of the nodes tk , at which the function values are computed in the
interval 0 ≤ t ≤ 5, for α = 0.5 and N = 2000 points of division

the distributions of tk over [0, t] in some trials (draws) for t = 5 and α = 0.3, α = 0.5,
α = 0.7. We observe that the density of tk towards 1 increases with increasing value
of α.

The overall picture reminds some recent efforts in the finite difference methods
based on non-equidistant grids or nested meshes [3–7, 14]. The common feature is
represented by the higher density of discretization nodes near the current point, and
the lesser density far from the current point; see [4,Fig. 1] and [7,Fig 2]. However,
in the aforementioned papers the function values at the discretization nodes are taken
with different weights, while in the proposed Monte Carlo approach all weights are
the same.

The dependence of the density of nodes on α indicates that the finite difference
approaches using non-uniform grids or nested meshes can be improved, if this depen-
dence on the order α of fractional differentiation would eventually be taken into
account.
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Fig. 4 Examples of random distribution of the nodes tk , at which the function values are computed in the
interval 0 ≤ t ≤ 5, for α = 0.7 and N = 2000 points of division

Fig. 5 Derivative of order 0.2 of the Heaviside unit-step function H(t)

6 Examples

The following examples demonstrate the use of the proposed Monte Carlo method for
fractional-order differentiation. In all examples, the results of the computations are
compared with the exact fractional-order derivatives of the function under fractional-
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Fig. 6 Derivative of order 0.5 of the Heaviside unit-step function H(t)

Fig. 7 Derivative of order 0.5 of the power function y(t) = tν , ν = 1.3
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Fig. 8 Derivative of order 0.5 of the function y(t) = e−λt − 1, λ = 0.1

order differentiation. The Mittag-Leffler function [11]

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, z ∈ C, α, β > 0,

that appears in some of the provided examples, is computed using [12]. In all examples
the considered interval is sufficiently large, namely t ∈ [0, 10]. The exact fractional
derivatives are plotted using solid lines, the results of the proposed Monte Carlo
method are shown by bold points, the results of K individual trials (draws) are shown
by vertically oriented small points (in all examples, K = 100), and the confidence
intervals are shown by short horizontal lines above and below the bold points.

Example 1. The Heaviside function

y(t) = H(t), Dα y(t) = t−α

�(1 − α)
, t > 0.

The result for α = 0.2 is shown in Fig. 5, and for α = 0.5 in Fig. 6. Since H(t) = 1
for t > 0, these figures represent, in fact, the Grünwald-Letnikov (and Riemann-
Liouville) fractional-order derivative of a constant. We see that in this case the sample
variance of the values obtained in individual trials (draws) is very small.
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Fig. 9 Derivative of order 0.5 of the Mittag-Leffler function y(t) = Eα,1(−λtα), α = 0.5, λ = 0.1

Example 2. The power function

y(t) = tν, Dα y(t) = tν−α �(ν + 1)

�(ν + 1 − α)
, t > 0.

The result for ν = 1.3 and α = 0.5 is shown in Fig. 7. In this case, the sample variance
of the values obtained in individual trials (draws) increases, but the confidence intervals
remain sufficiently small.

Example 3. The exponential function

y(t) = e−λt − 1, Dα y(t) = t−αE1,1−α(−λtα) − tα

�(1 − α)
, t > 0.

The result for λ = 0.1 and α = 0.5 is shown in Fig. 8. The sample variance of
the values obtained in individual trials (draws) increases, but the confidence intervals
remain sufficiently small.

123



358 N. Leonenko, I. Podlubny

Fig. 10 Derivative of order 0.7 of the function y(t) = Eα,1(−λtα) − 1, α = 0.5, λ = 0.1

Example 4. TheMittag-Leffler function

(A) y(t) = Eα,1(−λtα), Dα y(t) = t−αEα,1−α(−λtα), t > 0.

The result for λ = 0.1 and α = 0.5 is shown in Fig. 9. We see that in this case the
sample variance of the values obtained in individual trials (draws) is very small, and
the same holds for the confidence intervals.

(B) y(t) = Eα,1(−λtα) − 1, Dα y(t) = t−αEα,1−α(−λtα) − tα

�(1 − α)
, t > 0.

The result for λ = 0.1 and α = 0.7 is shown in Fig. 10. We see that in this case,
while the sample variance of the values obtained in individual trials (draws) is large
enough, the confidence intervals are still sufficiently small.

Example 5. The trigonometric functions

Taking into account that sin(t) = t E2,2(−t2) and cos(t) = E2,1(−t2), we have:
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Fig. 11 Derivative of order 0.5 of the function y(t) = sin(t)

(A) y(t) = sin(t), Dα y(t) = t1−αE2,2−α(−t2), t > 0,

(B) y(t) = cos(t), Dα y(t) = t−αE2,1−α(−t2), t > 0.

The results for (A) and (B) are shown in Fig. 11 and Fig. 12, respectively. We see
that in this case also the sample variance of the values obtained in individual trials
(draws) is very small, and the same holds for the confidence intervals.

Overall, these examples show that the proposedMonte Carlo method for fractional-
order differentiation works well for various kinds of functions that are important for
applications of the fractional calculus, and for functions of various kinds of behavior.

7 Concluding remarks: a way to parallelization

In this work, the Monte Carlo method is proposed for approximation and computa-
tion of fractional-order derivatives. It can be used for evaluation of all three types
of fractional-order derivatives, that usually appear in applications: the Grünwald-
Letnikov, the Riemann-Liouville, and also the Caputo fractional derivatives, when
they are equivalent to the Riemann-Liouville derivatives [11,Section 3.1].

The proposed method is implemented in the form of a toolbox for MATLAB, and
illustrated on several examples. This opens a way to development of a family ofMonte
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Fig. 12 Derivative of order 0.5 of the function y(t) = cos(t)

Carlo methods for the fractional calculus, using standard methods for enhancements,
such as reduction of variance, importance sampling, stratified sampling, control vari-
ates or antithetic sampling.

By its nature, the proposedMonte Carlo method for fractional-order differentiation
allows parallelization of computations on multiple core processors, GPUs, computer
grids, and on parallel computers, and therefore have high potential for applications.
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