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Abstract
The susceptible-infected-susceptible epidemic model is analyzed through a degree-based mean-field approach. In this work, 
a mitigation factor is introduced in the probability of finding an infected individual following an edge. This modification 
simulates situations where the infected population reduces its participation in the dynamics of disease propagation, as may 
happen with the seclusion or hospitalization of infected individuals. A detailed investigation of this new model and its 
comparison to the original one (without the mitigation factor) was performed on the Barabási-Albert network, where some 
important results were analytically accessible.
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1  Introduction

 Infectious diseases have been a common cause of mortal-
ity over the years, especially in low-income countries [1]. 
However, after the recent outbreak of COVID-19, it became 
clear that infectious diseases can emerge and disseminate 
on a more global scale. At the same time, forecasting the 
way a disease spreads over the population is a challenging 
problem. The difficulty to make predictions on the course of 
this propagation based on incomplete data (as a consequence 
of underreporting, for example) and the inviability of per-
forming experiments on infectious disease proliferation in 
the human population justify the mathematical modeling as 
a powerful approach to face these problems [2].

The mathematical modeling in epidemiology usually 
divides the population into compartments, which character-
izes the states of individuals with respect to disease: they can  
be susceptible, infected, exposed, and so on. The main idea 
is to write a set of differential equations that specifies the 

flow of individuals between these compartments [3]. One 
important issue here is to be able to understand the network 
of interaction between individuals when the infection is 
propagated by direct contact between them. The traditional 
approach relies on the “homogeneous mixing” [4], in which 
any individual has the same probability of interacting with 
any other member of a given compartment. Although this 
strategy has been widely adopted over decades [5], it clearly 
diverges from the heterogeneous organization expected in 
human contacts [6]. This means that a theory that combines 
both classical mathematical epidemiology [7, 8] and network 
theory [9–12] is required to enhance our understanding of 
disease propagation in a more realistic setup [13, 14].

In this work, we concentrate on a common aspect observ-
able in epidemics. As expected, part of infected individuals 
tend to weak their ties to other ones by seclusion or delib-
erate isolations (like hospitalizations), and this means that 
the network of contact between members of the system is 
changed. In a recent work [15], this effect was incorporated 
in the dynamics through a tunable parameter that controls 
the probability of linking between individuals. Here, we take 
a different approach but based on the hypothesis that the 
probability of hitting an infected individual should, at some 
point, decrease as the infected population grows. The sim-
plest way of introducing this effect goes back to the classical 
work of Verhulst [16], as explained below.

In population dynamics, the Malthus model [17] states 
that the variation of a population is proportional to its 
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size. In this scenario, the population grows exponentially 
without any constraint and under the hypothesis of having 
an infinite amount of resources that support this prosper-
ity. To avoid this uncontrolled growth, the introduction 
of a carrying capacity that fixes the maximum popula-
tion of the system was proposed by Verhulst; specifically, 
the variation of a population was replaced by a parabola 
with negative convexity instead of a line (Malthus model). 
This simple idea has far-reaching consequences, and the 
population growth in this new setup follows now a logistic 
function. The same idea was already tested in the context 
of networks [18], and we are now applying it to describe 
the interplay between individuals where an epidemic takes 
place.

The layout of this work is as follows. In Section 2, we 
review the heterogeneous mean-field (HMF) model ana-
lyzing its criticality and prevalence. In Section 3, a modi-
fied version of the HMF is presented and investigated, and 
the conclusions are summarized in the last section.

2 � Susceptible‑Infected‑Susceptible 
Dynamics on Heterogeneous Mean‑Field 
Model

We will investigate the susceptible-infected-susceptible 
(SIS) dynamics [19] in this work. According to this model, 
the population is divided into infected and susceptible 
ones and two discrete events take place: (i) an infected 
individual can infect a susceptible member of the system 
by contact or (ii) an infected individual recovers sponta-
neously and joins the set of susceptible ones. The mean-
field approximation of this dynamics predicts two different 
scenarios separated by a positive critical point [20]. If the 
infection rate is sufficiently high, the model converges to 
an endemic state, where susceptible and infected individu-
als coexist. On the other hand, in the subcritical case, the 
disease dies out.

The first mean-field scheme proposed for the SIS dynam-
ics that can deal with heterogeneities of the underlying 
network is presented in this section. This is the so-called 
heterogeneous mean-field model (HMF) [21, 22] — or 
degree-based mean-field — and captures the structure of 
the network through its degree distribution. In this model, 
the degree is considered an annealed variable instead of a 
quenched one — the latter approach is also a popular one 
and leads, in general, to different results (see, for instance, 
[23, 24]), but will not be treated here. The original formula-
tion of this model is reviewed here for two reasons: first, 
we will introduce some notations and concepts; second, the 
main strategy to tackle this system is valuable to analyze our 
proposed model, which will be shown later.

2.1 � Formulation of the Heterogeneous Mean‑Field 
Model

In this formulation, vertices are partitioned according to 
their degrees: nodes that share the same degree are consid-
ered to have the same statistical properties. The key quantity, 
therefore, is �k(t) , which is the probability of a vertex with 
degree k being infected (or the fraction of infected indi-
viduals that have degree k) at time t. The master equation 
describing its time evolution [21] is given by

where the recovering rate was taken to be 1 without loss of 
generality, as it is always possible by a suitable time scal-
ing. Here, � is the infection rate and Θk(t) is the probability 
that a link emerging from a vertex of degree k connects to 
an infected node.

In this work, we are mostly interested in the stationary 
state, in which �k(t) = �k becomes a time-independent func-
tion. In this case, it is straightforward that ��k

�t
= 0 , and this 

leads to

where Θk(t) = Θk is also a stationary probability.
Denoting by P(k�|k) the conditional probability that a ver-

tex of degree k links to another with degree k′ , one seees that

In this work, however, we will consider uncorrelated net-
works, id est, the probability that a vertex of degree k links 
to another with degree k′ does not depend on k. Then, the 
conditional probability P(k|�) is reduced to P(k|�) = q(k) , 
which stands for the probability of connecting to a node of 
degree k, and is given by [6]

where P is the degree distribution of the network and 
⟨kn⟩ ∶= ∑

k k
nP(k) stands for the n-th moment. Then, in this 

setup the probability Θk is actually independent on k, and it 
will henceforth be denoted by Θk ≡ Θ , where

after (4).
The main strategy to access the important properties of 

this stationary system is the analysis of (2) and (5). It can 
also characterize the prevalence

(1)
�

�t
�k(t) = −�k(t) + �k

[
1 − �k(t)

]
Θk(t),

(2)�k =
�kΘk

1 + �kΘk

,

(3)Θk =
∑

k�

P(k�|k)�k� .

(4)q(k) =
kP(k)

⟨k⟩ ,

(5)Θ =
�

k

q(k)�k =
1

⟨k⟩
�

k

kP(k)�k
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which is the stationary infection probability.

2.2 � HMF Model on Barabási‑Albert Network

The equations above constitute the main setup for the het-
erogeneous mean-field approach for the SIS model. In this 
work, the dynamics will be examined on a Barabási-Albert 
(BA) model. Under the continuous approximation (the 
degree is assumed, for convenience, to be a continuous vari-
able), the degree distribution is given by

where m is the minimum degree of the system. One can also 
check that the mean degree is ⟨k⟩ = 2m . From (2), (5) and 
(7), and taking the continuous limit, it is straightforward that

This relation displays a trivial solution, Θ = 0 , which 
stands for the absorbent state where no infected individual 
is present. If we search for a nontrivial solution ( Θ ≠ 0 ), 
then (8) leads to

which is an increasing function with respect to �m , as one 
can see from

which can be shown to be positive. In addition to this prop-
erty, one can also see that the probability Θ is a function of 
the product �m and

The probability (9) allows one to obtain the stationary 
infection probability of vertices with degree k through (2). 
On BA model, the prevalence (6) is then

where Θ is given by (9). As one can see, the prevalence 
is positive for any positive infection rate � and vanishes 
when � = 0 only. This means that the infection is persistent 
in this model and the infection threshold is �c = 0 . In the 

(6)� =
∑

k

�kP(k),

(7)P(k) =
2m2

k3
(k ≥ m),

(8)Θ = �mΘ ln

(
1 +

1

�mΘ

)
.

(9)Θ =
1

�m

(
1

e
1

�m − 1

)
,

(10)
d

d(�m)
Θ =

e
1

�m − �m
(
e

1

�m − 1
)

(
�m

)3(
e

1

�m − 1
)2 ,

(11)lim
�→∞

Θ = 1.

(12)� = 2(�mΘ)2
[

1

�mΘ
− ln

(
1 +

1

�mΘ

)]
,

neighborhood of this critical point, the prevalence behaves 
asymptotically as

In Section 3.2, we will also show that the prevalence (6) 
is a monotonically increasing function with respect to the 
infection rate �.

3 � SIS Dynamics on Modified HMF Model

In this section, a modified version of the HMF model 
(mHMF) is introduced. The starting point is the equation (5), 
which relates the probabilities Θ and �k on an uncorrelated 
network. Here, this relation is replaced by

Comparing this proposal to (5), a mitigating factor is 
attached to each term in the summation. This is a simple 
change in the same spirit of the classical Malthus-Verhulst 
model [16], where the population growth is weakened by a 
factor similar to the one inserted in (14). In other words, the 
factor (1 − �k) prevents the increase of the probability Θ as 
�k increases. This choice has some obvious motivations, as 
infected individuals may isolate themselves (by resting or 
taking protective measures) and retreat from the infection 
dynamics. Therefore, we are introducing a modification that 
decreases the probability of meeting an infected individual 
when the infected population becomes large. At the same time, 
this change is less perceptible when the population of infected 
individuals is not significant — a scenario where the system 
does not “feel”the impact of the infection due to the few cases.

The first important consequence is that the maximum 
probability Θ is now less than 1. Although its value is unim-
portant here, we will see the impact of introducing such miti-
gating factors on the behavior of this probability and analyze 
the implication on the prevalence.

3.1 � Infection Threshold of mHMF

The main relation (14) can be cast as

on a BA network. As before, the trivial solution Θ = 0 cor-
responding to the absorbent phase is also present. Let us now 
search for a nontrivial solution (Θ ≠ 0) for this relation, that 
can then be rewritten as

(13)� ≃ 2e
−

1

�m .

(14)Θ =
�

k

q(k)�k
�
1 − �k

�
=

1

⟨k⟩
�

k

kP(k)�k
�
1 − �k

�
.

(15)Θ = �mΘ
[
ln

(
1 +

1

�mΘ

)
−

1

1 + �mΘ

]
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where

Searching for a solution of (16) is equivalent to the problem 
of finding an intersection point of the curves y = g(Θ) and the 
line y = 1 in the coordinate system y × Θ . Since the derivative 
of g (with respect to Θ),

is negative, g is a decreasing function. Furthermore, in the 
extremal points, we have limΘ→0+ g(Θ) = +∞ and

Then, it remains to verify if g(Θ = 1) , as a function of � , 
intercepts the line y = 1 as in Fig. 1. If g(1) < 1 , the Eq. (16) 
has always a solution, which means that the infection is always 
present; in other words, we would have �c = 0 . We will show 
that it is, indeed, the case. To see this result, note that

since 𝜆,m > 0 . Since the function Ψ , defined by

(16)g(Θ) = 1,

(17)g(Θ) = �m
[
ln

(
1 +

1

�mΘ

)
−

1

1 + �mΘ

]
.

(18)g�(Θ) = −
�m

Θ(�mΘ + 1)
2
,

(19)g(Θ = 1) = �m ln

(
1 +

1

�m

)
−

�m

1 + �m
.

(20)

g(1) = 𝜆m ln

(
1 +

1

𝜆m

)
−

𝜆m

1 + 𝜆m
< 𝜆m ln

(
1 +

1

𝜆m

)
,

(21)Ψ(z) = z ln

(
1 +

1

z

)
,

is increasing (note that the last term of (20) is Ψ(�m) ) and 
limz→∞ Ψ(z) = 1 , one has g(1) < Ψ(𝜆m) ≤ Ψ(∞) = 1 , which 
completes the proof.

Therefore, the nontrivial solution of (15) is always pre-
sent. In the next section, we will examine the prevalence and 
its behavior when the infectious rate is small.

3.2 � Prevalence of mHMF

As in the HMF, the probability Θ is also a function of the 
product �m , but it displays a different behavior in mHMF, 
as we can see in Fig. 2, which is a numerical solution of (8) 
and (15). This function is not monotonically increasing as in 
the HMF case and a peak can be detected in this model at the 
point �pm . From (16) and imposing �g

��
= 0 , one can see that

At this maximum point, the corresponding probability 
Θp is

The prevalence of the mHMF is given by

Although the dependence of this quantity to Θ is the same 
as HMF, both prevalences do not match since Θ are different. 
In HMF, we have seen that the probability Θ of finding an 
infected vertex following an edge is monotonically increas-
ing with the infectious rate � , but in mHMF, it displays a 

(22)1 +

�
�pm = �pm ln

� √
�pm

√
�pm − 1

�
.

(23)Θp =

√
�pm − 1

�pm
.

(24)� = 2(�mΘ)2
[

1

�mΘ
− ln

(
1 +

1

�mΘ

)]
.

Fig. 1   Graphs y = 1 and y = g(Θ) ; here, �m = 1 Fig. 2   Graph Θ × �m for HMF and modified HMF models
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maximum value. We will now see that despite this difference 
in both models, the prevalence is monotonically increasing 
in both cases, as shown in Fig. 3, which is the numerical 
solution of both models. Let us analyze the function

with

We will now see that the function (25) is positive for both 
HMF and mHMF models. The strategy consists in showing 
that both the factor Θ + �

d

d�
Θ and Ψ2 are positive (this is a 

sufficient condition, although not necessary). Evaluating the 
derivative of Ψ2,

and its second derivative,

one sees that the function Ψ�
2
(x) is a monotonically increas-

ing function, which means that it reaches its supremum at 
x → ∞ . Considering that limx→∞ Ψ�

2
(x) = 0 , Ψ�

2
 is then nega-

tive, which implies that Ψ2 is a decreasing function. There-
fore, Ψ2 is minimum at x → ∞ , and as limx→∞ Ψ2(x) = 0 , 
one sees that Ψ2 is non-negative.

In the HMF model, we have seen that (10) is a positive 
function, which leads to Θ + 𝜆

d

d𝜆
Θ > 0 , which justifies the 

positivity of the derivative of the prevalence for that model. 
On the other hand, the probability Θ of finding an infected 
node following an edge is not monotonically increasing in 

(25)
d

d�
� = 2m

(
Θ + �

d

d�
Θ

)
Ψ2(�mΘ)

(26)Ψ2(x) ∶= 2 − 2x ln
(
1 +

1

x

)
−

1

1 + x
(x > 0).

(27)Ψ�
2
(x) = −2 ln

(
1 +

1

x

)
+

2

x + 1
+

1

(x + 1)2
,

(28)
(
Ψ�

2

)�
(x) =

2

x(x + 1)3
> 0,

the mHMF model. From (16) and (17), one can evaluate the 
derivative d

d�
Θ , and show that

Hence, the prevalence is also monotonically increasing 
for the mHMF model.

4 � Conclusion

In this work, a modified version of the heterogeneous 
mean-field that introduces mitigation in the participation 
of infected nodes in the infection dynamics was proposed. 
This proposal is motivated by the possibility of infected indi-
viduals retreating (at least partially) from the propagation 
dynamics and goes back to the classical work of Verhulst. 
This idea was tested on the Barabási-Albert network, which 
is scale-free and, at the same time, many results are analyti-
cally accessible.

The main difference is the drastic change in the profile of 
the probability of an edge finding an infected node, which 
displays a peak. In the original HMF, it is a monotonically 
increasing function. Nevertheless, the prevalence of both 
models is increasing with respect to the infection rate — 
although quantitative differences do exist. We managed to 
support all these conclusions based on exact results.

Acknowledgements  The authors thank A. S. da Mata for fruitful 
observations.

Declarations 

Conflict of Interest  The authors declare no competing interests.

References

	 1.	 World Health Organization. https://​www.​who.​int. Accessed 18 
May 2023

	 2.	 H.W. Hethcote, Applied Mathematical Ecology (Springer, Berlin, 
1989)

	 3.	 T. Tomé, M.J. de Oliveira, Braz. J. Phys. 50, 832 (2020)
	 4.	 W.H. Hamer, The Lancet 167, 733 (1906)
	 5.	 N.T.J. Bailey, The Mathematical Theory of Infectious Diseases 

and its Applications (Charles Griffin, London, 1975)
	 6.	 S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From 

Biological Nets to the Internet and WWW​ (Oxford University 
Press, Oxford, 2003)

	 7.	 R.M. Anderson, R.M. May, Infectious Diseases of Humans 
(Oxford University Press, Oxford, 1992)

	 8.	 J.D. Murray, Mathematical Biology I: An Introduction (Springer, 
Berlin, 2002)

	 9.	 R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
	10.	 M.E.J. Newman, Networks: An Introduction (Oxford University 

Press, New York, 2010)

(29)Θ + 𝜆
d

d𝜆
Θ =

1

(𝜆m)2
1[

1

𝜆mΘ
−

1

(1+𝜆mΘ)2

] > 0.

Fig. 3   Graph � × �m for HMF and modified HMF models

Page 5 of 6    94Brazilian Journal of Physics (2023) 53:94

https://www.who.int


1 3

	11.	 A.S. da Mata, Braz. J. Phys. 50, 658 (2020)
	12.	 S.N. Dorogovtsev, J.F.F. Mendes, The nature of Complex Networks 

(Oxford University Press, New York, 2022)
	13.	 S.C. Ferreira, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 86, 

041125 (2012)
	14.	 R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, 

Rev. Mod. Phys. 87, 925 (2015)
	15.	 C. Dias, M.O. Hase, J. Stat. Mech. 013404 (2021)
	16.	 P.F. Verhulst, Corr. Math. Physique 10, 113 (1838)
	17.	 T.R. Malthus. An Essay on the Principle of Population, as It 

Aspects the Future Improvement of Society, with Remarks on the 
Speculations of Mr. Goodwin, M. Condorcet, and Other Writers 
(J. Johnson, London, 1798)

	18.	 M.O. Hase, H.L. Casa Grande, J. Stat. Mech. 043304 (2016)
	19.	 R. Ross, The Prevention of Malaria (E. P. Dutton & Company, 

New York, 1910)

	20.	 J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lat-
tice Models (Cambridge University Press, Cambridge, 1999)

	21.	 R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 
(2001)

	22.	 R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 63, 066117 (2001)
	23.	 M.O. Hase, J.F.F. Mendes, J. Phys. A 41, 145002 (2008)
	24.	 M. Cotacallapa, M.O. Hase, J. Phys. A 49, 065001 (2016)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

94   Page 6 of 6 Brazilian Journal of Physics (2023) 53:94


	Susceptible-Infected-Susceptible Dynamics with Mitigation in Connection of Infected Population
	Abstract
	1 Introduction
	2 Susceptible-Infected-Susceptible Dynamics on Heterogeneous Mean-Field Model
	2.1 Formulation of the Heterogeneous Mean-Field Model
	2.2 HMF Model on Barabási-Albert Network

	3 SIS Dynamics on Modified HMF Model
	3.1 Infection Threshold of mHMF
	3.2 Prevalence of mHMF

	4 Conclusion
	Acknowledgements 
	References


