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Abstract
We apply a generalized logistic growth model, with time-dependent parameters, to describe the fatality curves of the 
COVID-19 disease for several countries that exhibit multiple waves of infections. In the case of two waves only, the model 
parameters vary as a function of time according to a logistic function, whose two extreme values, i.e., for early and late times, 
characterize the first and second waves, respectively. For the multiple-wave model, the time-dependency of the parameters is 
likewise described by a multi-step logistic function with N intermediate plateaus, representing the N waves of the epidemic. 
We show that the theoretical curves are in excellent agreement with the empirical data for all countries considered here, 
namely: Brazil, Canada, Germany, Iran, Italy, Japan, Mexico, South Africa, Sweden, and the USA. The model also allows for 
predictions about the time of occurrence and severity of the subsequent waves. It is shown furthermore that the subsequent 
waves of COVID-19 can be generically classified into two main types, namely, standard and anomalous waves, according as 
to whether a given wave starts well after or well before the preceding one has subsided, respectively.

Keywords COVID-19 · Epidemic wave · Growth model · Public health

1 Introduction

More than one year after the first death by the novel coro-
navirus (SARS-CoV-2), on January 11, 2020, in Wuhan, 
China, the direst predictions about the danger and sever-
ity of the ensuing pandemic have been confirmed. As of 
this writing, nearly 200 millions of cases of infection by 
the SARS-CoV-2 virus have been identified worldwide and 
over 4 millions of deaths have been attributed to the dis-
ease (COVID-19) caused by the virus [1, 2]. The response 
strategies to counter the propagation of the virus have var-
ied widely from country to country, and even within coun-
tries. Notwithstanding their different approaches to fight 
the COVID-19 pandemic, a great deal of countries have 
suffered a significant loss of life to the virus. A particu-
larly interesting but troublesome development in the course 
of the pandemic is the fact that many countries were able 
to control somewhat the spread of the disease during the 
first few months after its onset, only to see a subsequent 
increase in the rate of infections and deaths. This resurgence 
of the COVID-19 epidemic, commonly referred to as a sec-
ond wave of infections, has in some cases been even more 
severe that the so-called first wave. Furthermore, in several 
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countries successive waves have been observed beyond the 
second resurgence of the epidemic—in some cases up to a 
fourth wave of infections. Hence, describing the multiple-
wave dynamics of the COVID-19 pandemic is a topic of 
special relevance, both from the mathematical modeling 
viewpoint and from the public health perspective.

In the context of the COVID-19 epidemic, a second 
wave of infections can, broadly speaking, appear via two 
main different dynamics. First, in a standard or textbook 
second wave the resurgence of infections appears after the 
epidemic curves for the cumulative number of cases and 
deaths have reached a near-plateau (an schematic of an 
standard wave is shown in Sec. 3.1). This means that the 
daily numbers of new infections and deaths have decreased 
substantially—and remains low for a somewhat prolonged 
period of time—before they surge again. Correspondingly, 
the daily curves display two well-defined sharp “peaks,” 
separated by a rather shallow “valley.” In other words, in 
a standard second wave there is a clear, distinct separation 
between the first and the second waves of infections. There 
are other situations, however, where the epidemic curve 
undergoes a strong re-acceleration regime even before the 
daily rates of infections and death have been significantly 
reduced, indicating that a second wave starts before the 
first wave has subdued. Such an “anomalous” second-wave 
effect shows up in the respective cumulative curve as a rapid 
change in the trend of the growth profile, i.e., from decelera-
tion to acceleration, even though no plateau-like regime had 
yet been reached. (Examples of anomalous waves will be 
discussed in Sec. 3.3.) Thus, in an anomalous second wave 
there is a transition period where the first and the second 
waves can be said to “coexist,” as represented by the fact 
that the two peaks in the daily curve are separated by a 
relatively high valley. A similar qualitative classification 
can be applied to third and subsequent waves.

Locating and quantifying multiple-wave effects in a 
given epidemic curve, beyond simple visual inspection, 
is an important but not a trivial task. This requires, for 
instance, a mathematical or computational model that is 
able to efficiently describe the complex growth profiles 
that arise in the cumulative epidemic curves and from 
which one can estimate the location and intensity of each 
wave’s peak in the daily curves. A standard way to inves-
tigate multiple-wave effects is to start with a basic epide-
miological model and then allow its parameters to vary 
in time to reflect the occurrence of secondary waves of 
infections [3, 4]. Understanding the evolution of possible 
multiple waves of infections is also, of course, relevant 
for public health officials, as it may help them to develop 
better strategies to fight the propagation of the virus. In 
response to the widespread occurrence of second and sub-
sequent waves of the COVID-19 epidemic in many coun-
tries around the world, there is now a fast growing body of 

literature on the subject [5–22]. In such studies, compart-
mental models [5, 12, 13] and agent-based models [6, 11] 
are typically the models of choice, although models based 
on artificial intelligence algorithms have also been used 
[19–22], as well as observational data [16–18].

In this paper, we depart from previous approaches and 
propose to model multiple-wave effects in the COVID-19 
epidemic in terms of a generalized logistic model with 
time-dependent parameters. More specifically, we consider 
an extension of the so-called beta logistic model (BLM) 
[23], where we assume that each parameter of the model 
(see below) is allowed to vary continuously and smoothly 
in time between a number N of well-defined values, repre-
senting the N waves of the epidemic dynamics. We apply 
the model to study the fatality curves of COVID-19, as 
represented by the cumulative number of deaths as a func-
tion of time, for ten selected countries that display second 
and third waves, namely: Brazil, Canada, Germany, Iran, 
Italy, Japan, Mexico, South Africa, Sweden, and the USA. 
We show that the generalized BLM describes very well the 
mortality curves of all selected countries. Furthermore, 
from the theoretical curves we are able to quantify the 
transition times between the successive waves as well as 
the relative intensity of a subsequent wave relative to the 
preceding one.

2  Data

Here, we focus exclusively on mortality data from COVID-
19, rather than on the number of infection cases. The reason 
for this choice is because it is difficult to estimate the actual 
number of people infected by the SARS-CoV-2, since the 
confirmed cases represent only an unknown fraction of the 
total number of infections. In this scenario, the number of 
deaths attributed to COVID-19 is a somewhat more reliable 
measure to describe the dynamics of the epidemic [24].

As our main aim here is to analyze the second and third 
waves of the COVID-19 epidemic in different countries, 
we have included only data from countries that, up to the 
maximum date considered here, namely April 03, 2021, 
displayed at least two and at most three waves of infection. 
More specifically, we have analyzed the COVID-19 fatality 
curves for ten selected countries, namely: Brazil, Canada, 
Germany, Iran, Italy, Japan, Mexico, South Africa, Sweden, 
and the USA.

The data used in this study were obtained from the data-
base made publicly available by the Johns Hopkins Univer-
sity [1, 25], which lists in automated fashion the number 
of the confirmed cases and deaths per country. As already 
mentioned, in all cases considered here we have considered 
COVID-19 mortality data up to April 03, 2021.
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3  Methods

In the present paper, we are mainly interested in modeling 
epidemic curves that display multiple-wave effects, as indi-
cated for example by the presence of two or more regimes 
with strong positive accelerations, corresponding to the 
first and subsequent waves of infection. Because our model 
for such cases is a generalization of a single-wave model, 
we shall start by reviewing the basic one-wave model (i.e., 
with constant parameters), after which the general model 
with time-dependent parameters is discussed. Subsequently, 
we also discuss the numerical methods used to analyze the 
empirical data.

3.1  Single‑Wave Model

We model the time evolution of the number of deaths in 
the epidemic by means of the beta logistic model (BLM), 
defined by the following ordinary differential equation 
(ODE) [23, 26]:

where C(t) is the cumulative number of deaths at time t. 
We assume for the time being that the model parameters 
{r, q, �, p,K} are all constant in time, in which case they 
can be interpreted as follows: r is the growth rate at the 
early stage; q controls the initial growth profile and allows 
to interpolate from linear growth ( q = 0 ) to sub-exponential 
growth ( q < 1 ) to purely exponential growth ( q = 1 ); the 
exponent p controls the late-time growth rate, with p > 1 
implying a slow-decaying polynomial rate, whereas p = 1 
yields a fast exponential decay (see below); the exponent � 
controls the degree of asymmetry with respect to the sym-
metric S-shape of the logistic curve, which is recovered for 
q = p = � = 1 ; and, finally, K is the final size of the epi-
demic, meaning that C(t) = K , for t → ∞ . Equation (1) must 
be supplemented with the initial condition

for some given value of C0.
The BLM described in (1) is one of the most general 

growth models, from which many other known mod-
els emerge as special cases [23, 26]. For instance, for 
q = p = � = 1 we recover the standard logistic model, as 
already mentioned. In addition, for q = p = 1 we obtain 
the Richards growth model [27], with the case p = 1 cor-
responding to the so-called generalized Richards model 
[28]; while setting � = 1 in (1) yields Blumberg’s equation 
[29]; for other special cases see Ref. [26]. We also mention 
that from a epidemiological perspective the q parameter 

(1)dC

dt
= r[C(t)]q

[

1 −

(

C(t)

K

)�]p

,

(2)C(0) = C0,

accounts for the possibility of spatial heterogeneity in the 
transmission process, such as population mixing or some 
particular underlying network structure [28].

In the case where the parameters {r, q, �, p,K} are con-
stant, the BLM admits an analytic solution [23] in the fol-
lowing implicit form:

where

with 2F1(a, b;c;x) being the Gauss hypergeometric function. 
Equation (3) describes a sigmoidal curve, whose only inflec-
tion point is located at the time tc obtained by substituting 
the value Cc = K[q∕(q + �p)]1∕� in (3). The small- and large-
time asymptotic behaviors of the growth profile C(t) are as 
follows [23]:

where � = 1∕(1 − q) , A = [r(1 − q)]1∕(1−q) , � = 1∕(p − 1) , 
and B =

[

Kp−q∕(p − 1)r�p
]1∕(p−1) . (For q → 1 and p → 1 , 

one obtains exponential growth and exponential decay, 
respectively.)

Growth models have the mathematical advantage that 
they often admit analytical solutions, as we have shown 
above for the BLM, which is a very useful property when 
fitting models to empirical data [30]. Furthermore, it is 
worth pointing out that there is an intrinsic connection 
between growth models and mechanistic epidemic mod-
els of the Susceptible–Infected–Recovered (SIR) class 
of models. For instance, it is possible to construct a map 
between the Richards growth model and SIR-type mod-
els [31, 32]. Thus, when properly applied and interpreted, 
growth models are useful tools for understanding the 
spreading dynamics of infectious diseases [23, 24, 28].

Generalized logistic growth models have been used 
in the recent literature to describe COVID-19 outbreak 
[33], to characterize transmissibility and forecast of 
Zika epidemics [28], to provide a fitting dynamic mod-
els framework to epidemic outbreaks [34] , to introduce 
a sub-epidemic wave modeling framework to deal with 
overlapping and regular sub-epidemics [35] and even to 
forecast epidemic outbreaks[36]. Although in the present 
paper we restrict our analysis to the BLM, it is important 
to bear in mind the aforementioned connection between 
growth models and compartmental models. We therefore 
thought it was worth including here a brief discussion 
about a map between the BLM and a generalized SIRD 
model.

(3)t = f (C) − f (C0),

(4)f (C) =
C1−q

r(1 − q) 2F1

(

p,
1 − q

�
;1 +

1 − q

�
;

(

C

K

)�
)

,

(5)C(t) ≈

{

At𝜇, for t ≪ tc,

K −
B

t𝜈
, for t ≫ tc,
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3.2  SIRD Model with Power‑Law Behavior

As mentioned above, it is possible to put the BLM in corre-
spondence with a SIRD-like model, but in this case the target 
SIRD-type model has to be modified by the inclusion of a power 
law in the incidence term, owing to the power-law behavior 
exhibited by the BLM, as shown below. The modified SIRD 
model we consider below is somewhat similar to the recently 
proposed fractional SIR model for disease propagation [37], 
where the rate of transmission depends on the product of frac-
tional powers of the infected and susceptible sub-populations.

We start by recalling the standard Susceptible (S)–Infected 
(I)–Recovered (R)–Deceased (D) epidemiological model [38, 
39]

where S(t), I(t), R(t), and D(t) are the number of indi-
viduals at time t in the classes of susceptible, infected, 
recovered, and dead, respectively, while N is the constant 
total number of individuals in the population, so that 
N = S(t) + I(t) + R(t) + D(t) . The parameters � , �1 and �2 are 
the transmission, recovery, and death rates, respectively. The 
initial values can be chosen to be S(0) = S0 , I(0) = I0 , with 
S0 + I0 = N , and R(0) = 0 = D(0).

We then consider a modified SIRD model, where in (6) and 
(7) we replace N with only the partial population in the S and 
I compartments [32]. Furthermore, we follow Refs. [34, 40] 
and replace the term I(t) on the right-hand side of all equations 
above by [I(t)]p , to obtain

(6)
dS(t)

dt
= −

�S(t)I(t)

N

(7)
dI(t)

dt
=

�S(t)I(t)

N
− (�1 + �2)I(t)

(8)
dR(t)

dt
= �1I(t)

(9)
dD(t)

dt
= �2I(t),

(10)
dS

dt
= −

�S(t)

I(t) + S(t)
[I(t)]p,

(11)
dI

dt
=

�S(t)

I(t) + S(t)
[I(t)]p − (�1 + �2)[I(t)]

p,

(12)
dR

dt
= �1[I(t)]

p,

(13)
dD

dt
= �2[I(t)]

p.

Although this model is still not general enough to accom-
modate all the phenomenology of the intervention biased 
dynamics of the COVID-19 epidemics, it does nonetheless 
exhibit subexponential behavior for both short and large time 
scales in all compartments. In order to show this, we define 
y(t) = S(t) + I(t) and divide (11) by (10) to obtain

where R0 = �∕(�1 + �2) . Integrating both sides of (14), 
yields y = y0(S∕S0)

1∕R0 , where y0 = S0 + I0 , which when 
inserted into (10) gives

which can be rewritten as an equation of the BLM type:

where r = �(y0∕S
1∕R0

0
)p−1 , q = 1 + (p − 1)∕R0 , � = 1 − 1∕R0 , 

and S̃0 = (y0∕S
1∕R0

0
)1∕𝛼.

It now follows from (15), in comparison with model (1), 
that S(t) exhibits power-law regimes (for both early and large 
times) akin to those described by the BLM. Furthermore, it 
is easy to see that all other compartments, I(t), R(t), and D(t), 
inherit from S(t) the power-law behavior, even though their 
respective equations of motion are not of the BLM-type. 
Note that (15) describes a “decrease model” (rather than a 
growth model), as expected, since it applies to the suscep-
tible sub-population. It is nonetheless interesting to see that 
the ‘ungrowth rate’ r is mainly determined by the transmis-
sion rate � . Similarly, the exponent q is highly dependent 
on the fractional power p of the modified SIRD model (10), 
which in turn reflects the heterogeneous mixing of the sub-
populations [30, 37]. Thus, the preceding map between a 
modified SIRD model and a BLM-type growth dynamics 
sheds some additional light on the epidemiological mean-
ing of the growth model parameters. Note, however, that the 
parameters q, p, and � in (15) are not all independent of one 
another—in fact, the conditions q < 1 and p > 1 are mutually 
incompatible, so the modified SIRD model considered above 
is still incomplete to yield a full-fledged BLM. Nonetheless, 
the preceding qualitative argument shows that the power-law 
dynamics of the sort predicted by the BLM can in princi-
ple be accommodated by compartmental models. We are 
currently carrying out further research to establish a more 
complete map between the BLM and a generalized SIRD 
model where the exponents q, p, and � are all independent 
of each other.

The BLM with constant parameters has been shown to 
describe remarkably well the first wave of the COVID-19 

(14)
dy

y
=

1

R0

dS

S
,

(15)
dS

dt
= −�y0

−1S
1∕R0

0
S1−1∕R0

(

y0(S∕S0)
1∕R0 − S

)p
,

(16)
dS

dt
= −r[S(t)]q

[

1 −

(

S(t)

S̃0

)𝛼]p

,
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epidemic for several countries in Europe and North America 
[23]. However, after the resurgence of the COVID-19 epi-
demic in many countries (most notably after the Northern 
Hemisphere summer of 2020), their respective epidemic 
curves started to exhibit more complex patterns that can-
not be captured by the standard BLM. In the next subsec-
tion, we introduce a generalized version of the BLM with 
time-dependent parameters, which is much more adequate to 
describe growth processes with two or more distinct growth 
phases, corresponding to different waves of infection. We 
also point out that the modified SIRD with constant param-
eters does not fit well the single wave data of most countries 
[31]. For that we need to introduce a time dependence in 
the parameter � to account for interventions. We therefore 
shall not use the BLM-SIRD map in the analysis of the pre-
sent paper, since it is not clear how to deal with the double 
time-dependence that will necessary appear in the multiwave 
extension of the modified SIRD model. Furthermore, the 
main point of this section, as mentioned before, is not so 
much to construct an exact operational map between com-
partmental and growth models but rather to point out that 
the power laws of the BLM dynamics, for both short and 
long time scales, can have a natural realization in compart-
mental models. Further on this point, we recall that in our 
modified SIRD model discussed above it is the susceptible 
compartment S(t)—rather than the number of deaths D(t)—
that obeys a BLM-like dynamics; see Eq. (15). Nonetheless, 
we have argued that the latter quantity inherits the power-
law behaviors typical of the BLM model, even though its 
dynamical equation (within the context of the modified 
SIRD model) is not explicitly of the BLM type. This further 
justifies the fact that the numbers of deaths attributed to 
COVID-19 can indeed be described by means of an effec-
tive growth model such as the BLM. In this sense, growth 
models can be seen as bonafide epidemiological models, 
which can provide useful insights into the spread of novel 
infectious diseases [23, 24], with the advantage that they 
are more amenable to mathematical and numerical analyses. 
Due to the reasons above, we shall henceforth focus on the 
BLM with multiple waves.

3.3  Multiple‑Wave Model

Time dependence of the generic parameter �(t) of the two-
wave model, as defined by the logistic function given in (18).

Our multiple-wave model is still described by the ODE 
given in (1), but now we assume that all parameters depend 
on time, that is, r = r(t) , q = q(t) , � = �(t) , p = p(t) , and 
K = K(t) . Let us first consider the case where there are only two 
waves of infections. To capture the two distinct growth regimes 
(corresponding to the first and second waves, respectively), we 
propose that these parameters, here generically represented by 
the symbol �(t) , obey the following logistic-like equation

whose solution, with the condition �(t1) = (�1 + �2)∕2 , is of 
the following form:

where �(t) stands for any of the parameters r, � , q, p, and 
K, with �1 and �2 representing the corresponding parameter 
values for the first and second waves, respectively. A sche-
matic of the generic parameter �(t) , as defined in (18), is 
shown in Fig. 1. The parameter t1 determines the transition 
time between the first and second wave, whereas the param-
eter �1 characterizes how rapid this transition is, so that the 
larger the parameter �1 , the quicker the transition toward the 
second-wave regime. Note that the characteristic time scale 
t1 and the corresponding transition rate �1 are the same for 
all parameters. This is justified because an overall change 
in the epidemic dynamics, brought about, say, by a relaxa-
tion of control measures or by a change in the population 
behavior (or both), is expected to affect simultaneously all 
epidemiological parameters, which are in turn described in 
an effective manner by the growth model parameters [24].

It is worth pointing out, however, that although the 
parameter t1 in (18) sets the time scale for the transition 
between the first and second waves, it does not, in itself, rep-
resent the time where the second-wave effects begin, since 
the onset of the second wave also depends on the parameter 
�1 . This can be seen more clearly in Fig. 1, where we also 
indicated a piecewise linear approximation (dashed line) to 
the function (solid line) described by (18). Under this linear 

(17)
d�

dt
= �1(� − �1)

(

1 −
�

�2

)

,

(18)�(t) = �1 +
(�2 − �1)

2

[

1 + tanh

(

�1(t − t1)

2

)]

,

Fig. 1  The dashed line represents the linear approximation to the 
logistic function, where the inclined straight line meets the upper 
and lower horizontal lines at the points t

1
± 2∕�

1
 , where t

1
 and �

1
 are, 

respectively, the transition time and rate between the two plateaus; 
see text
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approximation, one sees that the linear transition region, 
t1 − 2∕𝜌1 < t < t1 + 2∕𝜌1 , could be seen as a period when 
new fatalities can, at least from a theoretical viewpoint, be 
attributed both to the terminal phase of the first wave and the 
initial phase of the second wave. This superposition effect 
between successive waves could be avoided by imposing a 
discontinuous change of parameters, i.e., taking �1 → ∞ , but 
in this case additional continuity condition on the deriva-
tive of C(t) is necessary, as considered, e.g., in Ref. [24]. 
For numerical purposes, it is more convenient, however, to 
describe the transition between the first and second waves 
with a smooth function, as indicated in (18). Physically, we 
believe that this smooth transition between different waves 
of infection is also more reasonable, as a resurgence of infec-
tions do not tend to occur suddenly. We anticipate, however, 
that estimates of the transition time computed from the lin-
ear approximation shown in Fig. 1, such as the lowermost 
point t1 − 2∕�1 , can result imprecise (for instance, if r is too 
small, this formula can largely underestimates the onset of 
the second wave). A better estimate for the onset time of the 
second wave will be presented below.

As an analytical solution for the theoretical curve C(t) 
for the BLM time-dependent parameters is no longer pos-
sible, one must resort to a numerical integration of the ODE 
(1), with the parameters {r(t), q(t), �(t), p(t),K(t)} described 
by their respective transition functions of the form given in 
(18). A schematic of the cumulative curve, C(t), for the two-
model upon numerical integration (for an arbitrary choice 
of parameters) is shown in Fig. 2a. In this figure, the dashed 
line denoted by K1 represents the plateau level if only the 
first wave had been present, whereas the parameter K2 is 
the actual final plateau corresponding to the total number of 

deaths at the end of the epidemic (assuming that subsequent 
waves of infection do not occur). In Fig. 2b, we show the 
time derivative, dC/dt, of the cumulative curve shown in 
Fig. 2a, which corresponds to the daily number of deaths as 
a function of time. In Fig. 2b, the “peaks” of the two waves 
are indicated by the inverted triangles, with the respective 
values denoted by P1 and P2 . Similarly, the minimum (“val-
ley”) between the two peaks of the daily curve is denoted 
by V1 (black dot). This point is also indicated in Fig. 2a by a 
black dot, which marks the transition between the first and 
second waves in the cumulative curve. From figure 2, it is 
clear that it is convenient to take the time of occurrence of 
the minimum V1 as a practical criterion to estimate the begin-
ning of the second wave.

The two-wave model described above can be naturally 
extended to include subsequent multiple waves by consider-
ing time-dependent parameters of the following form:

where N indicates the total number of infection waves within 
the epidemic. At face value, for a given number N of waves, 
our multiple-wave model has 5N + 2(N − 1) = 7N − 2 free 
parameters, corresponding to the initial and final values for 
each of the five BLM parameters {r, q, �, p,K} , together with 
the N − 1 parameters ti and �i , i = 1, ...,N − 1 , describing 
the transition between successive waves. Blindly trying to 
fit a given empirical epidemic curve with a model contain-
ing such a large number of parameters, even for the case 
of only two waves (for which there are 12 parameters to be 
determined), is not an efficient procedure, as one is bound 

(19)�(t) = �1 +

N−1
∑

i=1

(

�i+1 − �i
)

2

[

1 + tanh

(

�i(t − ti)

2

)]

,

Fig. 2  (a) Schematic of an epidemic curve for the cumulative num-
ber, C(t), of deaths with two waves of infections. Here, K

1
 is the pla-

teau value if only the first wave had been present and K
2
 is the actual 

value at the end of the epidemic (final plateau), assuming that no sub-
sequent recrudescence of the epidemic occurs. (b) Time derivative, 

dC/dt, of the cumulative curve shown in (a), representing the daily 
number of deaths, where the peaks for the first and second waves are 
indicated by P

1
 and P

2
 (inverted triangles), respectively, and the mini-

mum between these two peaks corresponds to V
1
 (black dot)
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to incur in over-fitting issues. Next, we describe a multiple-
step fitting procedure that aims at circumventing, at least 
partially, these difficulties.

3.4  Data Analysis

In the first step of our fitting procedure, we give an initial 
educated guess for the possible location of the first transi-
tion time, t1 , between the first and second waves. We then fit 
the data up to this time with the one-wave model, as given 
by its analytical solution (3). At this point, it is important to 
recall that the parameters r, q, and � in the one-wave model 
(1) are restricted to certain allowed ranges. For example, 
the exponent q is limited to the range 0 ≤ q ≤ 1 , as q > 1 
would imply a super-exponential growth which is not justi-
fied on epidemiological grounds. Furthermore, it is expected 
for biological reasons (see, e.g., the discussion in Refs. [24, 
32]) that the asymmetry parameter � should also be within 
the interval (0,1). Similarly, we restrict the values of r to 
the range (0,1), as we observed that values of r outside this 
interval tend to be an indication of possible over-fitting. In 
other words, we assume here that the restrictions 0 < q ≤ 1 , 
0 < 𝛼 ≤ 1 , and 0 < r < 1 are useful empirical criteria to 
reduce over-fitting.

Next, we repeat the previous step up to the second wave, 
as follows. If the empirical curve in question has only two 
waves, we carry out the numerical fit of the entire data using 
the two-wave model, that is, eq. (19) with N = 2 . If, how-
ever, the epidemic curve displays evidence of third-wave 
effects, we select an initial guess for the second transition 
time, t2 , between the second and third waves, so that the fit 
with the two-wave model ( N = 2 ) is applied only up to the 
time t2 . In both cases, the values obtained for the parameters 
r1 , q1 , �1 , p1 , and K1 in the first step described above are used 
as initial guesses for the respective parameters describing the 
first wave in the two-wave model. The initial guesses for the 
second set of parameters, r2 , q2 , �2 , p2 , and K2 , character-
izing the second wave, as well as for the rate of transition 
�1 are chosen somewhat arbitrarily within their ranges of 
definition. If the epidemic curve in question has only two 
waves, this second step concludes the numerical fitting. 
If, however, there is a tertiary wave in the data, we repeat 
the procedure above with the three-wave model ( N = 3 ), 
whereby the two sets of parameters {ri, qi, �i, pi,Ki} , for 
i = 1, 2 , obtained in the previous step are used as the ini-
tial guesses for the corresponding parameters of full three-
wave model, which is applied to the entire empirical data. 
As before, the initial guesses for the last set of parameters, 
namely, {r3, q3, �3, p3,K3} , are arbitrarily chosen in their 
range of validity.

This multiple-step procedure can in principle be applied 
to any number of epidemic waves. However, for large N, 
the numerical task of fitting a N-wave model (with 7N − 2 

parameters) to a given empirical curve becomes quite chal-
lenging, specially considering that the total number of points 
in an empirical epidemic curve is relatively small (typically 
of the order of a few hundreds). Hence, in the present study 
we shall restrict ourselves to epidemic curves that have at 
most three waves.

In all numerical fits, for both the single-wave and multi-
ple-wave models, we employed the Levenberg–Marquardt 
algorithm to solve the nonlinear least square optimization 
problem, as implemented in the lmfit package for the 
Python language, which has a built-in routine for esti-
mating the errors of the fitted parameters via the covari-
ance matrix [41]. The results of the fitting procedure are 
deemed acceptable when the errors in the parameters were 
smaller than the values themselves estimated for the param-
eters. In most cases reported here, however, the errors are 
much smaller than the maximum allowed tolerance of 100%. 
There were only two cases, namely South Africa and Italy, 
where the relative errors in some of the parameters for the 
corresponding last waves exceeded 100%. Nevertheless, 
we decided to keep these two examples here because the 
respective fits are still of good quality and also because esti-
mating the model parameters associated with the last wave 
is inherently more difficult. This difficulty is a reflection of 
both over-fitting and the fact that there are generally fewer 
points in the final portions of the empirical curves, so that 
it is not surprising that the errors estimated for the param-
eters associated with the last wave tend to be larger. We 
noticed, furthermore, that in order to control the errors and 
minimize over-fitting issues, it was necessary to apply the 
restrictions �2 = 1 and �3 = 1 (in cases where there are three 
waves). This is because the asymmetry parameter �i controls 
the bending toward the i-th plateau [23], so that minor vari-
ations in these parameters may lead to unacceptably large 
errors in other parameters. Hence, it proved convenient to set 
�2 = �3 = 1 , but otherwise all other parameters are allowed 
to vary freely in their respective ranges of validity during the 
optimization procedure.

4  Results

As our main aim in this paper is to illustrate the application 
of our multiple-wave model, we have chosen a representative 
sample of fatality curves that have at least two and at most 
three regions of accelerated growth, which can be unmistak-
ably associated with second and third waves of COVID-19 
infections. With these goals in mind, we have analyzed the 
COVID-19 fatality curves for ten selected countries, namely: 
Brazil, Canada, Germany, Iran, Italy, Japan, Mexico, South 
Africa, Sweden, and USA. For all selected countries, we 
have included data up to April 03, 2021. Up to this date, six 
countries (among the selected ones) display two epidemic 
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waves, namely: Brazil, Canada, Germany, Mexico, South 
Africa, and Sweden, while the other four countries, namely 
Iran, Italy, Japan, and US, already have three waves of infec-
tions. Below, we shall present our results for each of these 
two sets of countries (i.e., with only two and with three 
waves) separately. Tables with the values of all fitted param-
eters are shown in the Appendix.

4.1  Countries with Two Waves

As already discussed in the Introduction, a second wave of 
infections can, broadly speaking, take place in two main 
different ways. First, a “standard” second wave pattern can 
be said to occur when the epidemic curve re-embarks on a 
rapid acceleration regime after the first wave of infections 
had nearly ‘died out.’ This means that the cumulative curve 
has reached a near-plateau, before it surges upward again.

Among the six countries with two waves, three of them 
(Canada, Germany, and Sweden) displayed standard second 
waves, as shown in Fig. 3. In the left panels of this figure, we 
show the cumulative number of deaths (red circles) attrib-
uted to COVID-19 for these three countries, as a function 
of time counted in days since the first death in each country. 
Also shown in these figures are the corresponding best fits 
(black solid curves) by the two-wave model given in (1) and 
(18). One sees from the plots in Fig. 3 that the theoretical 
curves describe remarkably well the empirical data for all 
cases. The respective best-fit parameters are shown in the 
legend box of each graph in Fig. 3.

In the right panels of Fig. 3, we show the daily numbers 
of deaths for the respective countries shown in the corre-
sponding left panels. Here, again the red circles represent 
the empirical data, while the black solid curves correspond 
to the time derivative of the theoretical curve C(t) predicted 
by the two-wave model, as obtained from the fits shown in 
the left panels of the respective figures. One sees that the 
theoretical daily curves are also in very good agreement with 
the empirical data. In particular, the model predicts remark-
ably well the location and general shape of both peaks (in the 
daily empirical curves) associated with the first and second 
waves, respectively. It is worth emphasizing that the numeri-
cal fits are performed only for the cumulative curves, so 
that the good agreement between the theoretical daily curves 
and the empirical daily data represents a further consistency 
check of the model. Note, in particular, that the two peaks 
in the respective daily curves in Fig. 3 are well separated 
by a shallow valley, corresponding to the intervening near-
plateau between the two waves in the cumulative curve.

In another possible scenario, an “anomalous” second 
wave can develop well before the first wave has signifi-
cantly subsided, causing the cumulative curve to change 
trend at some point in time (before it reaches a plateau) 
and re-accelerate again. Examples of such situations are 

shown in Fig. 4 for the epidemic curves of Brazil, Mexico, 
and South Africa, where the same symbol convention as 
in Fig. 3 is used. Note that in such cases there is a sort 
of “superposition” of two waves in the sense that a sec-
ond wave-like surge appears when the daily deaths (of 
the first wave) are still relatively high. This implies that 
the two peaks in the daily curves are not well separated 
apart, with a relatively high valley between them, as seen 
in Fig. 4. Note, however, that in Brazil, contrarily to the 
other two countries shown in Fig. 4, the second wave has 
not yet reached its peak, as seen in Fig. 4b. We remark, 
furthermore, that among the three countries with anoma-
lous second waves, South Africa has the least anomalous 
of them, in the sense that its daily curve has the lowest 
minimum between the two peaks; see Fig. 4f. Neverthe-
less, this ‘valley’ is considerably higher than those seen 
in the countries shown in Fig. 3, where a more standard 
second wave has taken place.

We have seen from Figs. 3 and 4 that our two-wave model 
is capable of describing very well the epidemic curves, over 
their entire range, for both types of second waves described 
above. Let us now examine countries that have three waves 
of infections.

4.2  Countries with Three Waves

In Fig. 5, we show the cumulative number of deaths for the 
four countries (Iran, Italy, Japan, and the USA) with three 
waves. In this figure, we use the same convention as before, 
where the empirical data are denoted by red circles and the 
theoretical predictions by solid black curves. In this case, the 
best fits are performed with the multiple-wave model given 
in (1) and (19), with N = 3 . Again, one sees from the plots 
in Fig. 5 that the theoretical curves describe very well the 
empirical data for all cases shown.

One sees from Fig. 5 that the second waves for Iran and 
the USA can be classified as being of the anomalous type (in 
the sense described above). In the case of Italy, the second 
wave has instead a more standard pattern, similar to that seen 
in the countries shown in Fig. 3. Japan’s epidemic curve is 
also of particular interest, as the second wave there started 
from a rather low minimum death rate (see Fig. 5f), so that 
on this count it resembles the standard second waves seen in 
other countries in Fig. 3. However, the second wave in Japan 
was anomalous in other ways, such as the fact that it was rela-
tively short and overall less severe than the first one. Note, 
furthermore, that in all three cases of anomalous second wave 
among countries with three waves (i.e., Iran, Japan, and the 
USA), the third wave was the most intense one.

Another noteworthy message taken from Fig. 5 is 
the fact that in the cases of Iran, Japan, and USA, the 
third waves have already clearly passed their peaks and  
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the curves are now in a deceleration regime. The situa-
tion of Italy is, however, quite different in that the third 
wave is still in its early stage and the peak has not yet  
been reached, indicating that the epidemic curve is 

accelerating. (For ease of comparison, we have collected 
in the tables given in the Appendix  the  best-fit parame-
ters and their respective errors for each of the fits shown  
in Figs. 3, 4, and 5.)

Fig. 3  Left panels: Cumulative number of deaths (red circles) attrib-
uted to COVID-19 for (a) Canada, (c) Germany, and (e) Sweden, up 
to April 03, 2021. The solid curves are the best fits by the second-
wave model, where the black dot in each curve represents the time, 
t
(1)

min
 , that separates the first and second waves. Right panels: Daily 

number of deaths for the same countries as in the corresponding left 

panels, where the empirical data are indicated by red circles and the 
solid curve represents the time derivative of the respective theoreti-
cal curve in the left panels. The maxima and minimum of the daily 
curves are indicated by the inverted triangles and the black dots, 
respectively
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5  Discussion

We have seen above that the cumulative death curves of 
COVID-19 for many countries exhibit multiple waves 
of infection and death. Although a visual inspection of 
an epidemic curve can easily reveal whether a second or 

subsequent wave of infections is likely to be present, esti-
mating more precisely when such resurgences actually 
begin is not an obvious task. We have argued in Sec. 3.3 
that the time of occurrence of the minima in the daily 
curve, as predicted by our model, can be taken as an esti-
mate for the time when the effects due to a new wave of 

Fig. 4  Same as in Fig. 3 for (a) Brazil, (c) Mexico, and (e) South Africa
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Fig. 5  Same as in Fig. 3 for (a) Iran, (c) Italy, (e) Japan, and (g) the USA
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infection start to become important. The corresponding 
values of such minima for each of the selected countries 
are indicated in Figs. 3-5 by a black dot on both the cumu-
lative and daily curves. From inspecting these figures, one 
sees that the black dots do indeed represent good estimates 
for the separating points between successive waves.

Similarly, we can estimate the locations and intensities of 
the peaks of the successive waves in a given epidemic curve by 
computing the time of occurrence and the value of the respec-
tive maxima of the theoretical daily curve. The points of local 
maxima are indicated in the right panels of Figs. 3-5 by an 
inverted triangle. A more detailed discussion about the inten-
sities and duration of these multiple waves is presented next.

Based on our model, we can define a measure of the inten-
sity of a given subsequent wave, relative to the preceding one, 
by considering the ratio of the two successive peaks in the 
daily curve. More precisely, we consider the following meas-
ure for the intensity of the k-th wave, with k > 1 , relative to 
the preceding wave:

where Pj denotes the value of the j-th maximum (peak) of 
the theoretical daily curve. More precisely, we define

where t(j)max is the location of the j-th peak, i.e., C̈(t(j)max) = 0 
and C⃛(t(j)max) < 0 , with dots denoting time derivative. For later 
use, we shall also define the values of the minima (heights 
of the valleys) of the daily curve by

where C̈(t(j)
min

) = 0 and C⃛(t(j)
min

) > 0.
For countries with only two waves, the values of t(j)max 

and Pj , for j = 1, 2 , as well of t(1)
min

 , V1 , and �2 are shown in 
Table 1. One important feature seen in this table is the fact 
that the minimum values V1 for Canada, Germany, and Swe-
den are indeed quite low ( V1 ≤ 5 ), in comparison with what 
is observed for Brazil, Mexico, and South Africa, where 
V1 = 541, 413, 54 , respectively. This confirms our findings 
anticipated above that the latter countries have experienced 

(20)�k =
Pk

Pk−1

,

(21)Pj = Ċ
(

t(j)
max

)

, j = 1, 2, ...,N,

(22)Vj = Ċ
(

t
(j)

min

)

, j = 1, 2, ...,N,

a somewhat anomalous second wave, in the sense that the 
daily number of deaths starts to grow again well before the 
first wave has been brought under control. This effect is par-
ticularly strong in Brazil ( V1 = 541 ) and Mexico ( V1 = 413 ), 
indicating that these two countries have not enforced effec-
tive measures to tame the first wave of COVID-19.

Among the countries that have experienced a standard 
second wave, Germany had the more intense second wave 
relative to the first one, with a relative intensity of �2 = 3.41 ; 
see Table 1. This shows that, while Germany was quite 
successful in controlling the first wave of COVID-19, the 
relaxation of control measures during the Summer months 
of 2020, compounded perhaps by the lack of adherence by 
the population to the health authorities’ guidelines, lead to a 
strong resurgence of the epidemic, so much so that the great 
majority of deaths in Germany occurred during the second 
wave, as one can see from Fig. 3c.

In connection with Table 1, it is also worth pointing 
out that among the three countries with standard second 
waves, the second wave started 5–6 months after the first 
death (namely from mid-August to mid-September, 2020). 
In contradistinction, for the three countries with anoma-
lous second waves the first wave lasted longer and the 
second wave began only 7–8 months after the first death 
(namely, around the October–November, 2020). Consid-
ering that Mexico is in the Northern Hemisphere (albeit 
in a tropical/subtropical region), as are the countries with 
standard second waves in Figs. 3, the different time scales 
for the onset of the second waves seen in the two groups 
of countries in Figs. 3-4, seem to reflect the general strate-
gies adopted in the respective countries, rather than sea-
sonal effects. In other words, it may so be that the season 
(Summer) that coincided with the relaxation of the mitiga-
tion measures, say in Europe, played only a small part in 
explaining the timing of the second wave. A similar behav-
ior was seen for the 1918 influenza pandemic, where sea-
sonal effects were difficult to predict [42]. It might indeed 
be the case that the internal dynamics of the complex 
epidemic system, as represented by the virus propagation 
dynamics coupled to the population responses, inherently 
brings about a time scale for the occurrence of successive 
waves. This is an interesting possibility that deserves to 
be studied further.

Table 1  Parameters estimating 
the location and respective 
values of the maxima and 
minimum of the daily curves for 
countries with two waves

Country First death t(1)
max t

(1)

min
t(2)
max

P
1

P
2

V
1

�
2

Brazil 03/17/20 06/16/20 11/21/20 – 1132 – 541 –
Canada 03/09/20 04/27/20 08/14/20 01/02/21 187 139 5 0.74
Germany 03/09/20 04/12/20 08/15/20 01/11/21 236 804 4 3.41
Mexico 03/19/20 07/12/20 10/22/20 01/28/21 638 1134 413 1.78
South Africa 03/27/20 07/30/20 11/04/20 01/11/21 205 544 54 2.65
Sweden 03/10/20 04/24/20 09/13/20 01/11/21 82 100 2 1.22
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In Table  2, we show the values of t(j)max and Pj , for 
j = 1, 2, 3 , t(l)

min
 and Vl , for l = 1, 2 , as well as �2 and �3 , for 

the countries with the three waves. Ones sees from this table 
that the values ( V1 ) of the first minimum of the daily curves 
for Iran and US are considerably higher than those for Italy 
and Japan, thus confirming the ‘anomalous’ nature of the 
second waves in the former two countries. The second wave 
in the USA was particularly anomalous (as was the case 
in Brazil and Mexico; see Table 1), in the sense that the 
second resurgence started when the daily number of deaths 
was still quite high ( V1 = 590 for the US). Japan’s second 
wave is also somewhat anomalous, as compared, say, to the 
countries shown in Fig. 3, but there the ‘anomaly’ has more 
to do with the fact that the second wave had a relatively short 
duration of about two months, as estimated from the interval 
between t(2)

min
 and t(1)

min
 , which was approximately the same 

duration as the second wave in the USA. Furthermore, we 
also see from Table 2 that in the three countries where the 
third wave has already peaked, this last wave was the most 
intense one, as confirmed by the fact that not only the factor 
�3 but also the product �2�3 , which gives the relative intensity 
of the third wave compared to the first, are all significantly 
greater than one.

We have seen above that, among the ten countries 
selected here, six of them (Brazil, Iran, Japan, Mexico, 
South Africa, and the USA) have developed anomalous 
second waves. It is reasonable to argue that such an anoma-
lous behavior is most likely an indication of the fact that 
mitigation measures were relaxed prematurely (i.e., before 
the first wave was brought under control). In contrast, in 
countries that experienced a standard second wave (even if 
eventually a third wave ensued, as in the case of Italy), the 
second resurgence started only after a relatively long period 
during which the epidemic was kept under control, as indi-
cated by a low daily death rate over this period; see, e.g., 
the long and shallow valleys between the first two peaks in 
Figs. 3b, 3d, and 5d.

One important and worrisome aspect of our results above 
is the fact that, regardless of the different evolution pat-
terns in the countries considered here, in all cases the sub-
sequent waves (independently of their number) accounted 
for the majority of the mortality toll. This is a clear and sad 
reminder that the local populations and health authorities 
must remain vigilant at all times, from beginning to the 
end of the pandemic, as the risk of a resurgence is always 
present for as long as the epidemic is not brought under 

Table 2  Parameters estimating the location and respective values of the maxima and minima of the daily curves for countries with three waves

Country First death t(1)
max t

(1)

min
t(2)
max t

(2)

min
t(3)
max

P
1

P
2

P
3

V
1

V
2

�
2

�
3

Iran 02/19/20 03/26/20 05/16/20 07/21/20 09/07/20 11/11/20 158 200 478 53 138 1.27 2.39
Italy 02/21/20 03/30/20 09/03/20 11/25/20 03/07/21 – 746 731 – 5 281 0.98 –
Japan 02/13/20 04/22/20 07/28/20 08/30/20 10/01/20 01/25/21 16 17 88 2 5 1.06 5.18
US 02/29/20 04/19/20 06/20/20 08/03/20 09/28/20 01/12/21 2287 1020 3253 590 730 0.45 3.19

Fig. 6  Cumulative (left panel) and daily (right panel) number of deaths attributed to COVID-19 for Serbia up to April 15, 2021, where one can 
clearly identify four distinct waves of infection
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effective control worldwide. In fact, there are already some 
countries that are undergoing a fourth resurgence of the 
epidemic. An example, for illustrative purposes only, is 
shown in Fig. 6 for Serbia, where one clearly sees four dis-
tinct waves of infections of increasing intensity. Our N-wave 
model, with N = 4 , could in principle be straightforwardly 
applied to such a curve, but in this case the numerical task 
of fitting the parameters becomes more challenging, due 
to the large number of parameters to be determined (26 
of them for N = 4 ). Hence, in the present study we have 
restricted our analysis to COVID-19 mortality curves that 
display at most three waves. It is worth pointing out that 
there are other scenarios that may also be compatible with 
the observed multiple waves effects [35], such as independ-
ent outbreaks occurring in well separated regions and new, 
more aggressive variants of the virus giving rise to new 
waves of infections or even a combination of both. From 
the perspective of growth models, it is not possible to dis-
tinguish between these scenarios, as these information are 
not easily available in the aggregated data. In such cases, a 
more detailed description, such as a SIRD-like model with 
multiple compartments or agent-based models, may be nec-
essary, at the cost unfortunately of increasing considerably 
the number of parameters. A description of the aggregated 
data taking into account either a finer geographical scale or 
the appearance of new variants is, however, well beyond the 
scope of this paper.

6  Conclusion

In this paper, we have studied the dynamics of the second 
and third waves of infections by the novel coronavirus. To 
this end, we have introduced a generalized logistic model 
with time-dependent parameters to analyze the COVID-
19 fatality curves of ten countries from five continents. 
Not only the theoretical curves are in excellent agreement 
with the empirical data for all cases considered, but they 
also allow us to infer predictions about the location and 
severity of the first and subsequent waves. For instance, 
by estimating the starting point (in terms of the minimum 
daily death rate) and duration of a given subsequent wave, 
we have argued that they can be qualitatively classified as 
being either of a standard type (i.e., one that follows after 
the previous wave has nearly subsided) or of an anoma-
lous nature (i.e., where the resurgence of infections takes 
places, while the preceding wave was still developing).

Furthermore, we have argued that the occurrence of 
such anomalous waves is the consequence of a premature 
relaxation of the control measures by government and 
health officials. Similarly, in countries that have expe-
rienced a standard second wave, a sort of “paradox of 
success” [43] seem to have been at play, whereby early 
success in controlling the first wave of COVID-19 might 
have led to a false impression that “the worst was behind,” 
thus stimulating a relaxation of voluntary or enforced 
measures beyond what would be desirable. In the present 
study, we have analyzed only ten representative countries, 
as our main objective was to introduce and validate our 
multiple-wave model. Nevertheless, we expect that the 
trends identified here should hold in general.

The results reported in the present paper are relevant 
both from a mathematical viewpoint, in that they show 
that additional care is needed when modelling multiple-
wave epidemics, and from a practical perspective, for they 
may help policymakers and health authorities in devising 
strategies to battle the disease during all of its waves. 
Here, we have restricted our analysis to second- and third-
wave effects, but our model can in principle be applied to 
any number of multiple waves).

Appendix: Tables of Fitted Parameters

We present in Tables 3, 4, and 5 the best-fit parameters and 
their respective errors for each of the fits shown in Figs.3, 
4 and 5.
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