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Abstract
In this paper, an epidemic compartmental model with saturated type treatment function is presented to investigate the trans-
mission dynamics of COVID-19 with a case study of Spain (in Europe). We obtain the basic reproduction number of the 
model which plays a very important role in disease spreading. We show that if the basic reproduction number is less than 
unity then the disease-free equilibrium point is locally asymptotically stable, but making the basic reproduction number 
less than unity is not sufficient to eradicate COVID-19 infection which is shown through backward bifurcation. The model 
is validated with the real COVID-19 data of Spain (in Europe), Algeria (in Africa), and India (in Asia) and also estimated 
important model parameters in all cases. The effect of an important model parameter for controlling the disease spreading is  
also investigated for the infection scenario of Spain only. We establish that the asymptomatic class plays a very important role 
for spreading this pandemic disease. The effective reproduction number has been estimated which varies in time in Spain. 
Finally, the model is reformulated as an optimal control problem which shows that the social distancing due to adapting a 
partial lockdown by some countries is highly effective for controlling COVID-19.
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1 Introduction

In the COVID-19 pandemic, the whole world was appar-
ently unprepared or did not pay attention well at the ear-
lier stage after spreading in Wuhan, China. The disease 
caused by SARS-CoV-2 had a devastating impact across the  

world. On August 22, 2022, almost all countries and territo-
ries had victims, with a total of 605,199,562 reported cases 
with 6,486,276 deaths, and this is a global health emergency 
[1, 2].

The outbreak of severe acute respiratory syndrome 
(SARS) appeared in November 2002 in China. A newly 
emerged coronavirus was responsible for this outbreak 
which is known as SARS-CoV [3]. Middle East respiratory 
syndrome coronavirus (MERS-CoV) took place in Saudi 
Arabia in 2012 where dromedary camels were thought to be 
the intermediate source for the transmission of the virus [4]. 
As a continuation, the virus SARS-CoV-2 was related to the 
coronavirus responsible for the SARS outbreak of 2003, and 
the transmission of the virus was also zoonotic [5]. In March 
13, 2020, the World Health Organization considered Europe 
as a hotspot of the 2019–2020 coronavirus pandemic, and 
by April 24 (2020), the maximum part of the globe was 
affected by the outbreak [1, 2]. The daily reported cases 
were being doubled over periods of 2 to 4 days by countries 
across Europe, North America, and Asia [6], and specially 
the phenomenon drew a lot of attention for these zones.

 * Pritam Saha 
 pritamsaha1219@gmail.com

 Jayanta Kumar Ghosh 
 jayantaghosh.326@rediffmail.com

 Md Kamrujjaman 
 kamrujjaman@du.ac.bd

 Uttam Ghosh 
 uttam_math@yahoo.co.in

1 Department of Mathematics, Tantubai Sangha High School, 
West Bengal, India

2 Department of Applied Mathematics, University of Calcutta, 
Kolkata, India

3 Department of Mathematics, University of Dhaka, 
Dhaka 1000, Bangladesh

/ Published online: 28 February 2023

Brazilian Journal of Physics (2023) 53:54

http://crossmark.crossref.org/dialog/?doi=10.1007/s13538-023-01267-z&domain=pdf
http://orcid.org/0000-0002-2525-6809


Brazilian Journal of Physics (2023) 53:54

1 3

Since the world is dealing with a highly contagious disease 
without proper medication, right now the only effective way 
for us to protect ourselves is prevention. Social and physical 
distancing, partial lockdown, and testing are some measures 
prescribed by WHO to control the outbreak. Data analysis and 
mathematical modeling are one of the core components to 
study these undertaken policies for the best outcome. In math-
ematical modeling of the COVID-19 outbreak, some recent 
studies provided estimation of the basic reproduction number 
( R0 ), disease dynamics, models fit to COVID data, identifica-
tion of important model parameters, and control strategies to 
combat the infection [7–11, 13, 14, 22]. In [7], the authors 
studied COVID-19 dynamics in Wuhan, China, for the first 
wave. In [8], Chowdhury et al. showed the effect of quaran-
tine and social distancing policy on COVID-19 transmission 
in developing or under poverty-level countries. An SAIQHR 
model has been considered to study COVID-19 dynamics in 
India [9]. A study for COVID-19 pandemic with intervention 
strategies is shown in [10]. A COVID-19 model was devel-
oped to describe the outbreak of COVID-19 in India with 
seven compartments which analyzed both theoretically and 
numerically by evaluating the equilibrium points and their 
stability analysis [11]. The dynamics of the SEIR model and 
estimation of the reproduction number of COVID-19 in Italy 
were studied in [12]. An ODE compartmental model with 
saturated treatment due to the limited medical facilities such 
as lack of hospital beds and oxygen cylinder, in Italy, was 
studied to drag down the spread of COVID-19, where the pre-
scribed model determines the scenario of COVID-19 handled 
by maintaining a lockdown [13]. A study for COVID-19 trans-
mission and its control in Hong Kong is discussed in [14].

In this paper, we have studied the scenario of Spain 
from 24 February 2020 to 28 April 2020, considering a 
six-compartmental model with saturated treatment due to 
limited medical facilities in Spain. The study presents an 
analysis of various control mechanisms using a mathemati-
cal model and abridged data fitting based on the ongoing 
viral epidemic. The key objective of this study is as fol-
lows: we will work with real-life available discrete data of 
Spain to understand the dynamics of COVID-19 outbreak 
and possible preventive measures to control the infection. 
The main novelties in this study are 

1. Analytical and theoretical results are established and 
presented in terms of reproductive ratio, R0 . We have 
obtained the stable DFE for R0 < 1 and stable endemic 
solution for R0 > 1.

2. We have established the results for backward bifurcation 
at R0 = 1 with some other conditions.

3. We have fitted the proposed model with real reported 
data of COVID-19 in Spain from 24 February, 2020, to 
28 April, 2020.

4. Sensitivity analysis has been performed to find out most 
effective model parameters which have more impact on 
spreading and controlling the infection.

5. The basic reproduction numbers for the actual epidemic, 
R0 , and time evolution outbreak, R(t), are calculated and 
their respective results are established.

6. Using optimal control theory, it concludes that social 
distancing is highly effective for controlling the disease.

7. Besides data analysis, the proposed model shows that the 
human population can control and protect the spread of 
infectious diseases by creating social isolation, hospi-
talization, and physical distancing.

The paper is organized as follows: The mathematical 
model is formulated in Section 2. Positivity and bounded-
ness of solutions are discussed in Section 3. Stability anal-
ysis and bifurcation analysis are prescribed in Section 4. 
Parameter estimation, model validation, effective param-
eter, and the estimation of R0 are discussed in Section 5. 
We have studied the optimal control theory for COVID-19 
in Section 6. Finally, Section 7 outlines the summary and 
discussion of the results.

In the following section, we will discuss our mathemati-
cal model and formulation of the model elaborately.

2   Model Formulation

Scientifically, it is proven and well established that math-
ematical and computational models can help in under-
standing biological scenarios and can predict epidemio-
logical aspects. In the proposed model, let the total 
population be divided into six compartments: these are the 
susceptible population (S), exposed population (E), 
asymptomatic population (A), quarantined population (Q), 
infectious population (I), and recovered population (R). 
We assume that the birth rate of susceptible human is con-
stant. The disease COVID-19 spreads mainly from A & I 
compartments and the rate of incidence is of the form 
(�A + �I)S . Asymptomatic infected humans become infec-
tious at a rate �1 as they have no symptoms therefore they 
can transmit the disease with other people easily. Also, 
quarantined persons become infectious at a rate �1 as they 
can infect the health staff and other persons who stay in 
the same quarantine center. Since a large number of per-
sons is infected by this disease in a very short span of time 
but the number of hospitals is limited, therefore due to 
limited medical facility, we consider the saturated treat-
ment which is of the form aI

1+bI
 . The flow diagram of the 

proposed model is given in Fig. 1 and the corresponding 
mathematical equations are given in (2.1).
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with the initial conditions S(0) > 0 , E(0) ≥ 0 , A(0) ≥ 0 , 
Q(0) ≥ 0 , I(0) > 0 , and R(0) ≥ 0 , where the interpretation 
of parameters is presented in Table 1.

In the next section, we shall establish the positivity and 
boundedness of solutions of (2.1). Positivity of the solution 
in biological model is most important because it establishes 
the non-negativity of the solution curve, i.e., non-negativity 
of the considered compartments.

3  Positivity and Boundedness of Solutions

We consider the first equation of (2.1) and multiply it by 
integrating factor exp(�A(t) + �I(t) + �) , then integrating 
and using the initial condition, we get

It is obvious from the above expression that S(t) ≥ 0 . 
Using similar arguments, it can be easily shown that other 
variables are also non-negative.

To prove the boundedness of the solutions, we add 
the equations in (2.1) and using the notation for total  

(2.1)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

dS

dt
= Λ − (�A + �I)S − �S

dE

dt
= (�A + �I)S − (�1 + �2 + �3 + �4 + �)E

dA

dt
= �1E − (�1 + �2 + �)A

dQ

dt
= �2E − (�1 + �2 + �)Q

dI

dt
= �1A + �3E + �1Q − (� + d + �1)I −

aI

1+bI
dR

dt
= �4E + �2A + �2Q + �1I − �R +

aI

1+bI

S(t) = exp(−(�A(t) + �I(t) + �))

{
S(0) + Λ∫

t

t0

exp(�A(u) + �I(u) + �)du

}
.

population, N(t) = S(t) + E(t) + A(t) + Q(t) + I(t) + R(t) , 
we have

Integrating and using the initial conditions and taking 
lim sup as t → ∞, we get

dN

dt
= Λ − �N − dI

≤ Λ − �N.

lim sup
t→∞

N(t) ≤ Λ

�
.

Table 1  Model parameters and 
their descriptions

Notation Interpretations Unit

Λ Recruitment rate of S class (population)(time)−1

� Transmission rate of infection from A class (population)−1(time)−1

� Transmission rate of infection from I class (population)−1(time)−1

�
1

Transmission rate of E class to A class (time)−1

�
2

Transmission rate of E class to Q class (time)−1

�
1

Rate at which A becomes infectious (time)−1

�
1

Rate at which Q becomes infectious (time)−1

�
3

Rate at which E becomes infectious (time)−1

b Delay effect in patients taking the antiviral medicines (population)−1

a Rate at which the antiviral medicines are taken by patients to 
reduce the risk of being hospitalized or dead

(time)−1

d Death rate due to infection (time)−1

� Natural death rate (time)−1

�
4

Recovery rate of E class (time)−1

�
2

Recovery rate of A class (time)−1

�
2

Recovery rate of Q class (time)−1

�
1

Recovery rate of I class (time)−1

Fig. 1  Flow diagram of the proposed model
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Thus, we can summarize the above results in the follow-
ing theorem:

Theorem 1 All the solutions are feasible and the set

Ω =
{
(S,E,A,Q, I,R) ∈ ℝ

6

+
∶ S + E + A + Q + I + R ≤ Λ

�

}
 is 

a positively invariant set for the system (2.1).

In the next section, we shall study the stability and bifur-
cation analyses of the proposed model.

4  Stability and Bifurcation Analyses

In this section, we first find the disease-free equilibrium 
point (DFE) and then using the next-generation matrix 
approach, the basic reproduction number will be found. The 
stability of the equilibrium points will be discussed in terms 
of the basic reproductive number. The backward bifurcation 
will be discussed also.

4.1  Basic Reproduction Number, DFE, and EEP

The basic reproduction number is denoted by R0 and is 
defined as the expected number of secondary infections that 
a single infected individual generates [15, 16]. In the epidemic 
system, it has great importance as it is the indicator of persis-
tence or eradication of disease. Using the next-generation 
matrix [16, 17], the basic reproduction number of (2.1) has 
been found here. Since the DFE is E0

(
Λ

�
, 0, 0, 0, 0, 0

)
 , hence 

the basic reproduction number can be found through the fol-
lowing analytical approach.

Let F =

⎛
⎜⎜⎜⎝

S(A� + I�)

0

0

0

⎞⎟⎟⎟⎠
 represent the vector of rate of new 

infections and V =

⎛
⎜⎜⎜⎜⎝

D0E

AD1 − �1E

D2Q − E�2
−�3E − �1A − �1Q + D3J +

aI

1+bI

⎞⎟⎟⎟⎟⎠
 

denote the vector of remaining transitional terms.
Let us define F =

�F

�xj
(E0) and V =

�V

�xj
(E0) , where xj rep-

resents the infected compartment. Then, the next-generation 
matrix is FV−1 and the spectral radius of FV−1 is the basic 
reproduction number R0 , which is given below

w h e r e  D0 = � + �1 + �2 + �3 + �4  ,  D1 = �1 + �2 + �  , 
D2 = �1 + �2 + � , D3 = d + � + �1.

R0 =
Λ��1

�D0D1

+
Λ�(D1D2�3 + D1�2�1 + D2�1�1)

�D0D1D2(D3 + a)
,

Let E∗(S∗,E∗,A∗,Q∗, I∗,R∗) be the endemic equilibrium 
point (EEP) of the considered system. Then, it satisfies the 
steady-state condition for the system (2.1). Solving the steady-
state equations, we obtain I∗ = A∗(A∗D0D1�+D0D1�−��1Λ)

�(�1Λ−A
∗D0D1)

 , 
A∗ =

�1E
∗

D1

 , S∗ = Λ

A∗�+I∗�+�
 , Q∗ =

�2E
∗

D2

 , �R∗ = �
4
E∗ + �

2
A∗+

�
2
Q∗ +

aI∗

1+bI∗
+ �

1
I∗ and E∗ satisfies the equation

where

It is clear from the expressions of coefficients the equa-
tion (4.1) that it may have either two positive roots or no 
positive root if R0 < 1 . For R0 > 1 , the number of positive 
roots is one or three if the positivity condition of I∗ is sat-
isfied. Thus, when R0 < 1 , the model (2.1) has at most two 
endemic equilibrium points and for R0 > 1 the number of 
endemic equilibrium points is three or one.

4.2  Stability of Disease‑Free Equilibrium State ( E
0
)

To eradicate the disease from the system, the stability of 
the DFE is essential.

Theorem 2 The DFE will be locally asymptotically stable if 
R0 < 1 and unstable if R0 > 1.

Proof The Jacobian matrix corresponding to the system 
(2.1) at DFE point E0(

Λ

�
, 0, 0, 0, 0, 0) is

(4.1)C0x
3 + C1x

2 + C2x + C3 = 0,

C0 = �1(�(D2�4 + �2�2)D1 + D2�1(−��1 + ��2))D
2
0
�b,

C1 = �D2
0
(b� − �)(D2�4 + �2�2)D

2
1
+ (−D2�2�

2D0

+ (D2(�2b� + �(�1 + a))D0 − 2b�Λ

(D2�4 + �2�2))� − 2D2�1b�D0�)�1D1D0

− 2D0D2�
2
1
b�Λ(−��1 + ��2),

C2 = −(−2Λ(D2�4 + �2�2)�
2 + �(−D2(�1 + a)D0

+ bΛ(D2�4 + �2�2))� + D2�1bD0�
2)D0D

2
1

− (−2D2�2�
2D0 + (D2(�2b� + 2�(�1 + a))D0

− b�Λ(D2�4 + �2�2))� − 2D2�1b�D0�)Λ�1D1

+ D2�
2
1
b�Λ2(−��1 + ��2),

C3 = D0D
2
1
D2��Λ(D3 + a)(1 − R0).

J(E0) =

⎛⎜⎜⎜⎜⎜⎜⎝

−� 0 −
Λ�

�
0 −

Λ�

�
0

0 − D0
Λ�

�
0

Λ�

�
0

0 �1 − D1 0 0 0

0 �2 0 − D2 0 0

0 �3 �1 �1 − D3 − a 0

0 �4 �2 �2 a + �1 − �

⎞⎟⎟⎟⎟⎟⎟⎠

.
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The eigenvalues of the Jacobian matrix J(E0) are 
−�,−�, �1, �2, �3, �4 , where �i(i = 1 − 4) are the roots of  
the following equation:

Thus, P(0) = R0 − 1 . Now, we shall discuss the following 
two cases.

Case I: Suppose R0 > 1 . Then P(0) > 0 . Again, 
lim
�→∞

P(�) = −1 . Here P(�) is a continuous function of � and 

so by applying Bolzano theorem on continuous function, we 
have P(�k) = 0 for some 𝜆k > 0 . Thus, at least one eigen-
value of the Jacobian matrix J(E0) must be positive and so 
the DFE, E0 , is unstable.

Case II: Suppose R0 < 1 which yields P(0) < 0.
If possible, let us assume that P(�) = 0 has at least one 

root of the form x + iy , where x ≥ 0 and x, y ∈ ℝ . Then 
P(x + iy) = 0.

Again,

which implies 1 < 1 , clearly a contradiction. Hence, all the 
roots of the equation P(�) = 0 have the form x + iy , where 

P(�) ≡ Λ��1

�(D0 + �)(D1 + �)
+

Λ��3

�(D0 + �)(D3 + a + �)

+
Λ��2�1

�(D0 + �)(D2 + �)(D3 + a + �)

+
Λ��1�1

�(D0 + �)(D1 + �)(D3 + a + �)
− 1 = 0.

|P(x + iy) + 1|
≤ Λ𝛼𝛾1

𝜖|D0 + 𝜆||D1 + 𝜆| +
Λ𝛽𝛾3

𝜖|D0 + 𝜆||D3 + a + 𝜆|
+

Λ𝛽𝛾2𝜇1

𝜖|D0 + 𝜆||D2 + 𝜆||D3 + a + 𝜆|
+

Λ𝛽𝛾1𝛿1

𝜖|D0 + 𝜆||D1 + 𝜆||D3 + a + 𝜆| ≤
Λ𝛼𝛾1

𝜖(D0 + x)(D1 + x)

+
Λ𝛽𝛾3

𝜖(D0 + x)(D3 + a + x)
+

Λ𝛽𝛾2𝜇1

𝜖(D0 + x)(D2 + x)(D3 + a + x)

+
Λ𝛽𝛾1𝛿1

𝜖(D0 + x)(D1 + x)(D3 + a + x)

≤ Λ𝛼𝛾1

𝜖D0D1

+
Λ𝛽𝛾3

𝜖D0(D3 + a)
+

Λ𝛽𝛾2𝜇1

𝜖D0D2(D3 + a)

+
Λ𝛽𝛾1𝛿1

𝜖D0D1(D3 + a)
= R0 < 1,

x < 0 and x, y ∈ ℝ . Thus, in this case, the DFE is locally 
asymptotically stable.

Hence, the theorem is proved.

4.3  Backward Bifurcation

In this section, we shall investigate the existence of back-
ward bifurcation of the considered COVID-19 model. Bio-
logically, this type of bifurcation is most important because 
usually the disease eradication happens when R0 < 1 but in 
this situation there exists another stable endemic equilibrium 
point for R0 < 1 and so eradication of the disease depends 
not only on the value of basic reproduction number but also 
on the initial number of infection level. When R0 = 1 , i.e.,

then one of the eigenvalues of the Jacobian matrix corre-
sponding to the system (2.1) at DFE is 0. Using the theorem 
by Castillo-Chavez and Song [15, 17, 18], we shall establish 
the existence of backward bifurcation of the system (2.1).

Theorem 3 Suppose c3 > 0 and c1c2 > c3 . Then the system 
(2.1) undergoes the backward bifurcation at R0 = 1 with 
respect to the parameter � if 𝜙 > 0 , where c1, c2, c3 and � 
are defined in the text.

Proof First we set x1 = S, x2 = E, x3 = A, x4 = Q, x5 = I and 
x6 = R , then the system (2.1) becomes

At the DFE E0 , the Jacobian matrix J(E0)|�=�[BB] has the 
eigenvalues −�,−� , and the other three are the roots of the 
following cubic:

where

� =
D0D1D2D3� + D0D1D2a� − D1D2��3Λ − D1��2Λ�1 − D2��1�1Λ

D2(D3 + a)Λ�1
≡ �[BB],

(4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx1

dt
= Λ − (�x3 + �x5)x1 − �x1 ≡ f1

dx2

dt
= (�x3 + �x5)x1 − (�1 + �2 + �3 + �4 + �)x2 ≡ f2

dx3

dt
= �1x2 − (�1 + �2 + �)x3 ≡ f3

dx4

dt
= �2x2 − (�1 + �2 + �)x4 ≡ f4

dx5

dt
= �1x3 + �3x2 + �1x4 − (� + d + �1)x5 −

ax5

1+bx5
≡ f5

dx6

dt
= �4x2 + �2x3 + �2x4 + �1x5 − �x6 +

ax5

1+bx5
≡ f6

�4 + c1�
3 + c2�

2 + c3� + c4 = 0,
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It is obvious that c1 > 0 and R0 = 1 imply c2 > 0 . Hence, 
by the given conditions, we can conclude that the three 
eigenvalues have negative real parts. Thus, we can apply 
the theorem by Castillo-Chavez and Song to determine the 
direction of the bifurcation. Let W and V be the right and 
left eigenvectors of J(E0)|�=�[BB] corresponding to the zero 
eigenvalue then W = (w1,w2,w3,w4,w5,w6)

T where

Now, the coefficient

and the coefficient

Since the coefficient � is obviously a positive number, 
hence the system (2.1) exhibits the backward bifurcation if 
𝜙 > 0 . Hence, the theorem is proved.

It is clear from Fig. 2 that if we vary the transmission rate 
of infection ( � ) from the asymptomatic class, then the system 
generates two endemic equilibrium points for R∗

0
< R0 < 1 , 

c1 = D0 + D1 + D2 + D3 + a,

c2 =
(((a + D0 + D2 + D3)D1 + (a + D0 + D3)D2 + D0(a + D3))� − Λ(��1 + ��3)

�
,

c3 =
((a + D0 + D3)D1 + D0(a + D3))D2 + D0D1(a + D3))� − Λ((��1 + ��3)D2 + �3�D1

�

+(a� + �D3 + ��1)�1 + �1�2�)

�
,

c4 =
((�3�D1 + (�1� + �(a + D3))�1)Λ − D0�D1(a + D3))D2 + Λ�D1�2�1

�
.

w1 = −
D0

�
,w2 = 1,w3 =

�1

D1

,w4 =
�2

D2

,

w5 =
�3w2 + �1w3 + �1w4

D3 + a
,

w6 =
�4w2 + �2w3 + �2w4 + (a + �1)w5

�
and

V = (v1, v2, v3, v4, v5, v6) where

v1 = 0, v2 =
(D3 + a)D2�

Λ�
, v3 =

D2(D3 + a + �1)

D1

,

v4 = �1, v5 = D2, v6 = 0.

� =

6∑
k,i,j=1

vkwiwj

�2fk

�xi�xj

=
2D2ab

(D3 + a)2

(
�3 +

�1�1

D1

+
�1�2

D2

)2

−
2(D3 + a)D0D2

Λ�

{
�[BB]�1

D1

+
�

D3 + a
(�3 +

�1�1

D1

+
�1�2

D2

)

}

� =

6∑
k,i=1

vkwi

�2fk

�xi��
=

(D3 + a)D2�1

D1�
.

where R∗
0
 is some positive quantity, among them one with the 

lower infection level is unstable along with the stable DFE and 
the other with the higher infection level is stable. This type of 
phenomenon occurs due to the presence of saturated treatment. 
In [13, 14, 18], we see that the infected being delayed for treat-
ment is one of the origins that lead to the backward bifurcation. 
But the consideration of linear treatment function does not 
ensure the phenomenon of backward bifurcation [11, 19, 20].

4.4  Stability of Endemic Equilibrium State

The Jacobian matrix at the endemic equilibrium point E∗ is 
given by

J(E∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�A∗ − �I∗ − � 0 − �S∗ 0 − �S∗ 0

�A∗ + �I∗ − D0 �S∗ 0 �S∗ 0

0 �1 − D1 0 0 0

0 �2 0 − D2 0 0

0 �3 �1 �1 − D3 −
a

1+bI∗
+

abI∗

(1+bI∗)2
0

0 �4 �2 �2

a

1+bI∗
−

abI∗

(1+bI∗)2
+ �1 − �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 2  Backward bifurcation diagram for the parametric values 
� = 0.52, �

1
= 7.81, �

2
= 7.32, �

3
= 7.18, �

4
= 0.5, � = 0.25,Λ = 1.2,

�
2
= 0.6, �

3
= 0.9, a = 5.1, b = 65.1, d = 0.15, �

1
= 0.5, �

2
= 0.5,�

1

= 1.32,�
2
= 0.15 with different values of � (considering R

0
 as a func-

tion of � ). The red and blue lines, respectively, denote the lines of 
unstable and stable equilibrium points
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One characteristic root of the above matrix is −� and the 
other five satisfy the following equation:

Here

where D5 = �A∗ + �I∗, P =
a

1+bI∗
−

abI∗

(1+bI∗)2
.

Since one root of the characteristic equation is nega-
tive and so the EEP will be locally asymptotically sta-
ble if other roots are negative or have negative real 
parts. The other roots will be negative or have nega-
tive real parts if the Routh-Hurwitz [15] is satisfied, 
i .e.,  a1, a2, a3, a4, a5 > 0 ,  a1a2a3 > a3

2 + a1
2a4 and 

(a1a4 − a5)(a1a2a3 − a3
2 − a1

2a4) > a5(a1a2 − a3)
2 + a1a5

2.

5  Parameter Estimation, Model Validation, 
Effective Parameter, Estimation of R

0

5.1  Fitting Model to Data

To estimate the important model parameters, we consider 
the cumulative number of infective cases from the real 
data sources and the model predicted cumulative number 
of infective cases. Let yi be the cumulative number of real 
infective case and Z(ti, �), � ∈ Θ(�1, �2, ..., �l) be the cumu-
lative number of corresponding model predicted infective 
case, where Z(t, �) satisfies the differential equation

(4.3)x5 + a1x
4 + a2x

3 + a3x
2 + a4x + a5 = 0.

a1 = (D5 + D1 + D2 + D3 + P + � + D0),

a2 = (P + D5 + D0 + � + D2 + D3)D1 + (P + D5 + D0

+ � + D3)D2 + (P + D5 + � + D3)D0

+ (D3 + P)(D5 + �) − S∗(��1 + ��3),

a3 = ((P + D5 + D0 + � + D3)D1 + (P + D5 + � + D3)D0

+ (D3 + P)(� + D5)

− S∗(��1 + ��3))D2 + ((P + D5 + � + D3)D0

+ (D3 + P)(� + D5)� − �3�S
∗)D1

+ (D5 + �)(P + D3)D0 − ((��1 + ��3)� + �1�(D3 + P)

+ �(�1�1 + �2�1))S
∗,

a4 = (((P + D0 + D3)� + (P + D5 + D3)D0 − �3�S
∗

+ D5(P + D3))D1 + ((D3 + P)D0

− S∗(��1 + ��3))� + D5(P + D3)D0 − �1S
∗(P� + �D3

+ ��1))D2 + (((D3 + P)D0 − �3�S
∗)�

+ D5(P + D3)D0 − �1�2S
∗�)D1 − S∗�(P�1� + ��1D3

+ �(�1�1 + �2�1)),

a5 = (((−�3�S
∗ + D0(P + D3))D1 − �1S

∗(P� + �D3

+ ��1))� + D5D0D1(P + D3))D2

− S∗��D1�2�1,

Since Z(ti, �) is the function of the model parameter 
� ∈ Θ , hence our aim in the present section is to find � ∈ Θ 
such that

is minimized with subject to � ∈ Θ , n is the number of 
observations [21]. There are several optimization techniques 
to minimize the error for suitable � ∈ Θ ; here, we have used 
the Matlab package fmincon to estimate important model 
parameters and rest of the parameters are collected from 
online sources.

To study the spreading of COVID-19 in Spain, we have 
considered the cumulative infected cases from 24 February 
2020 to 28 April 2020, and using the formula mentioned 
previously, we have estimated model parameters. To cali-
brate the numerical simulations, the initial population sizes 
have been taken as S(0) = 46, 751, 619 , E(0) = 10 , A(0) = 2 , 
Q(0) = 1 , I(0) = 3 , and R(0) = 0 . The estimated model 
parameters have been given in Table 2.

The best fitted cumulative curve with the real cumula-
tive data, bar presentation of the daily infected cases, and 
the model predicted values and corresponding residuals 
have been given in Fig. 3. It is clear from Fig. 3c that the 
residuals of the fit are randomly distributed, which imply 
that the fitness of the data with the model is overall good 
[15]. The total error for estimating model parameters is 
1.79521035715286 × 106.

The model has been validated with real infected COVID-
19 data of Algeria (in Africa) and India (in Asia) also. Since 
the model is fitted well for different countries from differ-
ent continents; therefore, the consideration of the model is 
appropriate for COVID-19 transmission. The data fitting for 
COVID-19 in Algeria and India are given in Appendices 1 
and 2, respectively. Also, we mention the sensitivity index 
of all the parameters in the respective table. Therefore, we 
can easily find out the most influential parameters which are 
responsible for COVID-19 pandemic. By dominating these 
parameters, COVID-19 can be controlled.

5.2  Sensitivity Analysis

The sensitivity analysis reveals parametric influence of the 
disease spreading in epidemic modeling. Usually the used 
methods for sensitivity analysis are the perturbation of fixed 
point analysis and the uncertainty in parameter estimation. 
Using the sensitivity index, one can estimate the rate of 
change of variables when the parameter changes [22–24]. 
On the other hand, the most important tool to study the 

dZ

dt
= �1A + �3E + �1Q.

SSE(�) =

n∑
i=1

{
(yi − Z(ti, �))

2
}
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Fig. 3  Real data and model 
fitted infection cases of Spain: 
a cumulative infection data and 
model prediction, b bar diagram 
of daily infection data and 
model prediction, c residuals 
of the fit

(a)

(b)

(c)
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dynamics of epidemic model is R0 and it is the function of 
the model parameters. Here, our goal is to determine the 
significant model parameters which are controlling R0 . To 
study the effect of sensitivity here, we use sensitivity index 
[22] for R0 with respect to the model parameter � which is 
denoted by Γ�

R0
 and is defined by

If Γ�

R0
= � then y% increase (decrease) of � will 

increase (decrease) �y% of R0 when � is positive and for 
negative � increase of parameter will decrease R0.

It is clear from the Table 2 that the six parameters have 
a positive correlation with R0 and the rest of the parame-
ters have a negative correlation with R0 . With the increase 
of positive correlated model parameters, the prevalence of 

Γ
�

R0
=

�R0

��

�

R0

.

infection will increase and the negatively related param-
eters will decrease the number of infection.

5.3  Effect of Significant Model Parameters

Now, we shall investigate the effect of significant model 
parameters in the spreading of COVID-19 in Spain. Keeping 
other parameters fixed as in the second column of Table 2, 
we varied the parameters �, �, �1, �1 , and �4 one at a time.

(a) Effect of � (transmission rate of infection from A class)
  In Fig. 4, we present the time series of the infected 

population for different values of the model parameter 
� in the estimated interval as given in Table 2. It is clear 
from the sensitivity index that with the increase of � the 
basic reproduction number increases, i.e., prevalence 
of the disease will increase. In the figure, the red curve 

Table 2  Model estimated 
parameters with 95 % 
confidence interval and their 
sensitivity indexes

Parameter Value Confidence interval Source Sensitivity index

Λ 1021 − [25] 1.000
�
1

0.0153 (0.0119, 0.0177) [Estimated] 0.851
� 1.5498×10−6 (0.0309 ×10−5 , 0.2789 ×10−5) [Estimated] 0.644
� 9.8634 ×10−7 (0.0803 ×10−5 , 0.1236 ×10−5) [Estimated] 0.356
�
1 4.2069 ×10−4 (0.4122 ×10−3 , 0.4317×10−3) [Estimated] 0.0814

�
4

0.1485 (0.0297, 0.2673) [Estimated] −0.603
�
3 0.7877 ×10−5 (0.7875 ×10−5 , 0.8103 ×10−5) [Estimated] 0.002

b 0.0147 ×10−1 (0.0144×10−1 , 0.0149×10−1) [Estimated] −
�
1

0.0061 (0.0060, 0.0062) [Estimated] −0.012
�
1

0.0403 (0.0398, 0.0408) [Estimated] −0.055
�
2

0.0147 (0.0145, 0.0149) [Estimated] −0.0813
d 0.1600 − [1] −0.218
�
2

0.0823 (0.0811, 0.0832) [Estimated] −0.250
�
2

0.4688 (0.4603, 0.4739) [Estimated] −0.344
a 0.2709 (0.2656, 0.2724) [Estimated] −0.370
� 0.2493 ×10−3 − [25] −1.000

Fig. 4  Time series of infectious 
persons for the model parameter 
� in confidence interval
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denotes the time series of the infected population for 
the model predicted parametric values, the upper and 
lower curves denote the same for upper limit and lower 
limit of � in the interval, and the space between the 
curves denotes the prevalence of infection for differ-
ent values of transmission rate between the asympto-
matic and susceptible class in the estimated interval. It 
is clear from the figure that for higher values of � the 
daily new infection will reach the highest value shortly 
then it will start to decrease.

(b) Effect of � (transmission rate of infection from I class)
  Figure 5 denotes the daily number of new infection 

for different values of � . The description of the figure 
is similar as the previous figure’s. The nature of the 
solution for both cases shows the same result that with 
the increasing rate of infection, the number of infection 
first rapidly increases; after reaching the peak point, it 
starts to decrease.

(c) Effect of �1 (rate at which Q becomes infectious)
  Figure 6 shows the time series for the I class for 

different values of �1 . The description of the figure is 
similar as the previous figures’. Like the other two fig-
ures, it is clear from the figure that with the increase of 
this parameter the abundance of the infected population 
will increase. Thus, the infection from the quarantined 
class plays an important role in spreading the disease. 
To minimize the value of �1 , we have to quarantine the 
exposed class properly, then the spreading of disease 
can be controlled easily.

(d) Effect of �1 (transmission rate of E to A class)
  �1 is the rate at which the exposed class transfers 

to the asymptomatic class. If �1 is higher, then a large 
number of exposed people will enter the asymptomatic 
compartment, and consequently the disease will spread 
among the susceptible people shortly. For lower values 
of �1 , disease spreading will be lower. In Fig. 7, we have 

presented the time series of the infected persons for 
different values of �1 . The description of the graph is 
similar as the last three. It is clear from the figure that 
to control the disease spreading, we have to control the 
parameter �1.

(e) Effect of �4 (recovery rate of E class)
  In Fig. 8, we have presented the time series of the 

infected population for different values of recovery 
rates ( �4 ) of the exposed class of infection as given in 
the confidence interval. Like the previous figures, here, 
the red line is the model predicted daily new infec-
tion for COVID-19 but the lower line is for highest 
value of �4 and the upper line is for the lowest value. 
Hence, with the increase of this parameter, the number 
of infected population decreases, i.e., to control the dis-
ease the recovery rate plays important role. The recov-
ery rate will increase as the immunity of the infected 
person increases. So, to get recovery from the disease 
individuals have to gain a high immunity through a 
good lifestyle.

5.4  Contribution in R
0
 by Infectious 

and Asymptomatic Persons

It is clear from the expression of R0 that the two parts of R0,

respectively, arise due to the effect of asymptomatic and 
infectious classes. Using the estimated parametric values, we 
obtain R0 =6.692558249 and the values of two parts are R01

=5.29611714 and R02=1.396441109. It is clear from the val-
ues that the asymptomatic class gives the 79% contribution 
and the infectious class gives only 21% contribution in the 
basic reproduction number. Thus, the asymptomatic class 

R01 =
Λ��1

�D0D1

, and R02 =
Λ�(D1D2�3 + D1�2�1 + D2�1�1)

�D0D1D2(D3 + a)

Fig. 5  Time series of infectious 
persons for the model parameter 
� in confidence interval
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Fig. 6  Time series of infectious 
persons for the model parameter 
�
1
 in confidence interval

Fig. 7  Time series of infectious 
persons for the model parameter 
�
1
 in confidence interval

Fig. 8  Time series of infectious 
persons for the model parameter 
�
4
 in confidence interval
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gives the most contribution in spreading the COVID-19 
infection, so the asymptomatic class takes the most impor-
tant role compared to the infectious individuals. Thus, to 
control the disease, we have to minimize the asymptomatic 
persons through a huge number of testing and then we have 
to transfer them to the infectious compartment.

5.5  Estimation of R
0
 for Actual Epidemic

Here, we estimate R0 from the initial growth phase of the dis-
ease. At the primary stage of the epidemic, we assumed that 
the number of cumulative cases, Z(t), varies as Z ∝ exp(� t) , 
where � is the force of infection. In this case, the number 
of asymptomatic, exposed, quarantined, and infectious indi-
viduals varies similarly,

where A0, E0, Q0, and I0 are constants. Also from the 
first equation of (2.1), the constant susceptible population 
is S0 =

Λ

�
 . We assume that delay in treatment is 0, i.e., b = 0 . 

Moreover, the number of recovered population is 0 at the 
initial stage, i.e.,

Substituting Eqs. (5.1) and (5.2) in the respective expres-
sion for the derivative as presented in the system (2.1), we 
obtain first from E− equation

which yields

Similarly, we obtain from A, Q and I− equations, 
respectively

For simplicity, using the notations D0, D1, D2, and D3 
as defined in Section 4.1, we have

(5.1)

⎧⎪⎨⎪⎩

A(t) ∼ A0exp(� t)

E(t) ∼ E0exp(� t)

Q(t) ∼ Q0exp(� t)

I(t) ∼ I0exp(� t)

(5.2)R(t) = R0

(5.3)�E0 = (�A0 + �Io)S0 − (�1 + �2 + �3 + �4 + �)E0

(
�

�1 + �2 + �3 + �4 + �
+ 1

)
E0 =

Λ(�A0 + �I0)

�(�1 + �2 + �3 + �4 + �)
.

(
�

�1 + �2 + �
+ 1

)
A0 =

�1

�1 + �2 + �
E0,

(
�

�1 + �2 + �
+ 1

)
Q0 =

�2

�1 + �2 + �
E0,

(
�

� + � + �1 + a
+ 1

)
I0 =

�1A0 + �3E0 + �1Q0

� + � + �1 + a
.

Using the above four relations, the association of R0 and 
the force of infection can be done in the form

where P
0
=

�

D0

+ 1,P
1
=

�

D1

+ 1,P
2
=

�

D2

+ 1 and P3 =
�

D3+a
+ 1.

Now it is time to estimate the force of infection, � . Since 
the number of new cases per day, I(t), is the derivative of Z(t) 
in relation to time t, then at the beginning of the epidemics, 
I(t) ∼ I0�exp(� t).

Plotting the number of new cases per day against the 
cumulative number of cases Z(t), the phase of exponential 
growth of the cumulative number of cases is evidenced by a 
linear growth of the curve, the slope of which is the force of 
infection and which can be computed by a least-square linear 
fit of this linear phase [26, 27]. For the data of Spain from 
24 February, 2020, to 28 April, 2020, for the COVID-19 
outbreak, shown in Fig. 9a, we obtain the calculated range 
of � = 0.1497553492834 ± 0.0091 day−1 based on the slope 
shown in Fig. 9b. The straight line (red color) indicates the 
growing linear parts of the plots corresponding to the initial 
exponential growth of the epidemics.

Substituting the parametric values as presented in 
Table 2 in the expression (5.4), we obtain an estimation of 
R0 = 5.4925 and the range is R0 ∈ (5.1514, 5.8448).

5.6  Effective Reproduction Number

In epidemiology, the basic reproduction number ( R0 ) denotes 
the average number of secondary infection produced by one 
infected individual during the course of mean infection time. 
But usually when disease starts to spread initially, the sec-
ondary number of infected is higher and it reaches a peak 
point then it decreases, i.e., the reproduction number is not 
always fixed. Our aim in this subsection is to define the time 
varying reproduction, i.e., the reproduction number per day 
for COVID-19, and determine it using the available method.

(
�

D0

+ 1

)
E0 =

Λ(�A0 + �I0)

�D0

,

(
�

D1

+ 1

)
A0 =

�1

D1

E0,

(
�

D2

+ 1

)
Q0 =

�2

D2

E0,

(
�

D3 + a
+ 1

)
I0 =

�1A0 + �3E0 + �1Q0

D3 + a
.

(5.4)

R0 =
S0��1

D0D1

+
P2

(
D1P1 − S0��1

)
(D1D2�3 + D1�2�1 + D2�1�1)

D0D1

(
D1D2P1P3�3 + D1P1�1�2 + D2P2�1�1

) ,
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This type of estimation of the reproduction number is 
defined as the effective reproduction number at time t and 
denoted by R(t) [26–28]. Here, R(t) yields the information 
about the invasion of infection among the susceptible popula-
tions with time. To adopt the control policy of COVID-19 in 
Spain for day to day, it is most important to know the time 
varying reproduction number. The authors in [26, 27] defined 
the renewal equation in the form

where b(t) is the number of new cases at tth day and g(�) is 
the generation interval distribution for the disease. Using 

F(t) =
b(t)

∫ ∞

�=0
b(t − �)g(�)d�

,

the procedure described in [26, 27] to the model (2.1), the 
generation distribution can be obtained. Let the rate of leav-
ing of the exposed, asymptomatic, and infectious people be, 
respectively, p1 = � + �1 + �2 + �3 + �4, p2 = �1 + �2 + � 
and p3 = d + � + �1 . The generation interval distribution 
can be obtained as the combination of p1e−p1t, p2e−p2t and 
p3e

−p3t in the form

and mean of the distribution is T =
1

p1
+

1

p2
+

1

p3
 and 𝜏 > 0 . 

The above relation is valid when the force of infection 

g(t) =

3�
i=1

p1p2p3e
−p1t

∏3

j=1,j≠i(pj − pi)

(a) (b)

Fig. 9  a The time series of new cases of COVID-19 in Spain from 24 February 2020 to 28 April 2020; b the daily number of cases against the 
cumulative number of cases for the same time period in a 

Fig. 10  Effective reproduction 
number of Spain from 24 Feb-
ruary 2020 to 28 April 2020
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𝜁 > min
{
−p1,−p2,−p3

}
 . From the expression of F(t), the 

effective reproduction per day for the COVID-19 model can 
be estimated as R(t) = F(t) . The value of R(t) for the present 
model from 24 February 2020 to 28 April 2020 of Spain 
COVID-19 spreading is given in Fig. 10. The value of R(t) 
is strictly greater than 1 up to 3 April 2020 and then it moves 
up and down of 1. Thus, growth of disease starts to decrease 
from the 3rd of April.

6  Optimal Control

In this section, we have formulated an optimal control prob-
lem by introducing time-dependent controls due to maintain-
ing social distancing, causing the reduction of transmission 
rate of infections. The countries applying the lockdown pol-
icy have since faced huge financial losses; therefore, some 
countries are adapting a partial lockdown. Hence, control of 
COVID-19 infection spreading depends on how the social 
distancing is maintained. For the implementation of social 
distancing, we can replace the incidence rate �AS + �IS in 
the system (2.1) by �(1 − u1)AS + �(1 − u2)IS , where two 
controls u1 and u2 , respectively, measure the reduction of 
transmission from asymptomatic and infectious individu-
als due to social distancing. Thus, we formulate an optimal 
control problem as follows:

Here, we construct the cost functional as follows:

where the constants B1,B2,B3,B4 are, respectively, the losses 
due to the presence of exposed, asymptomatic, quarantined, 
and infectious individuals. The constants B5 and B6 are the 
losses associated with respective controls. The main objec-
tive of this study is to minimize the COVID-19 infections 
as well as the financial losses due to implementation of 
lockdown for the time T. In order to obtain optimal control 
strategies, we have to find optimal functions u∗

1
(t) and u∗

2
(t) 

such that J(u∗
1
, u∗

2
) = min{J(u1, u2), (u1, u2) ∈ U}, where the 

control set U = {(u1, u2)∕ui(t) is Lebesgue measurable on 
[0, 1] and 0 ≤ u1(t), u2(t) ≤ 1 for all t ∈ [0, T]} . Now, the 
existence of such optimal control functions for the system 
(6.1) has been shown by the following theorem.

(6.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS

dt
= Λ − {�(1 − u1)A + �(1 − u2)I}S − �S

dE

dt
= {�(1 − u1)A + �(1 − u2)I}S − (�1 + �2 + �3 + �4 + �)E

dA

dt
= �1E − (�1 + �2 + �)A

dQ

dt
= �2E − (�1 + �2 + �)Q

dI

dt
= �1A + �3E + �1Q − (� + d + �1)I −

aI

1+bI
dR

dt
= �4E + �2A + �2Q + �1I − �R +

aI

1+bI

min J(u1, u2) = ∫
T

0

(B1E + B2A + B3Q + B4I + B5u
2
1
+ B6u

2
2
)dt,

Theorem 4 There exists optimal control functions u∗
1
(t) and 

u∗
2
(t) that minimize J over U.

Proof It is obvious that the integrand of the cost functional 
J(u1, u2) is a convex function of u1 and u2 . Again, Theo-
rem 1 implies that all the solutions of the system (2.1) are 
bounded and in a similar manner it can be easily proved that 
all the solutions of the system (6.1) are also bounded, which 
claims that the system (6.1) satisfies the Lipshitz property 
with respect to the state variables. Therefore, there exists 
an optimal pair (u∗

1
(t), u∗

2
(t)) . Hence, the theorem is proved.

Now, we shall determine the optimal control functions 
using Pontryagin’s minimum principle [29–32]. To apply 
Pontryagin’s minimum principle, we construct the Ham-
iltonian H:

Here, the adjoint variables �i , i = 1 − 6 satisfy the equations 
d�1(t)

dt
= −

�H

�S
,
d�2(t)

dt
= −

�H

�E
,
d�3(t)

dt
= −

�H

�A
 , d�4(t)

dt
= −

�H

�Q
,
d�5(t)

dt

= −
�H

�I
,
d�6(t)

dt
= −

�H

�R
 with the transversality conditions 

�i(T) = 0, i = 1 − 6 , i.e., �i , i = 1 − 6 satisfy the adjoint 
equations:

with the transversality conditions

For optimality conditions, we differentiate the Hamil-
tonian H partially with respect to u1, u2 and we have 
u1 =

(�2−�1)�SA

2B5

 and u2 =
(�2−�1)�SI

2B6

 . This leads to the follow-
ing expressions of the optimal control functions u∗

1
(t) and 

u∗
2
(t):
u∗
1
(t) = max

{
0,min

{ (�∗
2
−�∗

1
)�S∗A∗

2B5

, 1
}}

 and u∗
2
(t) = max{

0,min
{ (�∗

2
−�∗

1
)�S∗I∗

2B
6

, 1
}}

 , where S∗,E∗,A∗,Q∗, I∗,R∗ are, 
respectively, the optimum values of S, E, A, Q, I, R and 
(�∗

1
, �∗

2
, �∗

3
, �∗

4
, �∗

5
, �∗

6
) is the solution of the system (6.2) 

H(S,E,A,Q, I,R, u1, u2, �1, �2, �3, �4, �5, �6) = B1E

+ B2A + B3Q + B4I + B5u
2
1
+ B6u

2
2
+ �1(t)

dS

dt

+ �2(t)
dE

dt
+ �3(t)

dA

dt
+ �4(t)

dQ

dt
+ �5(t)

dI

dt
+ �6(t)

dR

dt
.

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d�1

dt
= {�(1 − u1)A + �(1 − u2)I}(�1 − �2) + ��1

d�2

dt
= −B1 + (�1 + �2 + �3 + �4 + �)�2 − �1�3 − �2�4

−�3�5 − �4�6
d�3

dt
= −B2 + �(1 − u1)S(�1 − �2) + (�1 + �2 + �)�3

−�1�5 − �2�6
d�4

dt
= −B3 + (�1 + �2 + �)�4 − �1�5 − �2�6

d�5

dt
= −B4 + �(1 − u2)S(�1 − �2) +

a

(1+bI)2
(�5 − �6)

+(�1 + d + �)�5 − �1�6
d�6

dt
= ��6

(6.3)�i(T) = 0, i = 1, 2, ..., 6.
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with the transversality conditions (6.3). Again, that critical 
point is indeed a minimum because 𝜕

2H

𝜕u2
1

= 2B5 > 0 and 
||||||

𝜕2H

𝜕u2
1

𝜕2H

𝜕u1𝜕u2
𝜕2H

𝜕u2𝜕u1

𝜕2H

𝜕u2
2

||||||
= 4B5B6 > 0 . Thus, we can summarize the 

above in the following theorem:

Theorem 5 The optimal pair (u∗
1
(t), u∗

2
(t)) minimizes the cost 

functional J over the region U, where u∗
1
(t) = max{

0,min
{ (�∗

2
−�∗

1
)�S∗A∗

2B5
, 1
}}

 and u∗
2
(t) = max

{
0,min

{ (�∗
2
−�∗

1
)�S∗I∗

2B
6

, 1
}}

.
Now, we have performed the numerical simulations of the 

optimal control problem (6.1) using the forward-backward 
sweep method [31] written in MATLAB programming. For 

this simulation, we fix the parameters given in Table 2 with 
the initial conditions S(0) = 46751619 , E(0) = 10 , A(0) = 2 , 
Q(0) = 1 , I(0) = 3 , and R(0) = 0 . For this simulation, we 
also assume that B1 = 0.05 , B2 = 0.12 , B3 = 0.1 , B4 = 0.2 , 
B5 = 15 , and B6 = 15.

We simulate the model in two different ways, one is 
without using any control variables and the other is with 
both the control variables, and we run the programme for 
65 days in both cases. We adopt this in order to see the 
comparison of state trajectories for with and without con-
trol in the same frame (see Fig. 11a–d). For this simula-
tion, the optimal control functions have been illustrated 
in Fig. 12a, b.

(a) (b)

(c) (d)

Fig. 11  Time series of the populations for both with control and without control: a exposed individuals, b asymptomatic individuals, c quaran-
tined individuals, d infectious individuals
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7  Conclusion

This paper describes an epidemic compartmental model 
of COVID-19 with saturated treatment that reflects the 
boundedness of medical resources in Spain. Here, we have 
investigated the transmission dynamics of COVID-19 and 
provided some control strategies to combat the pandemic 
disease. The basic reproduction number R0 of the model has 
been obtained and we have identified two contributory parts 
of R0 . We have proved that if R0 < 1 , then the disease-free 
equilibrium point (DFE) is locally asymptotically stable and 
if R0 > 1 then the DFE is unstable. The system has the back-
ward bifurcation at R0 = 1 , i.e., there is a stable endemic 
equilibrium point along with stable DFE for R0 ∈ (R∗

0
, 1) 

for some R∗
0
< 1, which implies that making the basic repro-

duction number less than 1 is not enough to eradicate the 
COVID infection due to saturated treatment. The model 
is also validated to the COVID-19 data from 24 February, 
2020, to 28 April, 2020, in Spain and we have estimated 
the important model parameters. The effect of significant 
model parameters in spreading of COVID-19 in Spain has 
been investigated. It is clear from the estimated values of the 
parameters that the asymptomatic class gives 79% contribu-
tion, whereas the infectious class gives only 21% contribu-
tion in the basic reproduction number which implies that the 
asymptomatic individuals take the most important role com-
pared to the infectious individuals for the disease spreading. 

Here, we have estimated the basic reproduction number from 
the initial growth phase of COVID-19 infection in Spain and 
the effective reproduction number has also been estimated in 
Spain 24 February 2020, to 28 April 2020, which indicates 
that the epidemic disappears after 3 April 2020. The model 
is also used as an optimal control problem by introducing the 
controls due to the social distancing. By using optimal con-
trol theory, we have the optimal policy that minimizes the 
infection as well as the financial loss due to implementing a 
partial lockdown. Thus, the social distancing due to adapt-
ing a partial lockdown by some countries is highly effective 
for controlling the pandemic disease COVID-19. The model 
is fitted for Algeria and India also. We think our study will 
give some insights which will be helpful for health planners.

In this study, there is one notable limitation such that 
the model is appropriate for the beginning of the disease 
development and we have ignored the spatial distribution of 
population densities. Due to this limitation, the accuracy of 
the existing results and prediction in this paper could vary 
for a short period of time. For this type of pandemic, the 
standard modeling is the partial delay differential equations 
(PDDEs) which conclude both time-space distributions and 
incubation period. Also we have ignored the effect of vac-
cination though vaccination is now available for COVID-19. 
The final conclusion about modelling is that all mathemati-
cal models have some limitations and are not perfect for all 
countries.
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Appendix 1: Validation of the Model for Real 
COVID‑19 Infection Data from Algeria (in 
Africa)

To study the spreading of COVID-19 in Algeria (in Africa), 
we have considered the cumulative infected cases from 19 
March 2020 to 27 May 2020, and we have estimated model 
parameters. To calibrate the numerical simulations, the ini-
tial population sizes have been taken as S(0) = 2, 942, 747 , 
E(0) = 100 , A(0) = 30 , Q(0) = 20 , I(0) = 5 , and R(0) = 0 . 
The estimated model parameters are given in Table 3.

The best fitted cumulative curve with the real cumula-
tive data, bar presentation of the daily infected cases, and 
the model predicted values and corresponding residu-
als are given in Fig. 13. It is clear from Fig. 13c that the 
residuals of the fit are randomly distributed, which imply 
that the fitness of the data with the model is overall good 
[15]. The total error for estimating model parameters is 
1.072781608652084 × 106.

Appendix 2: Validation of the Model for Real 
COVID‑19 Infection Data from India (in Asia)

To study the spreading of COVID-19 in India (in Asia), 
we have considered the cumulative infected cases from 
9 March 2020 to 7 May 2020, and we have estimated 
the model parameters. To calibrate the numerical simu-
lations, the initial population sizes have been taken as 
S(0) = 1, 352, 642, 280 , E(0) = 90 , A(0) = 21 , Q(0) = 26 , 
I(0) = 5 , and R(0) = 0 . The estimated model parameters 
are given in Table 4.

The best fitted cumulative curve with the real cumula-
tive data, bar presentation of the daily infected cases, and 
the model predicted values and corresponding residu-
als are given in Fig. 14. It is clear from Fig. 14c that the 
residuals of the fit are randomly distributed, which imply 
that the fitness of the data with the model is overall good 
[15]. The total error for estimating model parameters is 
7.424922887277934 × 107.

Table 3  Model estimated 
parameters with 95 % 
confidence interval and their 
sensitivity indexes

Parameter Value Confidence interval Source Sensitivity index

Λ 1050.84 − [33] 1.000
�
1

0.00373 (0.00371, 0.00379) [Estimated] 0.919
� 2.89284 ×10−8 (2.86887 ×10−8 , 2.93319 ×10−8) [Estimated] 0.070
� 3.38929 ×10−6 (3.34775 ×10−6 , 3.43247 ×10−6) [Estimated] 0.929
�
1

0.20738 (0.20411, 0.20831) [Estimated] 0.0034
�
4

0.19882 (0.19778, 0.20237) [Estimated] −0.601
�
3

0.1 (0.0988, 0.1014) [Assumed] −0.248
b 2.63096 (2.59757, 2.66470) [Estimated] −
�
1

0.12125 (0.12106, 0.12436) [Estimated] −0.679
�
1

0.02121 (0.02115, 0.02168) [Estimated] −0.002
�
2

0.00499 (0.00486, 0.00497) [Estimated] −0.0003
d 0.02538 − [1] −0.002
�
2

0.028027 (0.02744, 0.02813) [Estimated] −0.069
�
2

0.04442 (0.04404, 0.04529) [Estimated] −0.249
a 0.60529 (0.59857, 0.61492) [Estimated] −0.065
� 0.000037 − [33] −1.000
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Fig. 13  Real data and model 
fitted infection cases of Algeria: 
a cumulative infection data and 
model prediction, b bar diagram 
of daily infection data and 
model prediction, c residuals 
of the fit

(a)

(b)

(c)
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Table 4  Model estimated 
parameters with 95 % 
confidence interval and their 
sensitivity indexes

Parameter Value Confidence interval Source Sensitivity index

Λ 67446.8205 − [34] 1.000
�
1

0.0134 (0.0132, 0.0136) [Estimated] 0.655
� 5.14062 ×10−10 (5.0481 ×10−10 , 5.1683 ×10−10) [Estimated] 0.348
� 1.51977 ×10−8 (1.5028 ×10−8 , 1.5364 ×10−8) [Estimated] 0.651
�
1

0.44851 (0.4447, 0.4572) [Estimated] 0.00007
�
4

0.54422 (0.5389, 0.5533) [Estimated] −0.833
�
3

0.1 (0.0988, 0.1014) [Assumed] 0.168
b 0.28122 (0.2744, 0.2814) [Estimated] −
�
1

0.06452 (0.0640, 0.0656) [Estimated] −0.594
�
1

0.11695 (0.1151, 0.1181) [Estimated] −0.224
�
2

0.00177 (0.00174, 0.00179) [Estimated] −0.00007
d 0.0414 − [1] −0.079
�
2

0.00619 (0.0061, 0.0063) [Estimated] 0.0103
�
2

0.00611 (0.0060, 0.0062) [Estimated] −0.056
a 0.02333 (0.0229, 0.0234) [Estimated] −0.044
ε 0.000039 − [34] −1.000
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Fig. 14  Real data and model 
fitted infection cases of India: 
a cumulative infection data and 
model prediction, b bar diagram 
of daily infection data and 
model prediction, c residuals 
of the fit

(a)

(b)

(c)
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