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Abstract
We give an overview of the concept of random time changes in evolution processes.
First of all, we discuss random times in Markov processes. Secondly, we propose to
use the concept of random times for dynamical systems. In both cases did appear
fractional evolution equations. In the case of Markov processes we arrive to frac-
tional Kolmogorov equations. For dynamical systems it leads to fractional Liouville
equations.
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1 Introduction

The notion of random times and resulting fractional evolution equations are widely
discussing in stochastic and mathematical physics. But first of all we shall ask ourself
why and how this notion did appear in the study of dynamical phenomena. The concept
of time is a necessary element of everything studied in different areas of human activity
in any science. This notion plays a key role in physics, biology, philosophy, sociology
andmany other areas. Starting fromGreek philosophers the notion of time has become
the subject of active discussionswhich, however, containmany controversies. Themost
general observation here is probably such that the time is created by the evolution of
a system. For systems in a “frozen" state the time is absent as a characteristic. As was
pointed out by Pascal, each individual system needs its own time realization. In fact,
we can think about the general concept of time as an idea from Plato’s world of forms
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2 Y. Kondratiev

or ideas. Due to this theory of ideas, the visible objects and events are shadows of their
ideal and perfect forms.

The necessity to consider specific time realizations for particular systems is
undoubtably not new. For example, Vladimir Vernadsky was speaking about special
biological time for the living matter. In physics, especially in mechanics, we deal with
Newtonian time notion. This time runs uniformly throughout the course of evolution
and actually plays the role of an additional independent variable in equations of the
motion. This interpretation creates the huge theory of evolution equations in the PDE
area. A certain instance related to the study of particular systems is that the time has
different scales. The scales of life time for bacteria and elephants will unsurprisingly
be different. But Newtonian time, even in different scales is not sufficient for more
complex systems.

Let us consider a particular model to motivate our considerations. We would like
to study an evolution of a model from plant ecology. This model is characterized
by biological properties of considered plants such as fecundity and establishment
coefficients, mortality and competition for resources parameters etc. Yet we shall also
take into account the environment’s influence on the system. Namely, the model’s is
affected by abiotic factors such as light availability, temperature, wind, rain, season etc.
Since these influences behave randomly, the evolution of the system shall include such
random effects. One possible approach here is the following. We may construct the
dynamics of themodel in the absence of the environment. Thenwe can include a single
influence of the environment via a random time change in the initial dynamics. This
dynamic may be stochastic (e.g., Markov) or deterministic (e.g., dynamical systems).
In the described manner we may effectively include environmental behavior in this
evolution. The use of random times involves a consideration of several particular
shadows of the time idea as monotonic stochastic processes in the previously given
dynamics. Note that a random time change may affect the dynamics in multiple ways.
For some particular models, random times produce effective frictions for the moving
particles, their give also some trap motion etc.

It is finitely definitely not only the way in the study of models which interact with
an environment. The variety of such kind of systems is extremely rich and to have a
universal approach to their analysis would be too naive a hope.

The aim of this paper is to give a brief overview of recent studies in the application
of the random time concept to dynamical problems. In our explanation we refer to our
recent works in the references, in particular to [5].

The idea to consider stochastic processes with general random times is known
foremost from the classical book by Gikhman and Skorokhod [11]. In the case of
Markov processes time changes by subordinators has been already considered by
Bochner in [4], showing that it gives again a Markov process, the so-called Bochner
subordinated Markov process. A more interesting scenario is realized when analyzing
the case of inverse subordinators. Indeed, after the time change, we fail to obtain
a Markov process. Therefore, the study of such kind of processes becomes really
challenging. From this perspective, let us recall the work byMontroll andWeiss, [26],
where the authors consider the physically motivated case of random walks in random
time. This seminal paper originated a wide research activity related to the study of
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From time to times 3

Markov processes with inverse stable subordinators as random times changes,see the
book [25] for a detailed review and historical comments.

It is worth mentioning that when we take into account the case of processes with
random time changes which are not subordinators or inverse subordinators, we can
only rely on few results, the overall field having been less investigated.

On the one hand, additional assumptions on the stable subordinator considerably
reduce the set of time change processes we can count on, resulting in restrictive
assumptions for possible applications. On the other hand, we find technical difficulties
in handling general inverse subordinators. Such limitations can be overcome for certain
sub-classes of inverse subordinators, see, e.g., [19,20]. Let us underline that the random
time change approach turns to be a very effective tools in modeling several physical
systems, spanning from ecological to biological ones, see, e.g., [23] and references
therein, also in view of additional applications.

There is a natural question concerning the use of a random time change not only
in stochastic dynamics but also with respect to a wider class of dynamical problems.
In this paper we focus on the latter task’s analysis in the case of dynamical systems
taking values in R

d . In particular, let X(t, x), t ≥ 0, x ∈ R
d be a dynamical system

in R
d , starting from x at initial time, namely: X(0, x) = x . Of course, such a system

is also a deterministic Markov process. Given f : Rd −→ R we define

u(t, x) := f (X(t, x)) ,

hence obtaining a version of the Kolmogorov equation, called the Liouville equation
within the theory of dynamical systems:

∂

∂t
u(t, x) = Lu(t, x) ,

L being the generator of a semigroup which results to be the solution of the Liouville
equation, see, e.g., [9,27,30] for more details.

If E(t) is an inverse subordinator process (see Section 2 below for details and
examples), then we may consider the time changed random dynamical systems

Y (t) := X(E(t)) .

Our aim is to analyze the properties of Y (t) depending on those of the initial dynamical
systems X(t). In particular, we can define

v(t, x) := E[ f (Y (t, x)] ,

then trying to compare the behavior u(t, x) and v(t, x) for a certain class of functions
f .
In what follows, we present the main problems which naturally appear studying

random time changes in dynamical systems. Moreover, we provide solutions to these
problems with respect to the examples collected in Section 2.
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4 Y. Kondratiev

The rest of the paper is organized as follows. In Section 2 we present the classes
of inverse subordinators and the associated general fractional derivatives. We study
random time dynamical systems, also considering the simplest examples of them.
Moreover, we also provide the first results when the random time is associated to the
α-stable subordinator. In Subsection 2.3 we consider a dynamical system as a deter-
ministic Markov processes. In Subsection 2.5 we investigate the path transformation
of a simple dynamical system by a random time.

2 Random times

In what follows, we recall some preliminary definitions and results related to ran-
dom times processes and subordinators. Let us start with the following fundamental
definition.

Definition 2.1 Let (�,F ,P) be a probability space. A random time is a process E :
[0,+∞) × � → R

+ such that

(i) for a.e. ω ∈ � E(t, ω) ≥ 0 for all t ∈ [0,+∞),
(ii) for a.e. ω ∈ � E(0, ω) = 0,
(iii) the function E(·, ω) is increasing and satisfies

lim
t→+∞ E(t, ω) = +∞ .

Concerning the concept of subordinators, we can introduce it as follows:

Definition 2.2 Let (�,F ,P) be a probability space. A process {S(t), t ≥ 0} is a
subordinator if the following conditions are satisfied

(i) S(0) = 0;
(ii) S(t + r) − S(t) has the same law of S(r) for all t, r > 0 ;
(iii) if (Ft )t denotes the filtration generated by (S(t))t , i.e.

Ft = σ({S(r), r ≤ t}), then S(t + r) − S(t) is independent of Ft for all
t, r > 0 ;

(iv) t → S(t)(ω) is almost surely right-continuous with left limits;
(v) t → S(t) is almost surely an increasing function.

For the sake of completeness, let us note that the process S(·) is a Lévy process if it
satisfies the conditions (i)−(iv), see, e.g., [2] for more details. Let S = {S(t), t ≥ 0}
be Lévy process, then its Laplace transform can be written in terms of a Bernstein
function (also known as Laplace exponent) � : [0,∞) −→ [0,∞) by

E[e−λS(t)] = e−t�(λ), λ ≥ 0 .

Moreover, the function � admits the representation

�(λ) =
∫ +∞

0
(1 − e−λτ ) dσ(τ), (2.1)
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From time to times 5

where the measure σ , also called Lévy measure, has support in [0,∞) and fulfills

∫ +∞

0
(1 ∧ τ) dσ(τ) < ∞ . (2.2)

Let σ be a Lévy measure, we define the associated kernel k as follows:

k : (0,∞) −→ (0,∞), (2.3)

t �→ k(t) := σ
(
(t,∞)

)
.

Its Laplace transform is denoted by K, and, for any λ ≥ 0, one has

K(λ) :=
∫ ∞

0
e−λt k(t) dt . (2.4)

We note that the relation between the functionK and the Laplace exponent � is given
by

�(λ) = λK(λ), ∀λ ≥ 0 . (2.5)

Throughout the paper we shall suppose that:

Hypothesis 2.1 Let � be a complete Bernstein function, that is, the Lévy measure σ

is absolutely continuous with respect to the Lebesgue measure. The functions K and
� satisfy

K(λ) → ∞, as λ → 0; K(λ) → 0, as λ → ∞;
�(λ) → 0, as λ → 0; �(λ) → ∞, as λ → ∞.

Example 2.1 (α-stable subordinator) A classical example of a subordinator S is the so-
called α-stable process with index α ∈ (0, 1). In particular, a subordinator is α-stable
if its Laplace exponent is

�(λ) = λα = α


(1 − α)

∫ ∞

0
(1 − e−λτ )τ−1−α dτ ,

where 
 is the gamma function.
In this case, the associated Lévy measure is given by

dσα(τ) = α

(1−α)

τ−(1+α) dτ and the corresponding kernel kα has the form

kα(t) = g1−α(t) := t−α


(1 − α)
, t ≥ 0 ,

with Laplace transform equal to Kα(λ) = λα−1, for λ ≥ 0.
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6 Y. Kondratiev

Example 2.2 (Gamma subordinator) The Gamma process Y (a,b) with parameters
a, b > 0 is another example of a subordinator with Laplace exponent

�(a,b)(λ) = a log

(
1 + λ

b

)
=

∫ ∞

0
(1 − e−λτ )aτ−1e−bτ dτ ,

the second equality being the Frullani integral. The associated Lévy measure is given
by dσ(a,b)(τ ) = aτ−1e−bτ dτ , with associated kernel equal to

k(a,b)(t) = a
(0, bt), t > 0 ,

where


(ν, z) :=
∫ ∞

z
e−t tν−1 dt

is the incomplete Gamma function, see, e.g., [14, Section 8.3] for more details. More-
over, its Laplace transform is

K(a,b)(λ) = aλ−1 log

(
1 + λ

b

)
, λ > 0 .

Example 2.3 (Truncated α-stable subordinator) The truncated α-stable subordinator,
see [6, Example 2.1-(ii)], Sδ , δ > 0, constitutes an example of a driftless α-stable
subordinator with Lévy measure given by

dσδ(τ ) := α


(1 − α)
τ−(1+α)11(0,δ](τ ) dτ, δ > 0 .

The corresponding Laplace exponent is given by

�δ(λ) = λα

(
1 − 
(−α, δλ)


(−α)

)
+ δ−α


(1 − α)
,

with associated kernel

kδ(t) := σδ

(
(t,∞)

) = 11(0,δ](t)

(1 − β)

(t−β − δ−β), t > 0 .

Example 2.4 (Sum of two alpha stable subordinators) Let 0 < α < β < 1 be given
and let Sα,β(t), for t ≥ 0, be the driftless subordinator with Laplace exponent given
by

�α,β(λ) = λα + λβ .
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From time to times 7

Then, by Example 2.1, we have that the corresponding Lévy measure σα,β is the sum
of two Lévy measures. Indeed, it holds

dσα,β(τ ) = dσα(τ) + dσα(τ) = α


(1 − α)
τ−(1+α) dτ + β


(1 − β)
τ−(1+β) dτ ,

implying that the associated kernel kα,β reads as follows

kα,β(t) := g1−α(t) + g1−β(t) = t−α


(1 − α)
+ t−β


(1 − β)
, t > 0 ,

with associated Laplace transform given by

Kα,β(λ) = Kα(λ) + Kβ(λ) = λα−1 + λβ−1 , λ > 0 .

Example 2.5 (Kernel with exponential weight) Taking γ > 0 and 0 < α < 1, let us
consider the subordinator with Laplace exponent

�γ (λ) := (λ + γ )α =
(

λ + γ

λ

)α
α


(1 − α)

∫ ∞

0
(1 − e−λτ )τ−1−α dτ .

Then the associated Lévy measure is given by

dσγ (τ ) =
(

λ + γ

λ

)α
α


(1 − α)
τ−(1+α)dτ ,

which implies a kernel kγ with exponential weight. In particular, we have

kγ (t) = g1−α(t)e−γ t = t−α


(1 − α)
e−γ t .

The corresponding Laplace transform of kγ is then given by Kγ (λ) = λ−1(λ + γ )α ,
λ > 0.

2.1 Inverse subordinators and general fractional derivatives

In this section we introduce the inverse subordinators and the corresponding general
fractional derivatives.

Definition 2.3 Let S(·) be a subordinator. We define E(·) as the inverse process of
S(·), i.e.

E(t) := inf {r > 0 | S(r) > t} = sup {r ≥ 0 | S(r) ≤ t} for all t ∈ [0,+∞) .
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8 Y. Kondratiev

For any t ≥ 0, we denote by Gk
t (τ ) := Gt (τ ), τ ≥ 0 the marginal density of E(t)

or, equivalently

Gt (τ ) dτ = ∂

∂τ
P(E(t) ≤ τ) dτ = ∂

∂τ
P(S(τ ) ≥ t) dτ = − ∂

∂τ
P(S(τ ) < t) dτ.

Remark 2.1 If S is the α-stable process, α ∈ (0, 1), then the inverse process E(t) has
Laplace transform, see [3, Prop. 1(a)], given by

E[e−λE(t)] =
∫ ∞

0
e−λτ Gt (τ ) dτ =

∞∑
n=0

(−λtα)n


(nα + 1)
= Eα(−λtα) . (2.6)

By the asymptotic behavior of the Mittag-Leffler function Eα , it follows that
E[e−λE(t)] ∼ Ct−α as t → ∞. Using the properties of the Mittag-Leffler func-
tion Eα , we can show that the density Gt (τ ) is given in terms of the Wright function
Wμ,ν , namely Gt (τ ) = t−αW−α,1−α(τ t−α), see [12] for more details.

For a general subordinator, the following lemmadetermines the t-Laplace transform
of Gt (τ ), with k and K given in (2.3) and (2.4), respectively. For the proof see the
following lemma.

Lemma 2.1 The t-Laplace transform of the density Gt (τ ) is given by

∫ ∞

0
e−λt Gt (τ ) dt = K(λ)e−τλK(λ). (2.7)

The double (τ, t)-Laplace transform of Gt (τ ) is

∫ ∞

0

∫ ∞

0
e−pτ e−λt Gt (τ ) dt dτ = K(λ)

λK(λ) + p
. (2.8)

Proof For the proof see [17] or [29, Lemma 3.1] ��
Let us now recall the definition of General Fractional Derivative (GFD) associated

to a kernel k, see [17] and references therein for more details.

Definition 2.4 Let S be a subordinator and the kernel k ∈ L1
loc(R+) given in (2.3). We

define a differential-convolution operator by

(
D

(k)
t u

)
(t) = d

dt

∫ t

0
k(t − τ)u(τ ) dτ − k(t)u(0), t > 0 . (2.9)

Remark 2.2 The operator D(k)
t is also known as Generalized Fractional Derivative.

Example 2.6 (Distributed order derivative) Consider the kernel k defined by

k(t) :=
∫ 1

0
gα(t) dα =

∫ 1

0

tα−1


(α)
dα, t > 0 . (2.10)
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From time to times 9

Then it is easy to see that

K(λ) =
∫ ∞

0
e−λt k(t) dt = λ − 1

λ log(λ)
, λ > 0 .

The corresponding differential-convolution operator D(k)
t is called distributed order

derivative, see, e.g., [1,8,13,15,16,24] for more details and applications.

We conclude this section with a result that will be useful later on, starting by
recalling the following definition.

Definition 2.5 Given the functions f : R → R and g : R → R, we say that f and g
are asymptotically equivalent at infinity, and denote f ∼ g as x → +∞, if

lim
x→+∞

f (x)

g(x)
= 1 .

Moreover, we say that f is slowly varying if

lim
x→+∞

f (λx)

f (x)
= 1, for any λ > 0 .

For more details on slowly varying functions, we refer the interested reader to, e.g.,
[10,28].

Lemma 2.2 Suppose Hypothesis 2.1 is satisfied, and that the subordinator S(t), along
with its inverse E(t), t ≥ 0 , are such that

K(λ) ∼ λ−γ Q

(
1

λ

)
, λ → 0 , (2.11)

where 0 ≤ γ ≤ 1 and Q(·) is a slowly varying function. Moreover, define

A(t, z) :=
∫ ∞

0
e−zτ Gt (τ ) dτ, t > 0, z > 0 .

Then it holds

A(t, z) ∼ 1

z

tγ−1


(γ )
Q(t), t → ∞ .

Proof For the proof see [18, Theorem 4.3]. ��
Remark 2.3 We point out that the condition (2.11) on the Laplace transform of the
kernel k is satisfied by all Examples 2.1–2.5 and 2.6, stated above. The case of Exam-
ple 2.4 is easily checked as

K(λ) = λα + λβ = λ−(1−α)(1 + λ−(α−β)) = λ−γ Q

(
1

λ

)
,
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10 Y. Kondratiev

where γ = 1 − α > 0 and Q(t) = 1 + tα−β is a slowly varying function.

2.2 Dynamical systems and Liouville equations

There is a natural question concerning the use of a random time change not only in
stochastic dynamics, but more generally in an ample class of dynamical problems. In
what follows, we shall focus the attention on the analysis of the random time change
approach for dynamical systems taking values in R

d .
Let X(t, x), t ≥ 0 be a dynamical system in Rd such that X(0, x) = x ∈ R

d . Such
a system is also a deterministic Markov process. Therefore, given f : Rd → R, and
defining

u(t, x) := f (X(t, x)) ,

we have a version of the Kolmogorov equation, which is nothing but the Liouville
equation within the theory of dynamical systems. Indeed,

ut (t, x) = Lu(t, x) , (2.12)

where L is the generator of the semigroup solution of the Liouville equation, see, e.g.,
[9,27,30].

2.3 Random time changes and fractional Liouville equations

Let (�,F ,P) be a probability space. Let X(t, x), t ≥ 0, be a dynamical system in
R

d starting at time t = 0 from x ∈ R
d . Given an inverse subordinator process E(·),

we consider the time changed random dynamical systems

Y (t, ω; x) = X(E(t, ω); x) , t ∈ [0,+∞), x ∈ R
d , ω ∈ � .

For a suitable f : Rd → R we define

v(t, x) := E[ f (Y (t; x))] , (2.13)

where, without loss of generality, with E(t) and Y (t; x) we shortly refer to E(t, ·),
resp. to Y (t, · ; x).

As pointed out in, e.g., [6,29],v(t, x) solves an evolution equationwith the generator
L , with generalized fractional derivative (see (2.9)), i.e.

D
(k)
t v(·, x)(t) = Lv(t, x) . (2.14)

Let u(t, x) be the solution to (2.12) with the same generator L in (2.14). Under quite
general assumptions there is an essentially obvious relation between these evolutions

v(t, x) =
∫ ∞

0
u(τ, x)Gt (τ ) dτ, (2.15)

123



From time to times 11

Gt (τ ) being the density of E(t), as defined in Section 2.1.
Having in mind the analysis of the random time change influence on the asymp-

totic properties of v(t, x), we may suppose that the latter formula gives all necessary
technical equipments. Unfortunately, the situation is essentially more complicated.
In fact, the knowledge we have of the properties characterizing the density Gt (τ ) is,
in general, very poor. The aim of this section is to describe a class of subordinators
for which we may obtain information about the time asymptotic of the generalized
fractional dynamics.

2.4 First examples

We consider the simplest evolution equation in Rd

dX(t) = vdt ∈ R
d , X(0) = x0 ∈ R

d ,

with corresponding dynamics given by

X(t) = x0 + vt, t ≥ 0 .

Without loss of generality, let us assume that x0 = 0. Then, we take f (x) =
e−α|x |, α > 0. Hence, the corresponding solution to the Liouville equation is

u(t, x) = e−αt |v|, t ≥ 0 .

Proposition 2.1 Assume that the assumptions of Lemma 2.2 are satisfied. Then

v(t, x) ∼ 1

α|v|
(γ )
tγ−1Q(t), t → ∞ .

Proof From the explicit form of the solution u(t, x), and using both (2.15) and
Lemma 2.2, we obtain

v(t, x) ∼ 1

α|v|
(γ )
tγ−1Q(t), t → ∞ .

In particular, for the α-stable subordinator considered in Example 2.1, we obtain
v(t, x) ∼ Ct−α , for a given constant C > 0. Therefore, starting with a solution
u(t, x) with exponential decay after subordination, we observe a polynomial decay
with the order defined by the random time characteristics.

��
For d = 1 consider the dynamics

βdX(t) = 1

Xβ−1(t)
dt, β ≥ 1 ,
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12 Y. Kondratiev

then the solution is given by

X(t) = (t + C)1/β .

Considering the function f (x) = exp(−a|x |β), a > 0, and supposing that the assump-
tions of Lemma 2.2 are satisfied, then, exploiting the explicit form of the solution
u(t, x), we have that the long time behavior of the subordination v(t, x) is given by

v(t, x) ∼ e−aC

a

tγ−1


(γ )
Q(t), t → ∞ .

In particular, choosing the density Gt (τ ) of the inverse subordinator E(t) as in the
Example 2.4, we obtain

v(t, x) ∼ Ct−α(1 + tα−β) ∼ Ct−α, t → ∞ .

2.5 Path transformations

Let us now investigate how the trajectories of dynamical systems transform under
random times. According to what seen above, we consider the Liouville equation for

u(t, x) := f (X(t, x)), t ≥ 0, x ∈ R
d ,

that is,

ut (t, x) = Lu(t, x), u(0, x) = f (x) ,

L being the generator of a semigroup. In addition, let E(t), t ≥ 0, be the inverse
subordinator process. Then we can consider the time changed random dynamical
systems

Y (t, x) = X(E(t), x), t ≥ 0, x ∈ R
d ,

where, without loss of generality, E(t), resp. Y (t; x), shortly refer to E(t, ·), resp. to
Y (t, · ; x) . Definining

v(t, x) := E[ f (Y (t, x)] ,

by the subordination formula, we have

v(t, x) =
∫ ∞

0
u(τ, x)Gt (τ ) dτ .

Considering the vector-function f : Rd → R defined as

f (x) = x ,
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From time to times 13

we have that the average trajectories of Y (t, x) read as follow

E[Y (t, x)] =
∫ ∞

0
X(τ, x)Gt (τ ) dτ .

Then considering the dynamical system of Section 2.4, namely X(t, x) = vt , we
obtain

E[Y (t, x)] = v

∫ ∞

0
τGt (τ ) dτ .

Therefore, we need to know the first moment of the density Gt . Considering the case
of the inverse α-stable subordinator stated in Example 2.1, we have

∫ ∞

0
τGt (τ ) dτ = Ctα .

Therefore, the asymptotic of the time changed trajectory will be slower (proportional
to tα) instead of initial linear vt motion. In a forthcoming paper we will study in detail
these results for other classes of inverse subordinators.
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