Skip to main content
Log in

Perspective of Electrochromic Double Layer Towards Enrichment of Electrochromism: A Review

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Electrochromism is the exhibition of reversible optical property changes by certain materials upon administration of voltage across it. Tungsten oxide (WO3) finds a diverse range of applications because of its exceptional electrochromism. Amidst all applications, an electrochromic device (ECD) can be considered the most prominent application due to energy saving perspective. Although, WO3 itself has been noticed as an efficient electrochromic layer for EDCs; however, there exists a lot of space and ideas to enhance the electrochromism and hence the efficiency of an ECD. Recently, scientists are paying close attention to hybrid or composite films such as TiO2/WO3 and TiO2/V2O5. Such hybrid films are known as electrochromic double layer (ECDL). This review article strives to deepen our understanding of ECDL and assess their feasibility in the enrichment of electrochromism in ECDs by replacing a single electrochromic layer with an ECDL toward an energy-saving regime.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Confidential.

References

  1. A.V. Shchegolkov, S.H. Jang, A.V. Shchegolkov, Y.V. Rodionov, A.O. Sukhova, M.S. Lipkin, Nanomaterials 11, (2021)

  2. C.G. Granqvist, in Handbook of Inorganic Electrochromic Materials (Elsevier, 1995), pp. 1–15

  3. M.A. Habib, Electrochemistry in Transition 51 (1992)

  4. S. Papaefthimiou, G. Leftheriotis, P. Yianoulis, Solid State Ion. 139, 135 (2001)

    Article  Google Scholar 

  5. N.M. Vuong, D. Kim, H. Kim, J. Mater. Chem. C. 1, 3399 (2013)

    Article  Google Scholar 

  6. Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang, S. Y. Guo 56, 1208 (2011)

    Google Scholar 

  7. D.S. Dalavi, R.S. Devan, R.S. Patil, Y.R. Ma, M.G. Kang, J.H. Kim, P.S. Patil, J. Mater. Chem. A. 1, 1035 (2013)

    Article  Google Scholar 

  8. J. Gutpa, H. Shaik, K.N. Kumar, S. Abdul, Mater. Sci. Semicond. Proc. 143(2022)

    Article  Google Scholar 

  9. J. Jensen, M. Hösel, I. Kim, J. Yu, J. Jo, F.C. Krebs, 1228 (2014)

  10. G. Cai, J. Wang, P.S. Lee, (2016)

  11. Y. Alesanco, A. Viñuales, J. Rodriguez, R. Tena-Zaera, Materials 11, 1 (2018)

    Article  Google Scholar 

  12. S.Y. Kao, C.W. Kung, H.W. Chen, C.W. Hu, K.C. Ho, Sol. Energy Mater. Sol. Cells 145, 61 (2016)

    Article  Google Scholar 

  13. C. Pozo-Gonzalo, M. Salsamendi, A. Viñuales, J.A. Pomposo, H.J. Grande, Sol. Energy Mater. Sol. Cells 93, 2093 (2009)

    Article  Google Scholar 

  14. M.A. De Paoli, G. Casalbore-Miceli, E.M. Girotto, W.A. Gazotti, Electrochim. Acta 44, 2983 (1999)

    Article  Google Scholar 

  15. C.G. Granqvist, R.A. Buhrman, J. Appl. Phys. 47, 2200 (1976)

    Article  ADS  Google Scholar 

  16. V. Rai, J. Deng, C.S. Toh, Talanta 98, 112 (2012)

    Article  Google Scholar 

  17. B.S. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, A. C. Dillon 80401, 763 (2006)

    Google Scholar 

  18. G.A. Niklasson, C.G. Granqvist, J. Mater. Chem. 17, 127 (2007)

    Article  Google Scholar 

  19. Z. Tong, J. Hao, K. Zhang, J. Zhao, B.L. Su, Y. Li, J. Mater. Chem. C. 2, 3651 (2014)

    Article  Google Scholar 

  20. R. Banasz, M. Wałęsa-Chorab, Coord. Chem. Rev. 389, 1 (2019)

    Article  Google Scholar 

  21. N.O. Laschuk, I.I. Ebralidze, J. Poisson, J.G. Egan, S. Quaranta, J.T.S. Allan, H. Cusden, F. Gaspari, F.Y. Naumkin, E.B. Easton, O.V. Zenkina, ACS Appl. Mater. Interfaces 10, 35334 (2018)

    Article  Google Scholar 

  22. Y. Yamada, S. Bao, K. Tajima, M. Okada, K. Yoshimura, Appl. Phys. Lett. 94, 2007 (2009)

    Google Scholar 

  23. V. Rai, R.S. Singh, D.J. Blackwood, D. Zhili, Adv. Eng. Mater. 22, 1 (2020)

    Article  Google Scholar 

  24. D.R. Rosseinsky, R.J. Mortimer, Adv. Mater. 13, 783 (2001)

    Article  Google Scholar 

  25. M. Gicevicius, G. Bagdziunas, Y. Abduloglu, A. Ramanaviciene, O. Gumusay, M. Ak, T. Soganci, A. Ramanavicius, ChemPhysChem 19, 2735 (2018)

    Article  Google Scholar 

  26. I. Schwendeman, R. Hickman, G. Sönmez, P. Schottland, K. Zong, D.M. Welsh, J.R. Reynolds, Chem. Mater. 14, 3118 (2002)

    Article  Google Scholar 

  27. C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, ACS Nano 8, 316 (2014)

    Article  Google Scholar 

  28. H. Wang, M. Barrett, B. Duane, J. Gu, F. Zenhausern, Mater. Sci. Eng. B. Solid-State Mater. Adv. Technol. 228, 167 (2018)

    Article  Google Scholar 

  29. A.L.S. Eh, A.W.M. Tan, X. Cheng, S. Magdassi, P.S. Lee, Energ. Technol. 6, 33 (2018)

    Article  Google Scholar 

  30. A. Kraft, ChemTexts 5, 0 (2019)

  31. A. Chaudhary, D.K. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, R. Kumar, ACS Appl. Electron. Mater. 2, 1768 (2020)

    Article  Google Scholar 

  32. C.S. Ah, J. Song, S.M. Cho, T.Y. Kim, H.N. Kim, J.Y. Oh, H.Y. Chu, H. Ryu, Bull. Korean Chem. Soc. 36, 548 (2015)

    Article  Google Scholar 

  33. L. Yang, D. Ge, J. Zhao, Y. Ding, X. Kong, Y. Li, Sol. Energy Mater. Sol. Cells 100, 251 (2012)

    Article  Google Scholar 

  34. J. Gupta, H. Shaik, K. Naveen Kumar, (n.d.)

  35. W.J. Lee, Y.K. Fang, J.J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, F.C. Ho, J. Electron. Mater. 29, 183 (2000)

    Article  ADS  Google Scholar 

  36. R.B. Goldner, T.E. Haas, F.O. Arntz, S. Slaven, K.K. Wong, B. Wilkens, C. Shepard, W. Lanford, Appl. Phys. Lett. 62, 1699 (1993)

    Article  ADS  Google Scholar 

  37. P.V. Ashrit, K. Benaissa, G. Bader, F.E. Girouard, V. Van Truong, Solid State Ion. 59, 47 (1993)

    Article  Google Scholar 

  38. H.S. Witham, P. Chindaudom, I. An, R.W. Collins, R. Messier, K. Vedam, J. Vac. Sci. Technol. A. Vac. Surf. Films 11, 1881 (1993)

    Article  Google Scholar 

  39. H.P.D.P.S. Patil, 323 (2009)

  40. H. Shim, J. Won, Y. Sung, W. Bae, Sol. Energy Mater. Sol. Cells 93, 2062 (2009)

    Article  Google Scholar 

  41. T. Sumida, Y. Wada, T. Kitamura, S. Y. Ã, 180 (2002)

  42. T. Xu, E. C. Walter, A. Agrawal, C. Bohn, J. Velmurugan, W. Zhu, (n.d.)

  43. Y. Chiu, M. Pai, G. Liou, (2020)

  44. Y. Arslan, C. Gündo, Y. Ergün, L. Toppare 595, 61 (2015)

    Google Scholar 

  45. N.L. Heda, B.L. Ahuja, Comput. Mater. Sci. 72, 49 (2013)

    Article  Google Scholar 

  46. S. Sallard, T. Brezesinski, B.M. Smarsly, J. Phys. Chem. C 111, 7200 (2007)

    Article  Google Scholar 

  47. T. Maruyama, T. Kanagawa, J. Electrochem. Soc. 141, 2868 (1994)

    Article  ADS  Google Scholar 

  48. M. Deepa, A.K. Srivastava, K.N. Sood, S.A. Agnihotry, Nanotechnology 17, 2625 (2006)

    Article  ADS  Google Scholar 

  49. M. Giannouli, G. Leftheriotis, Sol. Energy Mater. Sol. Cells 95, 1932 (2011)

    Article  Google Scholar 

  50. R. Solarska, C. Santato, C. Jorand-Sartoretti, M. Ulmann, J. Augustynski, J. Appl. Electrochem. 35, 715 (2005)

    Article  Google Scholar 

  51. W.L. Kwong, N. Savvides, C.C. Sorrell, Electrochim. Acta 75, 371 (2012)

    Article  Google Scholar 

  52. A. Antonaia, M.L. Addonizio, C. Minarini, T. Polichetti, M. Vittori-Antisari, Electrochim. Acta 46, 2221 (2001)

    Article  Google Scholar 

  53. G.J. Fang, K.L. Yao, Z.L. Liu, Thin Solid Films 394, 63 (2001)

    Article  ADS  Google Scholar 

  54. C. Xu, L. Liu, S.E. Legenski, D. Ning, M. Taya, J. Mater. Res. 19, 2072 (2004)

    Article  ADS  Google Scholar 

  55. A. Pawlicka, D.C. Dragunski, K.V. Guimarães, C.O. Avellaneda, Mol. Cryst. Liq. Cryst. 416, 37 (2004)

    Article  Google Scholar 

  56. S. Heusing, M.A. Aegerter, Sol-Gel Coatings For Electrochromic Devices (n.d.)

  57. J.E. Jang, S.N. Cha, J.M. Lee, J.J. Kim, G.A.J. Amaratunga, J.E. Jung, Opt. Lett. 37, 235 (2012)

    Article  ADS  Google Scholar 

  58. E. Redel, J. Mlynarski, J. Moir, A. Jelle, C. Huai, S. Petrov, M.G. Helander, F.C. Peiris, G. Von Freymann, G.A. Ozin, Adv. Mater. 24, 1 (2012)

    Article  Google Scholar 

  59. H. Qu, X. Zhang, L. Pan, Z. Gao, L. Ma, J. Zhao, Y. Li, Electrochim. Acta 148, 46 (2014)

    Article  Google Scholar 

  60. A.G.V. Reddy, K.N. Kumar, H. Shaik, R.I. Jafri, R. Naik, B.H. Doreswamy, Int. J. Eng. Trends Technol. 70, 1 (2022)

    Google Scholar 

  61. A.K. Haridas, B. Gangaja, P. Srikrishnarka, G.E. Unni, A.S. Nair, S.V. Nair, D. Santhanagopalan, J. Power. Sources 345, 50 (2017)

    Article  ADS  Google Scholar 

  62. S. Liu, X. Zhang, P. Sun, C. Wang, Y. Wei, Y. Liu, J. Mater. Chem. C. 2, 7891 (2014)

    Article  Google Scholar 

  63. P. Ashrit, Introduction to Transition Metal Oxides and Thin Films (2017)

  64. J.H. Yu, H. Yang, R.H. Jung, J.W. Lee, J.H. Boo, Thin Solid Films 664, 1 (2018)

    Article  ADS  Google Scholar 

  65. Y.Y. Song, Z. Da Gao, J.H. Wang, X.H. Xia, R. Lynch, Adv. Func. Mater. 21, 1941 (2011)

    Article  Google Scholar 

  66. K.R. Reyes-Gil, Z.D. Stephens, V. Stavila, D.B. Robinson, ACS Appl. Mater. Interfaces 7, 2202 (2015)

    Article  Google Scholar 

  67. H. Ling, L.P. Yeo, Z. Wang, X. Li, D. Mandler, S. Magdassi, A.I.Y. Tok, J. Mater. Chem. C. 6, 8488 (2018)

    Article  Google Scholar 

  68. K. Doblhofer, Soft Mater. 6, 156 (2008)

    Article  Google Scholar 

  69. N.K. Shrestha, M. Yang, P. Schmuki, Electrochem. Solid-State Lett. 13, 128 (2010)

    Article  Google Scholar 

  70. D.C. Cronemeyer, Phys. Rev. 113, 1222 (1959)

    Article  ADS  Google Scholar 

  71. M.J. Neto, R. Leones, F. Sentanin, J.M.S.S. Esperança, M.J. Medeiros, A. Pawlicka, M.M. Silva, ECS Meeting Abstracts MA201201, 273 (2012)

  72. E. Eren, M.F. Aydın, A.U. Oksuz, J. Solid State Electrochem. 24, 1057 (2020)

    Article  Google Scholar 

  73. Y. Zhang, L. Zhao, J. Mater. Sci. Mater. Electron. 33, 20802 (2022)

    Article  Google Scholar 

  74. Y. Kim, S. Cha, J.H. Kim, J.W. Oh, J.M. Nam, Nanoscale 13, 9541 (2021)

    Article  Google Scholar 

  75. A.H.B. Dourado, 789 (2022)

  76. G. Definition, G.M. Formulation, C. Podcast, 1 (2006)

  77. T.R. Ferguson, M.Z. Bazant, Electrochim. Acta 146, 89 (2014)

    Article  Google Scholar 

  78. M. Bazant, Spring 1 (2014)

  79. P. Monk, R. Mortimer, D. Rosseinsky, Electrochrom. Electrochrom. Dev. 1 (2009)

  80. K. Bohinc, A. Shrestha, M. Brumen, S. May, Phys. Rev. E. - Stat. Nonlin. Soft Matter. Phys. 85, 1 (2012)

    Google Scholar 

  81. C.J. Stein, J.M. Herbert, M. Head-Gordon, J. Chem. Phys. 151, (2019)

  82. K. Ge, H. Shao, E. Raymundo-Piñero, P.L. Taberna, P. Simon, Nat. Commun. 15, (2024)

  83. Y. Ren, X. Zhou, Q. Wang, G. Zhao, J. Sol-Gel Sci. Technol. 85, 732 (2018)

    Article  Google Scholar 

  84. C.W. Lim, M.J. Hülsey, N. Yan, JACS Au 1, 536 (2021)

    Article  Google Scholar 

  85. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 99, 1 (2012)

    Article  Google Scholar 

  86. B. Tandon, H.C. Lu, D.J. Milliron, J. Phys. Chem. C 126, 9228 (2022)

    Article  Google Scholar 

  87. D. Di Yao, M.R. Field, A.P. O’Mullane, K. Kalantar-Zadeh, J.Z. Ou, Nanoscale 5, 10353 (2013)

    Article  Google Scholar 

  88. Y.S. Zou, Y.C. Zhang, D. Lou, H.P. Wang, L. Gu, Y.H. Dong, K. Dou, X.F. Song, H.B. Zeng, J. Alloy. Compd. 583, 465 (2014)

    Article  Google Scholar 

  89. A.E. Aliev, H.W. Shin, Solid State Ionics 154–155, 425 (2002)

    Article  Google Scholar 

  90. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 45, 921 (1999)

    Article  Google Scholar 

  91. M. Aez, N.T. Nolan, S.C.P. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B 125, 331 (2012)

    Article  Google Scholar 

  92. Y. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, 16154 (2008)

  93. A. Ghicov, S.P. Albu, J.M. Macak, P. Schmuki, Small 4, 1063 (2008)

    Article  Google Scholar 

  94. T. Ledwith, Adv. Mater. 8, 700 (1996)

    Article  Google Scholar 

  95. D.C. Cronemeyer, Phys. Rev. 87, 876 (1952)

    Article  ADS  Google Scholar 

  96. J. Gupta, H. Shaik, K.N. Kumar, (2021)

  97. R. Messier, MRS Bull. 13, 18 (1988)

    Article  Google Scholar 

  98. M. Ganaie, M. Zulfequar, Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology (2020)

  99. D.S. Corrêa, J.C.O. Pazinato, M.A. De Freitas, L.S. Dorneles, C. Radtke, I.T.S. Garcia, J. Braz. Chem. Soc. 25, 822 (2014)

    Google Scholar 

  100. V. Prabhakar, A.P, Int. J. Eng. Tech. 3, 245 (2014)

  101. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, Z.L. Wang, Appl. Phys. Lett. 88, 28 (2006)

    Article  Google Scholar 

  102. M. Horprathum, P. Eiamchai, J. Kaewkhao, C. Chananonnawathorn, V. Patthanasettakul, S. Limwichean, N. Nuntawong, P. Chindaudom, AIP Conf. Proc. 1617, 7 (2014)

    Article  ADS  Google Scholar 

  103. A. Jilani, M.S. Abdel-wahab, A.H. Hammad, Mod. Technol. Creat. Thin-Film Syst. Coat. (2017)

  104. B.B.M., V.M.K., J. Taibah Univ. Sci. 11, 1232 (2017)

  105. J. Gupta, H. Shaik, K.N. Kumar, S. Abdul, S.G.V Ashok, Appl. Phys. A 1 (2022)

  106. M. Lorenz, M.S. Ramachandra Rao, J. Phys. D. Appl. Phys. 47, 8 (2014)

  107. H. Soonmin, S.A. Vanalakar, A. Galal, V.N. Singh, Mediterranean J. Chem. 7, 433 (2018)

    Article  Google Scholar 

  108. S.I. Boyadjiev, V. Georgieva, N. Stefan, G.E. Stan, N. Mihailescu, A. Visan, I.N. Mihailescu, C. Besleaga, I.M. Szilágyi, Appl. Surf. Sci. 417, 218 (2017)

    Article  ADS  Google Scholar 

  109. S.M. Rossnagel, Journal of Vacuum Science & Technology A: Vacuum. Surfaces, and Films 21, S74 (2003)

    Article  Google Scholar 

  110. R.A. Ganeev, U. Chakravarty, P.A. Naik, H. Srivastava, C. Mukherjee, M.K. Tiwari, R.V. Nandedkar, P.D. Gupta, Appl. Opt. 46, 1205 (2007)

    Article  ADS  Google Scholar 

  111. M. Störmer, K. Sturm, S. Fähler, M. Weisheit, J. Winkler, S. Kahl, P. Kesten, A. Pundt, M. Seibt, S. Senz, H.U. Krebs, Appl. Phys. A Mater. Sci. Process. 69, 455 (1999)

    Article  ADS  Google Scholar 

  112. H. Moulki, C. Faure, M. Mihelčič, A.Š Vuk, F. Švegl, B. Orel, G. Campet, M. Alfredsson, A.V. Chadwick, D. Gianolio, A. Rougier, Thin Solid Films 553, 63 (2014)

    Article  ADS  Google Scholar 

  113. Y. Liu, N. Jiang, Y. Liu, D. Cui, C.F. Yu, H. Liu, Z. Li, Ceram. Int. 47, 22416 (2021)

    Article  Google Scholar 

  114. K.J. Lethy, D. Beena, R. Vinod Kumar, V.P. Mahadevan Pillai, V. Ganesan, V. Sathe, Appl. Surf. Sci. 254, 2369 (2008)

  115. N. Barsan, H. Seidel, Sens. Actuators B. Chem. (2017)

  116. M. Henini, Molecular Beam Epitaxy 500, 189 (2013)

    Google Scholar 

  117. J. Puebla, (2015)

  118. D.M. Mattox, J. Vac. Sci. Technol. 10, 47 (1973)

    Article  ADS  Google Scholar 

  119. K. Tajima, H. Watanabe, M. Nishino, T. Kawamoto, J. Ceram. Soc. Jpn. 128, 381 (2020)

    Article  Google Scholar 

  120. N. Asai, Y. Inoue, H. Sugimura, O. Takai, Thin Solid Films 332, 267 (1998)

    Article  ADS  Google Scholar 

  121. Y. Inoue, A. Yamaguchi, T. Fujihara, J. Yamazaki, O. Takai, J. Electrochem. Soc. 154, J212 (2007)

    Article  Google Scholar 

  122. A. Karuppasamy, Appl. Surf. Sci. 282, 77 (2013)

    Article  ADS  Google Scholar 

  123. V. Godinho, P. Moskovkin, R. Álvarez, J. Caballero-Hernández, R. Schierholz, B. Bera, J. Demarche, A. Palmero, A. Fernández, S. Lucas, Nanotechnology 25, (2014)

  124. K. Robbie, M.J. Brett, Journal of Vacuum Science & Technology A: Vacuum. Surfaces, and Films 15, 1460 (1997)

    Article  Google Scholar 

  125. A. Larbi, I. Trabelsi, H. Dahman, M. Kanzari, J. Mater. Sci. Mater. Electron. 29, 2907 (2018)

    Article  Google Scholar 

  126. M.O. Jensen, M.J. Brett, Appl. Phys. A Mater. Sci. Process. 80, 763 (2005)

    Article  ADS  Google Scholar 

  127. C. Sakkas, J.Y. Rauch, J.M. Cote, V. Tissot, J. Gavoille, N. Martin, Coatings 11, (2021)

  128. G. Beydaghyan, J.L.M. Renaud, G. Bader, P.V. Ashrit, J. Mater. Res. 23, 274 (2008)

    Article  ADS  Google Scholar 

  129. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)

    Article  Google Scholar 

  130. A.I. Inamdar, A.C. Sonavane, S.M. Pawar, Y. Kim, J.H. Kim, P.S. Patil, W. Jung, H. Im, D.Y. Kim, H. Kim, Appl. Surf. Sci. 257, 9606 (2011)

    Article  ADS  Google Scholar 

  131. H. Huang, J. Tian, W.K. Zhang, Y.P. Gan, X.Y. Tao, X.H. Xia, J.P. Tu, Electrochim. Acta 56, 4281 (2011)

    Article  Google Scholar 

  132. A. Kopp Alves, C.P. Bergmann, F.A. Berutti, 23 (2013)

  133. F.N. Ajeel, A. Nazar Hussein, S. Khalaf Muhammad, S. Abdaul Mohsin, F.N. Ajeel, Orig. Res. Art. J. Appl. Phys. Sci. Int. 4, 178 (2015)

  134. D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I. H. Shewael, G. H. Valiev, E. Kianfar, Adv. Mater. Sci. Eng. 2021, (2021)

  135. S. Badilescu, P.V. Ashrit, Solid State Ion. 158, 187 (2003)

    Article  Google Scholar 

  136. T. Ivanova, K.A. Gesheva, G. Popkirov, M. Ganchev, E. Tzvetkova, Mater. Sci. Eng. B. Solid-State Mater. Adv. Technol. 119, 232 (2005)

    Article  Google Scholar 

  137. Q. Zhang, D. Sando, V. Nagarajan, J. Mater. Chem. C. 4, 4092 (2016)

    Article  Google Scholar 

  138. S. Xu, D. Fang, F. Xiong, Y. Ren, C. Bai, B. Mi, Z. Gao, J. Solid State Electrochem. (2023)

  139. Y.R. Lu, T.Z. Wu, C.L. Chen, D.H. Wei, J.L. Chen, W.C. Chou, C.L. Dong, Nanoscale Res. Lett. 10, 1 (2015)

    Article  Google Scholar 

  140. J.E. Lee, Y. Lee, K.J. Ahn, J. Huh, H.W. Shim, G. Sampath, W. Bin Im, Y. Il Huh, H. Yoon, Sci. Rep. 5, 8420 (2015)

  141. D.R. Sahu, C.Y. Hung, S.C. Wang, J.L. Huang, Materials Advances 3, 6000 (2022)

    Article  Google Scholar 

  142. A brightly ( multi ) colored future for electrochromic devices shines ahead 2, (2023)

Download references

Acknowledgements

Our sincere thanks to the management of Nitte Meenakshi Institute of Technology, Bengaluru, India, and Cambridge Institute of Technology, K.R. Puram, Bengaluru, India, for providing motivation and support.

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

Jyothi Gupta: conceptualization, investigation, methodology, validation; Habibuddin Shaik: investigation, methodology, validation; V. K. Gupta: investigation, methodology, validation; Sheik Abdul Sattar: methodology, validation.

Corresponding author

Correspondence to Jyothi Gupta.

Ethics declarations

Competing Interests

No conflict of interest exists among the authors. We wish to confirm that there are no known. Conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J., Shaik, H., Gupta, V.K. et al. Perspective of Electrochromic Double Layer Towards Enrichment of Electrochromism: A Review. Braz J Phys 54, 89 (2024). https://doi.org/10.1007/s13538-024-01463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01463-5

Keywords

Navigation