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Abstract Cancer cachexia is a debilitating consequence of
disease progression, characterised by the significant weight
loss through the catabolism of both skeletal muscle and adi-
pose tissue, leading to a reduced mobility and muscle func-
tion, fatigue, impaired quality of life and ultimately death
occurring with 25–30 % total body weight loss. Degradation
of proteins and decreased protein synthesis contributes to
catabolism of skeletal muscle, while the loss of adipose tissue
results mainly from enhanced lipolysis. These mechanisms
appear to be at least, in part, mediated by systemic inflamma-
tion. Exercise, by virtue of its anti-inflammatory effect, is
shown to be effective at counteracting the muscle catabolism
by increasing protein synthesis and reducing protein degrada-
tion, thus successfully improving muscle strength, physical
function and quality of life in patients with non-cancer-related
cachexia. Therefore, by implementing appropriate exercise
interventions upon diagnosis and at various stages of treat-
ment, it may be possible to reverse protein degradation, while
increasing protein synthesis and lean bodymass, thus counter-
acting the wasting seen in cachexia.
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1 Introduction

Cancer cachexia is a complex disorder characterised by a
progressive weight loss, with catabolism of adipose tissue
and skeletal muscle, affecting up to 50 % of cancer patients
[1, 2]. Although cachexia may affect all cancer suffers, it is
most commonly associated with those of the gastrointestinal
tract and lungs. Patients with pancreatic or gastric cancer
experience the highest frequency of weight loss, where
patients can lose up to 30 % of their pre-illness weight. In
contrast, patients with non-Hodgkin’s lymphoma, breast
cancer and sarcomas show the lowest frequency of weight
loss [2–4]. The exact reason for the frequent and profound
severity in certain cancers is not known; however, it is
thought that variations in tumour phenotype and host geno-
type may play a role in the development of cachexia [5].

The progressive weight loss seen in cachexia is an im-
portant prognostic factor for cancer survival, as greater
weight loss is shown to be associated with shorter survival
[6]. Cachexia accounts for 20 % cancer deaths occurring
with 25–30 % total body weight loss. Even small amounts
of weight loss can affect patients’ prognosis and treatment
outcomes. For example, weight loss in breast and gastroin-
testinal cancer patients is associated with a decreased re-
sponse to chemotherapy [7]. Lung cancer patients can
experience extensive loss of both adipose tissue and skeletal
muscle mass [8]. A 32 % weight loss from pre-illness stable
weight was found to be associated with 85 % reduction in
total body fat and 75 % loss of skeletal muscle. The marked
loss of skeletal muscle seen in cachexia adversely impacts
on the quality of life due to reduced mobility, fatigue and a
decreased physical function [2] and ultimately a shorter life
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span. Loss of respiratory muscle function will lead to death
from hypostatic pneumonia, and it is in fact respiratory failure
that is responsible for death in 48 % of cancer suffers [9].

Although cachexia is most commonly associated with ter-
minal stages of cancer, weight loss also commonly occurs in the
early stages of the disease, with 17/20 patients with pancreatic
cancer displaying a median weight loss of 14.2 % of pre-illness
weight at the time of diagnosis resulting in a significantly
reduced body mass index [8]. Studies also suggest that the rate
and amount of weight loss are important factors in diagnosis
and treatment of cancer, with poorer treatment outcomes being
noted in patients with weight loss. This may be attributable to
patients experiencing weight loss receiving significantly less
chemotherapy and developing greater toxicity to treatment [7].
Therefore, a case can be made for trying to attenuate or prevent
weight loss occurring upon diagnosis and tackling the effects of
cachexia in the early stages of disease.

Several molecular mechanisms have been proposed to
explain the pathways leading to the progressive muscle
wasting seen in cachexia.

2 Molecular mechanisms of cancer cachexia

2.1 Adipose tissue breakdown

Loss of adipose tissue seen in cachexia is primarily due to an
increase in lipolysis, as there is an increased turnover of
glycerol and free fatty acids (FFA) in cachectic cancer patients
compared with cancer patients with no weight loss or normal
subjects [2, 10]. Cancer patients experiencing weight loss
have been found to also have elevated levels of lipid mobilis-
ing factor (LMF), which is a tumour-induced catabolic factor
that acts directly on the adipose tissue with the release of free
fatty acids and glycerol [11, 12]. LMF binds with high affinity
with β3-adrenegic receptor [11]. It is suggested that β-
adrenergic activity plays an important role in the regulation
of lipolysis, energy expenditure and triglyceride–fatty acid
cycling in healthy populations [13]. In support of this, the
administration of specific β-adrenergic receptor blockers and
antagonists significantly reduces resting energy expenditure
and fat mobilisation, in murine [11] and human studies [14],
suggesting that these effects might, in part, be explained by
increased β-adrenergic activity .

In addition, cancer cachexia also leads to an increased
production of pro-inflammatory proteins that appear to me-
diate the wasting process via an increased local and systemic
inflammation. [15].

2.2 Inflammation

Cachexia in humans appears to be associated with elevated
levels of pro-inflammatory cytokines, tumour necrosis

factor alpha (TNF-α), interferon-γ (IFN-γ) and interleukins
(IL)-1 and IL-6 [16–18]. Being produced by both tumour
and host, these pro-inflammatory cytokines have frequently
been suggested as possible mediators in cachexia [4, 16,
19]. These are secreted by macrophages in reaction to in-
fection, cellular damage or production of reactive oxygen
species (ROS) and also by the tumour itself.

In addition to the loss of adipose tissue, cachexia also
induces changes in lipid composition and structure, with
increases in dimensions and alterations to ultrastructure of
adipocytes being observed in tumour-bearing rats [20]. Fur-
ther to this, adipocyte cell size and volume are positively
correlated with the production of serum TNF-α [21, 22], a
pro-inflammatory cytokine involved in many of the cachetic
processes. Further over-expression of pro-inflammatory
cytokines may, in turn, act in a synergistic manner, driving
mechanisms responsible for the progressive wasting and
furthering the cachetic state.

Experimental evidence also implicates TNF-α in the
activation of protein turnover, leading to the loss of skeletal
muscle [23–25]. However, in healthy young male subjects,
4 h infusion with recombinant human (rh) TNF-α did not
affect skeletal muscle protein turnover [26]. In contrast,
infusion with rhIL-6 for 3 h decreased muscle protein
turnover by around 50 %, suppressing both synthesis and
breakdown in healthy males. Despite that these findings
may contradict the commonly held belief that TNF-α is
the main mediator of cachexia, they are in accordance
with the suggestion that pro-inflammatory cytokines act
in a synergistic manner. It may also be plausible that
certain human physiological pathways may even change
as a result of long-term response, so it is still possible to
reconcile these apparently contradictory findings and
long-term exposure to excessive TNF-α may induce en-
hanced catabolism.

In addition to muscle protein breakdown, TNF-α has also
been implicated in the stimulation of lipolysis [27] and the
suppression of lipoprotein lipase (LPL). LPL is responsible
for the hydrolysis of fatty acids from plasma lipoproteins,
which are then transported into the adipocytes for synthesis
of triacylglycerols [28].

Other cytokines have also frequently been implicated in
the process of cachexia. Both IL-1 and 6 along with IFN-γ
have been shown to inhibit expression of LPL mRNA,
similar to TNF-α. Further to this, IL-1 and IFN-γ have been
shown to directly stimulate lipolysis [2]. IL-6 levels
have also been seen to correlate with the development
of cachexia, with its neutralizing antibodies attenuating
weight loss in cachexia [29]; similarly, the neutralizing
antibodies of IFN-γ have the ability to slow weight
loss. However, no significant relationship between levels
and weight loss have been observed in cachectic cancer
patients [30].
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2.3 Muscle metabolism

Substantial loss of skeletal muscle is seen in cachexia. This
is due mainly to an increase in whole body protein turn-over
arising from an increased muscle protein breakdown. This is
brought about by the degradation of muscle proteins via
various proteolytic pathways; at the same time, a decrease
in protein synthesis is observed [2, 4, 17]. However, the
prominence and importance of synthesis and degradation
vary between studies.

Decreases in protein synthesis may result from decreased
plasma insulin concentrations and insulin sensitivity of the
skeletal muscle, as metabolism of amino acids is in part
altered by this decrease in insulin sensitivity [4, 17]. Early
studies identified the role of insulin in promoting the move-
ment of amino acids into striated muscle [31, 32], promoting
protein synthesis and inhibiting degradation [33, 34]. There-
fore, a decrease in insulin sensitivity of the skeletal muscle
prevents the uptake of insulin and subsequently amino
acids, suppressing protein synthesis.

TNF-α also appears to play an important role in the
insulin resistance seen in cachexia, as insulin resistance
and increased TNF-α levels are noted in several clinical
syndromes with chronic inflammation [35, 36]. Insulin re-
sistance seen in obese and diabetic patients is associated
with increased TNF-α synthesis and secretion in the adipose
cells [37–39]. Although the exact mechanisms are not fully
known, TNF-α may be responsible for inhibiting the tyro-
sine phosphorylase activity of the insulin receptor leading to
impaired insulin-stimulated glucose uptake [40]. Decreased
protein synthesis may also result from decreased levels of
protein translation, amino acid supply or the balance of
amino acids required for protein synthesis [4]. Loss of
physical activity in cachectic patients may also significantly
affect the suppression of protein synthesis [4, 35]. Illness
often results in a period of physical inactivity and bed rest.
However, if prolonged with the absence of a stimulus
afforded from physical activity, the metabolic homeostasis
is compromised, resulting in the loss of lean muscle and
physical function [41].

2.4 Protein catabolism

There are three major proteolytic pathways responsible for
protein catabolism in skeletal muscle. The lysosomal system,
which is mainly responsible for the degradation of extracel-
lular proteins and cell receptors, has been implicated in
inducing muscle wasting in the early stages of lung cancer.
The increased mRNA levels of lysosomal protease cathep-
sin B presents an inverse relationship with body weight and
fat-free mass (FFM) [42].

The cytosolic calcium-activated system which includes
calpains I and II is mainly involved in tissue injury, necrosis

and autolysis [43]. It has been suggested that the calcium/
calpain pathway may act as an early, rate-limiting compo-
nent of the catabolic process, releasing myofilaments from
the sarcomere [44], later being catabolised by the third
pathway. However, neither of these two pathways are capa-
ble of degrading myofibrillar proteins [45], and it is the
myofibrillar proteins, actin and myosin, that are degraded
in cachectic muscles [46, 47].

The third and most important pathway is the ubiquitin–
proteasome pathway, which is dependent onATP to dissemble
and degrade muscle myofilaments [2, 43]. The bulk of intra-
cellular proteins are degraded via the ubiquitin–proteasome
pathway, in which proteins are marked for degradation via
covalent attachments of chains to ubiquitin molecules. In
gastric cancer patients experiencing an average of 6 % weight
loss, the levels of ubiquitin mRNAwere doubled, increasing
to three times higher than control subjects in a similar study of
patients suffering different types of cancers experiencing an
average weight loss of 13 % [48, 49]. The ubiquitin chain is
attached to the protein via a reaction sequence consisting of a
series of three enzymes, E1 ubiquitin activation enzyme, E2
the ubiquitin carrier protein and E3 which recognises the
ubiquitin protein ligase and catalyses the transfer of ubiquitin
from E2 intermediate. Proteolysis is then catalysed by the 26S
proteasome complex that degrades the marked proteins into
small peptides [50–52]. Again pro-inflammatory cytokines,
particularly TNF-α and IL-6, mediate this process.

The binding of TNF-α to its receptor site causes the
activation of TNF receptor-associated factor, which is a
ubiquitin ligase [15]. Similarly, both TNF-α and IL-6 induce
the expression of E3α-II (a member of the E3 enzymes),
which has been shown to be significantly induced at the
onset and during progression of muscle wasting [53].

TNF-α is also thought to stimulate muscle catabolism via
an NF–KappaB (Nf–kB)-dependent pathway, which
increases muscle conjugation to muscle proteins [35, 54].
This occurs via a cascade of processes in which TNF-α
binds to surface receptors, activating the Nf–kB pathway
leading to the degradation of its inhibitory protein I-kBa.
Nf–kB is then translocated to the monocyte nucleus where it
alters gene expression, stimulating protein catabolism in the
differentiated muscle cells [54, 55].

2.5 Oxidative stress

Oxidative stress due to increased production levels of ROS
has also gained much attention for its possible involvement
in cancer cachexia. Several possible mechanisms may in-
crease oxidative stress within cancer patients. Firstly, loss of
appetite, nausea and vomiting in cancer patients prevent the
normal supply of nutrients, such as glucose, proteins and
vitamins, eventually leading to the accumulation of ROS
[56]. Secondly, non-specific activation of the immune
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system and excessive production of pro-inflammatory cyto-
kines may in turn result in an in increase in ROS production
[56, 57]. Proteins are one of the major targets of oxidative
stress-derived effects on tissues [58]. In their study, Gomes-
Marcondes and Tisdale [59] have shown that mild oxidative
stress increases protein degradation through an increased ex-
pression of the major components of the aforementioned
ubiquitin–proteasome pathway. This link between ROS and
protein degradation has been noted in other studies utilising
both in vivo and in vitro models [60, 61].

3 Exercise: potential mechanisms for preventing
cachexia in cancer

Several treatment interventions aiming to reverse or restrict
the progression of cachexia, include the use of pharmaco-
logical interventions with anticachectic agents and the tar-
geting of inflammatory cytokines thought to mediate
cachexia, mainly TNF-α [62, 63]; however, results remain
equivocal. Anti-TNF treatment in patients with chronic in-
flammatory diseases experiencing cachexia reported no in-
crease in muscle mass despite improvements in
inflammatory markers, disease activity and physical func-
tion [64, 65]. Nutritional interventions, most notably, fish oil
in combination with energy-dense nutritional supplements
have been shown to increase lean body mass in cachectic
cancer patients in some studies but not in others [66, 67].

Exercise could potentially be a promising intervention
strategy for the prevention and treatment of cancer-related
cachexia. With the ability to increase FFM, muscle strength
and function, cardiovascular fitness and decrease fatigue,
ultimately resulting in an increased quality of life, exercise
may be an ideal strategy in helping to manage cancer-related
cachexia [68, 69]. There is evidence to suggest that forms of
exercise can be effective in slowing the progression of
cachexia through several molecular mechanisms and anti-
inflammatory effects [70–72]. In a recent review of cachexia
in rheumatoid arthritis [36], it was concluded that physical
exercise is the only therapeutic modality that has been shown
to increase muscle mass, and should therefore form a major
part of the management plan for early treatment in order to
reduce cachexia and the burdens associated with the disease.

3.1 Exercise and inflammation

Exercise has the ability to reduce inflammation, with repeat-
ed exercise attenuating the cellular response to inflammato-
ry stimuli and pro-inflammatory cytokines [73, 74].

Acute exercise is well known to induce an immune
response [75, 76], with greatly enhanced production of both
cytokines involved in an acute-phase inflammatory response
and those that limit the inflammatory response [75, 77–81].

However, the fact that the classic pro-inflammatory cyto-
kines, TNF-α and IL-1β, in general do not increase remark-
ably with exercise [70] indicates the cytokine cascade
induced by physical activity differs from that induced by
infections. The increase in circulating IL-6 in response to
exercise has consistently been reported in the literature
[78–84]. IL-6 is the first cytokine present in circulation
during exercise, increasing in an exponential fashion up to
100-fold in relation to exercise intensity, duration and mus-
cle mass recruited, declining in the post-exercise period [78,
83, 84]. Although often referred to as an inflammatory
cytokine, IL-6 does not directly induce inflammation and
has anti-inflammatory properties; therefore, it may be referred
to as inflammatory-responsive [75]. Exercise is also associat-
ed with increased levels of well-known anti-inflammatory
cytokine IL-10 and cytokine inhibitors, IL-1ra (IL-1 receptor
antagonist), sTNF-r1 and sTNF-r2 (TNF receptors) that work
as antagonists for inflammatory cytokines, blocking their
ability to signal and mediate the aforementioned pathways
[70, 77, 85]. Taken together, exercise evokes a primary in-
crease in IL-6, which in turn, is followed by an increase in IL-
ra and IL-10 [70, 86]. This anti inflammatory response to
exercise may have the ability to reduce systemic inflammation
and inflammatory cytokines, thus attenuating their role in
mediating the wasting process in cachexia.

Evidence suggests that IL-6 mRNA is upregulated in
skeletal muscle [79, 83, 87, 88], and the rate of transcription
is significantly enhanced by exercise [89]. In addition to
this, it has been shown that IL-6 protein is expressed in
contracting muscle fibres and is released from skeletal mus-
cle during exercise [78]. Strenuous exercise associated with
eccentric muscle contractions resulting in muscle damage
have repeatedly been associated with the immune response
seen during exercise [79, 90, 91]. However, even moderate-
intensity concentric exercise has a significant effect on
muscle-derived IL-6. Performing 3 h of two-legged dynamic
knee-extensor exercise at 50 % of their individual maximal
power output resulted in only a moderate increase in heart rate
but induced a 16-fold increase in IL-6 mRNA, 20-fold in-
crease in plasma-IL-6 and a marked increase in IL-6 released
from the working muscle in young healthy individuals [92].
Similarly, when the same model was applied to healthy un-
trained elderly individuals, greater amounts of IL-6 were
released from the exercising muscles at the same relative
intensity [93]. This suggests that cellular damage may not be
responsible for the stimulation of cytokine production during
exercise and that other metabolic and neuroendocrine factors
may also contribute, as opposed to an immune response [94].
Further support for this comes from studies demonstrating that
IL-6 mRNA in monocytes, the blood mononuclear cells re-
sponsible for the increase in plasma IL-6 during sepsis and
other diseases, did not increase as a result of exercise [95, 96].
In addition, studies using flow cytometric techniques have
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demonstrated that the number, percentage and mean fluores-
cence intensity of monocytes staining positive for IL-6 do not
change during cycling [97] and decrease during running [98].
These findings imply that the IL-6 response to exercise may
not involve immune cell activation.

Studies suggest that IL-6 has anti-inflammatory effects,
exerting inhibitory effects on pro-inflammatory cytokine
(TNF-α and IL-1) production. IL-6 has a suppressive effect
on both TNF-α and IL-1β production induced by the lipo-
polysaccharide [99]. Furthermore, elevated IL-6 infusion
and exercise has been seen to attenuate endotoxin-induced
increases in TNF-α in humans [74]. The fact that TNF-α
levels are markedly elevated in anti-IL-6-treated mice [100,
101] adds further support that circulating IL-6 is involved in
the regulation of TNF-α. Another anti-inflammatory IL-6
function is the stimulation of IL-1ra and IL-10 [86] anti-
inflammatory cytokines, in addition to the release of soluble
TNF-α receptors, sTNF-r1 and sTNF-r2 [77].

The appearance of circulating IL-10 and IL-1ra
following exercise contributes to mediating the anti-
inflammatory effect of exercise. IL-10 is the most impor-
tant anti-inflammatory cytokine found within the human
immune response [102], inhibiting the production of in-
flammatory cytokines IL-1α, IL-1β and TNF-α [102–104]
through mRNA degradation of their corresponding genes
[105]. Whilst IL-10 suppresses macrophage activities,
IL-1ra inhibits signalling transduction through IL-1 recep-
tor complex [106]. IL-1ra is part of the IL-1 family,
binding to the IL-1 receptor sites at equal or greater
affinity, blocking the action of IL-1α and IL-1β through
competitive inhibition [102, 107]. In a similar fashion,
TNF-soluble receptors (sTNF-r1 and sTNF-r2) bind to
the molecule blocking its action [77, 108]. In addition to
this, administration of sTNFr1 receptor has been seen to
reduce the adverse effects of exaggerated TNF-α produc-
tion observed in sepsis [108].

3.2 Exercise and inflammation in the adipose tissue

The progressive loss of adipose tissue seen with cachexia is
predominantly due to an increase in lipolysis [2, 4] stimu-
lated by TNF-α [27, 109]. Infusion of TNF-α increases
whole-body lipolysis by 40 %, with a concomitant increase
in FFA clearance [110]. Exercise has the ability to attenuate
the action of TNF-α through increases in circulating anti-
inflammatory cytokines as discussed above. In addition to
this, the adipose tissue exhibits an altered inflammatory
response to exercise. An 8-week endurance training
programme at 60 % of VO2max, resulted in an increase of
both IL-10 and TNF-α in the white adipose tissue of rats,
with the principal effect being a large increase of IL-10 in
the mesenteric depot, causing a change in the IL-10/TNF-α
ratio, indicating an improved prognosis [72]. The IL-10/

TNF-α ratio has been adopted as an indicator of an individ-
ual’s inflammatory status and disease-related morbidity, with
lower values indicating a poor prognosis [111, 112]. Although
both IL-10 and TNF-α increased, it is reasonable to speculate
that the increase in TNF-α is related to the lipidmetabolism by
skeletal muscle during exercise, by inducing lipolysis [113].
Based on the evidence, it is plausible to think that the increase
in IL-10 in response to endurance exercise seen in the study by
Lira et al. [72] blocks the possible effects of TNF-α, including
the stimulation of further lipolysis, with the increase in IL-10/
TNF-α ratio adding further support to an anti-inflammatory
environment.

3.3 Oxidative stress and exercise

ROS production may play an important role in the debili-
tating effects of cancer, directing muscle cells into a cata-
bolic state [58, 59, 61]. On the other hand, exercise is well
known to produce an anti-oxidative effect, through enhanc-
ing antioxidant enzyme activity [114–119]. Repeated exer-
cise enhances the enzymes super-oxide dismutase (SOD)
and glutathione peroxidase (GPx) activities in skeletal mus-
cle [116, 117, 120], whereas mitochondrial Mn-SOD and
catalase are induced in the lungs [121] and diaphragm [122,
123]. These antioxidative enzymes play an important role in
protecting against the cell damage from ROS, with markers
of damage being reduced following exercise [114].

Numerous non-enzymatic antioxidants exist in muscle
cells, which offer protection from ROS. Glutathione
(GSH) is one of the most important nonenzymatic antiox-
idants in muscle fibres. GSH is a tripeptide primarily syn-
thesised in the liver and transported to tissues via circulation
[124], with the higher concentrations being found in those
tissues with high exposure to oxidants. Similarly, GSH
concentration differs across the skeletal muscle fibres, with
the highest concentrations being found in type I fibres [125].
Studies indicate that GSH increases in response to endur-
ance exercise [125–127], which is most likely due to an
increase in γ-glutamylcysteine, the rate-limiting enzyme for
GSH biosynthesis [127, 128]. Exercise also appears to have
a positive effect on other non-enzymatic antioxidants. Both
α-lipoic acid and bilirubin, which appear to have strong
anti-oxidant capabilities [129, 130], are increased during
exercise [131–133]; however, their long-term exercise-
induced effects still remain unknown [134, 135].

3.4 Exercise: molecular mechanisms of stimulating protein
synthesis

3.4.1 GLUT-4, insulin sensitivity and exercise

Insulin sensitivity seen in cachectic patients has been impli-
cated in the abnormal protein metabolism [38, 136]. The
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insulin resistance associated with cancer is not necessarily
associated with malnutrition or stage of the disease, as
normal glucose uptake is restored following tumour removal
[137], suggesting that it may be tumour-induced. TNF-α has
been proposed as a potential mediator in insulin resistance in
cancer [37–39]; however, the aforementioned exercise-
induced anti-inflammatory response may go some way to
blocking the effects of TNF-α in mediating insulin sensitiv-
ity. In addition, exercise is also well known to enhance
insulin sensitivity under non-inflammatory or cachectic con-
ditions [138–142], indicating other mechanisms exist aside
from the anti-inflammatory responses, to increase insulin
sensitivity.

GLUT-4 are the glucose transport proteins responsible for
mediating glucose transport into the skeletal muscle, with
exercise enhancing their expression [143–145] and translo-
cation [146–148]. Under normal conditions, these molecules
reside in membrane vesicles inside the muscle cell; howev-
er, in response to insulin or muscle contraction, the GLUT-4
molecule translocates to the cell membrane where it inserts
to increase glucose transport [149]. Several changes that
occur during exercise appear to activate transcription factors
to “turn on” the muscle GLUT-4 gene.

One of these changes is the decline in creatine phosphate
(PCr) during exercise. An inverse correlation between
GLUT-4 protein and high-energy phosphate levels has been
noted in electronically stimulated muscles [150]. Further-
more, GLUT-4 protein was seen to be increased in rats with
depleted PCr, again indicating a relationship [151]. AMP-
activated protein kinase (AMPK) also stimulates GLUT-4
transcription. Activated during exercise, AMPK phosphor-
ylates key target proteins that control flux through various
metabolic pathways. Furthermore, it has been found to be
dependent on two metabolic ratios AMP/ATP and creatine/
PCr [152]. Activation of AMPK through injection of the
adenosine analog 5-amino-imidazole-4-carboxamide ribo-
nucleoside (AICAR) resulted in increased GLUT-4 expres-
sion fourfold in epitrochlearis muscles and 2.4-fold in
gastrocnemius/plantaris muscles of rats [153]. Similarly,
incubation of epitrochleris muscles with AICAR in vitro
increased GLUT-4 expression [154].

Myocyte enhancer factor-2 (MEF2) is a transcription
factor involved in intracellular signalling pathways controlling
myogenesis and muscle hypertrophy [155], in addition to the
exercise response and regulation of GLUT-4 [156–158].
MEF2 is activated through the calcium-dependent signalling
pathway, in which calcineurin is activated by changes in
intracellular calcium content (such as the increase seen with
muscle contractions) [159, 160]. These changes enhance the
number of GLUT-4 transporters that migrate to the cell mem-
brane in response to insulin or muscle contraction, subse-
quently enhancing the transport of glucose and amino acids.
This increase in transport of glucose and amino acids

through enhanced insulin sensitivity would help to partial-
ly reverse the muscle wasting process through increasing
substrate concentration.

3.4.2 Muscle metabolism, protein synthesis and resistance
exercise

Resistance exercise is a potent stimulant for protein synthe-
sis resulting in increases in muscle fibre cross-sectional area,
particularly hypertrophy of myofibrillar proteins, myosin
and actin [161, 162], stimulating both myofibrillar and
mitochondrial protein synthesis by 67 % and 69 %, respec-
tively [163]. Early studies suggested the possibility that
muscle protein synthesis may be suppressed during acute
bouts of exercise [164, 165]. However, the restriction of
muscle protein synthesis that occurs during exercise is rapidly
reversed following exercise recovery, a very consistent find-
ing in the literature [166–171]. For example, muscle protein
synthesis remained elevated for 72 h following 1 h of one-
legged kicking exercise at 67 % of the individuals maximum
workload [166] suggesting that, even moderate-intensity re-
sistance exercise is effective at increasing protein synthesis.

The molecular regulation of muscle protein synthesis is
complex and likely involves several interconnected cellular
signalling pathways. The synthesis of protein is dependent
on the transcription of DNA into mRNA, and the translation
of mRNA into protein. A key regulator of this process
appears to be insulin-like growth factor-1 (IGF-1) as induc-
tion of hypertrophy in adult skeletal muscle is accompanied
by its increased expression [172–175]. Resistance exercise
has a substantial effect on the expression of IGF-1 with
increased IGF-1 mRNA concentrations being noted 48 h
following exercise [176]. Furthermore, an increase of ap-
proximately 20 % has been noted in IGF-1 concentration
during the first 13 weeks of a resistance training programme
[177]. These reports suggest a relationship between stimu-
lation of skeletal muscle cells through resistance training,
IGF-1 expression and hypertrophy. The binding of IGF-1 to
its receptor triggers the activation of several intracellular
kinases, most notably dylinositol–3-kinase (PI3K), which in
turn phosphorylates the membrane phospholipid phosphati-
dylinsitol–4,5-bis-phosphate, to phosphatidylinsitol–3,4,5-tri-
phosphate, creating a lipid binding site on the cell membrane
for a serine/threonine kinase known as Akt [178]. Akt is
responsible for mediating cell growth and survival in a variety
of tissues in response to IGF-1 [179–182] through its direct
and indirect targets, glycogen synthase kinase 3 (GSK3),
mammalian target of rapamycin (mTOR) and 70-kDa ribo-
somal protein S6 kinase (p70sk6), which are key regulators
involved in protein translation and synthesis [183–186].

Resistance exercise leads to the activation of mammalian
target of mTOR and its various kinases during immediate
post-exercise recovery period [184, 187–189]. Furthermore,
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inhibition of this pathway through rapamycin, a specific
inhibitor of mTOR, completely blocks muscle hypertrophy
under growth conditions with several downstream compo-
nents of the mTORC1 signalling pathway also being blunted
or blocked by rapamycin [188], directly linking this path-
way with muscle hypertrophy. Mounting evidence also
implicates the role of extracellular-related kinase (ERK).
ERK regulates the activity of several nuclear transcription
factors in response to both diverse systemic stimuli, such as
insulin and growth factors [190, 191] and local stressors,
such as muscle contraction [49, 192]. ERK may also mod-
ulate mTOR activity through phosphorylating and inactivat-
ing tuberin–tuberous sclerosis complex (TSC2), a negative
regulator of mTOR, inhibiting its ability to impair mTOR
signalling [193]. Maximal eccentric muscle contractions
activate 70-kDa ribosomal protein S6 kinase (p70sk6)
[194], a downstream target of mTOR [192]. The degree of
p70sk6 phosphorylation following a single bout of resistance
exercise is strongly associated with long-term increase in
muscle mass [195]. This was later reiterated in a study by
Terzis et al. [196] who found that phosphorylation of p70sk6

in response to a single session of resistance exercise is
strongly correlated to with an increase in FFM, squat 1-
repetition maximum and hypertrophy of type II skeletal
muscle fibres in response to a 14-week resistance training
programme, suggesting that p70sk6 phosphorylation is in-
volved in the signalling events leading to an increase in
protein accretion in skeletal muscle following resistance
exercise. Together, these findings highlight the potency of
resistance exercise in stimulating protein synthesis, imply-
ing contractile activity may regulate muscle protein synthe-
sis through the regulation and initiation of translation
through several independent, but convergent pathways.

Figure 1 summarises the above-mentioned pathways and
depicts the potential of aerobic and resistance exercises in
attenuating the imbalance in protein catabolism and synthe-
sis seen in cancer cachexia.

3.5 Resistance training in cancer

Several studies have investigated the effectiveness of resis-
tance training and its outcomes in cancer patients [197–204].
Of these studies, two investigated the effect of resistance
training in breast cancer patients receiving adjuvant therapy
[201, 202], in which women in the resistance training groups
had a significant increase in lean body mass. In addition to
this, the study by Courneya et al. [201] also reported increased
chemotherapy completion rate. However, the fact that
breast cancer is not typically associated with cachexia
makes it difficult to generalise the results of these studies
to cachectic patients.

Other studies observed the effects of resistance training in
patients with prostate cancer receiving androgen deprivation
therapy [198–200] and radiation therapy [205]. In these
studies, resistance training was seen to prevent loss of
muscle mass and strength seen in patients without resistance
training [198, 199], increase serum growth hormone [200],
reduce fatigue and improve quality of life [205]. Similar
results were found in the Quist et al. [204] study, which
investigated the application of high-intensity resistance
training in cancer patients undergoing chemotherapy, report-
ing an average increase in muscle strength of 41.3 % and a
significant increase in body weight of 1 %. Taken together,
the aforementioned studies yield promising results for the
application of resistance training in cancer patients for the
maintenance of lean body mass, muscle strength and the
reduction of fatigue associated with cancer treatment. How-
ever, because of the small number of existing clinical trials,
it is difficult to make conclusions on the effects of resistance
training in cachetic cancer patients.

3.6 Resistance training in muscle wasting disorders

Although little is known about the aforementioned intracel-
lular signalling pathways that promote muscle protein
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synthesis in conditions of muscle wasting, evidence sug-
gests that resistance training can increase muscle strength
and lean body mass in muscle wasting disorders. The majority
of research in this area has focused on aging populations
experiencing sarcopenia, with resistance training being seen
to increase muscle mass and strength in older adults and frail
elderly individuals [206–209]. In addition to these adapta-
tions, resistance training is also associated with increased
functional performance of daily activities [210–212].

The potential of resistance exercise to increase muscle
mass, strength and improve functional improvement has
been extended to other muscle wasting disorders. A 12-
week progressive resistance training programme increased
muscle fibre size (type I and II) and improved muscle
strength by 25–30 % in patients with renal disease. Similar-
ly, Cheema et al. [213] reported significant improvements in
muscle attenuation, strength, mid-thigh and mid-arm cir-
cumference, and body weight following a 12-week progres-
sive resistance training programme during haemodialysis
treatment. Resistance training has also been applied to try
and counteract HIV-associated muscle wasting. Following
8 weeks of progressive resistance training, improvements in
muscle strength of 60 % and lean body mass of 5 % were
reported in men and women experiencing HIV-associated
muscle wasting [214]. Similar results were found for women
with HIV, following a 16-week supervised home exercise
programme [215] and for men with HIV, seeing increases in
muscle strength of 23–38 % on various exercises following a
16-week programme [216]. Although there is little evidence
for the support of resistance training in cancer cachexia, the
positive effects on lean muscle mass, strength and muscle
function in other populations experiencing muscle wasting
indicates that resistance training is an effective intervention
for the attenuation of progressive muscle wasting.

4 Conclusions

The loss of both adipose tissue and skeletal muscle seen in
cancer cachexia involves multiple independent, yet conver-
gent molecular pathways, the majority of which appear to
be, at least, partially mediated by chronic systemic inflam-
mation and pro-inflammatory cytokines. TNF-α appears to
work in a synergistic manner to enhance catabolism and has
been implicated in the mechanisms of protein degradation
and reduction in protein synthesis, through insulin resis-
tance. Pro-inflammatory cytokines also appear to mediate
the loss of adipose tissue seen in cachexia, through TNF-α-
induced lipolysis. Exercise has been shown to have anti-
inflammatory properties, through the upregulation of anti-
inflammatory cytokines in skeletal muscle and adipose tis-
sue, with the ability to block the actions of TNF-α and its
ability to mediate the aforementioned mechanisms. In

addition to its anti-inflammatory effects, exercise also
enhances insulin sensitivity through interlinked molecular
mechanisms, enhancing skeletal muscle metabolism. Resis-
tance exercise has also been shown to be a potent stimulant
for increasing protein synthesis and has been shown to
reverse skeletal muscle wasting in other diseases, increasing
muscle strength and lean body mass.

Therefore, regular exercise and physical activity may at-
tenuate, and possibly reverse, the adverse effects of cancer
cachexia through suppression of inflammatory burden that
appears to drive the wasting process and enhancement of
insulin sensitivity, protein synthesis and antioxidant enzymes.
However, the literature surrounding the aforementioned
mechanisms in cancer cachexia is scarce; future research must
focus on the effects of exercise at attenuating wasting associ-
ated with cachexia and the molecular mechanisms involved.
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