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Abstract
This paper presents a method to obtain the variations of the entropies of the phases of a chemical substance in its vapor state, 
which allows deriving, from thermodynamics, the axioms of a quantum theory that conforms to special relativity.
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1  Introduction

Let us start by recalling some fundamental discoveries that 
occurred before the Copenhagen Interpretation of quantum 
mechanics: 

	 1.	 In 1738, Daniel Bernoulli showed that a system of par-
ticles endowed with momentum degrees of freedom, 
enclosed inside a container of fixed volume V, exerts a 
pressure p on its internal surface. Its energy E is then, 

	 2.	 Around 1850, Clausius revealed the existence of a 
hitherto unknown magnitude conjugated to the tem-
perature, the entropy S, which allowed him to demon-
strate the asymmetry of time and contributed with the 
mathematical conditions for the eventual formulation 
of the fundamental identity of thermodynamics, 

	 3.	 During the years 1856–1860, Kirchhoff established 
that the chromatic distribution of electromagnetic 
radiation of the black body depends exclusively on its 
temperature. He also defined the hollow (Hohlraum), 
a hypothetic adiabatic container conceived to retain a 
finite amount of radiation.

	 4.	 In 1862, Maxwell revealed that electromagnetic radia-
tion is endowed with momentum, exerting pressure on 
any surface to which it is exposed to.

	 5.	 In 1876, based on Maxwell’s revelation, A. Bartoli 
redefined radiation as a Bernoulli’s discrete fluid [1].

	 6.	 In 1884, adopting Bartoli’s redefinition of heat, and 
using the laws of thermodynamics, Boltzmann derived 
Stefan’s radiation law from the equation [2], 

	 7.	 In 1900, Planck obtained the chromatic distribution 
of energy of radiation, introducing his constant h into 
thermodynamics.

	 8.	 In 1907, Einstein derived a quantum-thermodynamic 
expression for the specific heat of solids, explaining 
their departure from the Dulong–Petit law at low tem-
peratures.

	 9.	 In 1911, Sommerfeld interpreted the identity 

 as a taut constraint and introduced the dimensionless 
number, known as degree of gas degeneration [3], 

	10.	 In 1911–1912 Sackur and independently, Tetrode, 
using equation , deduced that the entropy of a mono-
atomic gas, revealing that it is a function of a single 
variable �.

	11.	 In his derivation of Planck’s radiation formula in 1917, 
assuming that heat has a momentum degree of free-
dom, Einstein concluded for the existence of three dif-
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ferent processes of quantum exchange, namely, absorp-
tion, spontaneous emission (which recalls a radioactive 
reaction), and stimulated emission.

From Einstein’s theory of radiation, one can conclude that 
these processes are both mutually exclusive (no two of them 
happen simultaneously) and individually stochastic (the 
waiting time between two consecutive events is a random 
variable). Restating Einstein’s assumptions in terms of the 
theory of stochastic processes, I arrived at the following 
theorem [4]:

§ 1 The time evolution of the probabilities of the occupa-
tion numbers of the quantum states in the gases of Bose and 
Fermi particles can be described by a Markov birth-and-
death process whose laws of change derive from the condi-
tional probabilities that characterize the ladder operators of 
their particles.

Note that fluctuation in equilibrium and time asymmetry 
are mere corollaries of theorem § 1.

Being or Becoming?.  By connecting absorption to emis-
sion into a single state transition matrix, Matrix Mechanics 
assumes that these processes are concomitant. Therefore, if 
Einstein’s theory is correct, Matrix Mechanics holds only 
for systems in thermodynamic equilibrium.

It is remarkable that thermodynamics, instrumental 
for the empirical characterization of the matter–radiation 
interaction (the phenomenon which gives rise to quantum 
mechanics), has been so neglected after the development of 
matrix and wave mechanics.

The description of the thermodynamic equilibrium for-
mation of the black body radiation in a hollow, given by Max 
Planck in his Scientific Biography, provides an enlightening 
interpretation of the results of the theorem § 1, and justifies 
Einstein’s 1917 approach:

“I assumed the cavity to be filled with simple linear 
oscillators or resonators, subject to small damping 
forces and having different periods; and I expected the 
exchange of energy caused by the reciprocal radia-
tion of the oscillators to result, in time, in a stationary 
state of the normal energy distribution corresponding 
to Kirchhoff’s Law.”

The current explanation for the collective behavior of the 
gases of Bose and Fermi particles derives from the assump-
tion that assigns either to their wave functions or to their 
particles the following ontological characters:

–	 While the wave functions of Bose particles are symmet-
ric, Fermi’s are anti-symmetric.

–	 The particles in a Bose gas are indistinguishable while 
those in a gas of fermions are compelled to occupy the 
quantum states according to the Pauli Exclusion Princi-
ple.

Nevertheless, besides theorem § 1, other explanations for 
the indistinguishability of identical particles can be found:

§ 2 During a chemical reaction, the degrees of freedom 
of the molecules of the reactants are annihilated, losing their 
classical identities, while new degrees of freedom, with 
unpredictable values, are created in its products.

In fact, according to quantum mechanics, the internal 
state of an atom or of a molecule changes only when they 
exchange one quantum of action with radiation. When 
two molecules A and B react to form the molecule AB, the 
degrees of freedom of both, A and B, are destroyed, while 
those of the molecule AB acquire new values, which depend 
on the way A and B interact with radiation.

Besides, classical predictability becomes impossible due 
to the indistinguishability of particles, which, according to 
theorem § 1, results from the stochastic processes that lead 
the system to equilibrium.

Let us look at this phenomenon from a different stand-
point. To describe the state of motion of a classical system 
composed of f degrees of freedom, it is necessary to give 2f 
real values of its dynamic variables. In quantum mechanics, 
differently, a system is described by only half that number. 
The reduction in the amount of information required to char-
acterize the quantum system has been hitherto attributed 
to the restrictions imposed by the uncertainty principle [5].

The mechanics of Lagrange provides a different inter-
pretation: It assigns the reduction of the number of degrees 
of freedom to the existence of constraints. As stated in §2, 
a chemical reaction destroys the degrees of freedom of a 
molecule. We can therefore assume that during the reaction, 
the motion of the particles is subject to a constraint, namely, 
the Sommerfeld taut constraint (4).

Note that the explanations given above have nothing to 
do with the Copenhagen interpretation of quantum mechan-
ics, which assigns to the so-called uncertainty principle the 
consequences of the constraint Δp

�
Δq

�
≥ h.

It will be shown in Section 3 that, by assuming that the 
laws of change in theorem § 1 derive from the ladder opera-
tors, we are admitting their precedence over Pauli’s exclu-
sion and the indistinguishability principles, which, are not 
ontological characters of the particles but, instead, mere con-
ditions of thermodynamic equilibrium. Hence, displacing a 
system of bosons from equilibrium allows distinguishing 
some of them from others; removing a gas of fermions from 
its stationary state might force more than one fermion to 
occupy the same quantum state.
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2 � The Perfect Vapor

Two hypothetical mechanical models were used to simulate 
the behavior of matter under particular conditions: 

1.	 The Bernoulli discrete fluid, was used in

–	 the foundations of the kinetic theory of gases, mainly 
by Maxwell and Boltzmann;

–	 by Boltzmann in his derivation of Stefan’s law of 
radiation;

–	 by E. Leib as an abstract model (the Perfect Vapor) 
for a substance in the vapor state [6], reformulated 
in the forthcoming Sections;

2.	 The system of resonators was used by

–	 Boltzmann (1866), in his theoretical derivation of the 
Dulong–Petit empirical law (1819);

–	 Planck (1900) in the derivation of the black body 
radiation law;

–	 Einstein (1907) in the quantum derivation of the spe-
cific-heat of solids, later improved by Debye (1912).

–	 in the derivation of the consequences of the ladder 
operators on the population of quantum states.

Equation of State.   Hereafter we will resume the Bartoli–
Boltzmann approach to the discrete fluid by treating it as a 
thermodynamic system, which allows addressing the hith-
erto open problem in Kinetic Theory, namely to provide the 
methods:

–	 to predict the thermodynamic properties of a chemical 
substance in its vapor state;

–	 to describe the elementary laws that rule the motion of 
its particles during a chemical reaction.

This stratagem starts with subjecting the Equation (1) to the 
laws of thermodynamics (2). For generality, we will rewrite 
that equation in the form E = �pV  , where � is a rational 
number.

To obtain the functional relations involving the thermo-
dynamic variables of these two families of discrete fluids 
under the constraints imposed by the second law, we subject 
equation E = �pV  to the Maxwell relation1,

Substituting E by �pV  in (6), we obtain,

Being equation (7) a linear pde of the first order, its solu-
tion depends on an arbitrary function � with a determined 
argument2,

where z = pV∕RT . Since in physics the argument of an inde-
terminate function must be dimensionless, we conclude that 
the argument � of the equation of state (eos) z = �(�) of the 
Perfect Vapor, can be given by the formula:

where the dimensionless number � is the cubic root of the 
degree of gas degeneration (5).

The equation of state (8) for � = 3 , which represents elec-
tromagnetic radiation, acquires the well-known form,

Equations (1) and (3) lead to the eos (8), expressed by func-
tions of a single argument. Hence, according to the phase 
rule, the substances they define are two-phase systems. The 
former will be here adopted as the definition of the Perfect 
Vapor, and the latter is the subject of the Bose–Einstein con-
densation theory.

Asymptotic Behavior.   It is known that for a chemical sub-
stance � , we have,:

It is worthwhile to express z = ��(�) in terms of the power 
series expansion,

where the ai ’s are constants, and f�(�) is a function that 
characterizes the indeterminate substance � of the single 
argument � . Expressed in terms of thermodynamic variables, 
it acquires the form,

(6)
(
�E

�V

)
T
= T

(
�p

�T

)

V

− p.

(7)T

(
�p

�T

)

V

−
1

�
V

(
�p

�V

)

T

=
1

� + 1
p,

(8)z = �(T�V),

(9)� =

�
h√

2�mkT

3

�
N

V

�
,

z = �
(
h�

kT

)
.

lim
�→0

��(�) = 1.

(10)z = 1 − �
(
a1 + a2� + a3�

2 +…
)
= 1 − f�(�),

1  The conditions imposed on the gas here are essentially the same 
obtained by Clapeyron in 1834 to derive equation dp

dT
=

ΔH

TΔV
, known 

as the first physicochemical application of the second law of thermo-
dynamics [7].

2  The derivation of the equation of state (8) of the Perfect Vapor is 
a translation to the native variables thermodynamics of the abstract 
model proposed by Leib [6].
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For illustration pusporses the equation of state (11 is con-
fronted against the steam pVT data in Appendix 1.

The Entropy of the Perfect Vapor.   Let us subject the equa-
tion of state (11), to the Maxwell relation,

which leads to a different pde, whose solution, S = S� + S� , 
is given by the following expressions,

In expression (13), one can recognize the Sackur–Tet-
rode entropy of the ideal monoatomic gas. The total 
entropy of the perfect vapor arises as the sum of two terms, 
which, according to Boltzmann’s principle, are statistically 
independent.

After the entropies (10) and (11), the Perfect Vapor can be 
treated as an extension of the abstract notion of the Perfect 
Gas (10) to describes a two-phase system, in particular, the 
vapor.

So far, we have been able to determine the entropy of the 
liquid phase (14) from the equation state (1) by purely ther-
modynamic methods. However, to determine the unknown 
function f (�) , we must have recourse to special relativity, 
as shown in Section 3.

Modeling the Liquid Phase.  To describe the phases of the 
perfect vapor, we will have recourse to the notions of radicle 
and cluster, defined as follows:

Radicle.   Let’s assume that during vaporization, the perfect 
vapor molecules do not dissociate themselves into smaller 
molecules. Instead, during these phase transition processes, 
they behave as indivisible units, as it happens with the atoms 
in the molecules in chemical reactions. Molecules with this 
chemical behavior were named radicles by Berzelius [8].

Cluster.  A cluster is a molecule composed of a random num-
ber �

�
(t) of radicles.

The liquid phase will be here treated as a many-body 
quantum system composed of a random number of clusters. 
This model of the liquid phase of the perfect vapor allows 
derive its “laws of motion” described, not in terms of the 
trajectories of its particles, expressed by their positions 

(11)pV + RTf�(�) = RT , f�(0) = 0,

(12)
(
�S

�V

)
T
=

(
�p

�T

)

V

,

(13)S� = − 3R ln �,

(14)S� = −
3

2
Rf�(�) + 3R∫

f�(�)

�
d�,

and velocities as functions of time, but in terms of the time 
evolution of the Probability Distribution Function (pdf) of 
the occupancy random numbers of the quantum states of a 
many-body system [4].

3 � Matter–radiation Equilibrium

In this section, we will resume Kirchhoff’s adiabatic hollow, 
placing inside it a portion of liquid, to analyze the vaporiza-
tion process and the formation of its equilibrium, for this 
case is entirely analogous to a mixture of liquid and vapor 
enclosed in a cylinder with a moving piston3. Since both 
equations, (1) and (3), define thermodynamic systems, we 
are allowed to study their equilibrium according to the fol-
lowing theorem:

§ 3 “(...) in any reversible process a system, or any part 
of a system, undergoes an increase in entropy as it absorbs 
heat from the medium, resulting in an equal decrease in the 
entropy of the medium, and that the increase in entropy is 
equal to the heat so absorbed divided by the absolute tem-
perature, dS =

�qrev
T

.” [7]
The following corollary is derived from Theorem § 3: 

Ehrenfest Adiabatic hypothesis. During an adiabatic pro-
cess, the mechanical action is conserved.

Therefore, in the thermodynamic equilibrium, the average 
variation of their phase-space volumes must be equal:

By adopting the approximation ⟨�⟩ ∝
�

3

�
V

N

�
 for the wave 

length of radiation, we obtain, from (15), the proportionality 
relation kT ∝ mc2 , which reveals that the motion of mole-
cules under the action of thermal radiation is relativistic.

In the first law of thermodynamics, heat is treated as 
a scalar amount of energy, which is converted into work, 
through a undetermined microscopic conversion processes. 
Although the entropy of the liquid phase 14 can be obtained 
from the equation of state, by an exclusively thermodynamic 
method, it depends on the indeterminate function f (�) . 
The determination of its functional form, as shown in the 
sequence, requires having recourse to special relativity.

To ensure epistemological consistency between the 
definition of the discrete fluid and its thermodynamic con-
sequence (9), we represent the energy E according to the 
expression,

(15)kTc

�
=
√
2�mkT

3

�
V

N
.

(16)E2 = m2c4 + c2p2 =
(
mc2 + �cp

)(
mc2 − �cp

)
.

3  p. 111 [7] and §§ 51,52 [9].
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It is possible to give a thermodynamic meaning to equa-
tion (16) by having recourse to quantum mechanics. In 
this undertaking, however, we must move a step backward 
towards the Old Quantum Theory, adopting the hypotheses 
below: 

1.	 Sommerfeld’s constraint. That the relation ΔpΔq ≥ h , 
currently interpreted according to Heisenberg’s uncer-
tainty principle will be here reinterpreted according to 
the Sommerfeld taut constraint (4).

2.	 Einstein 1917 paper. In the dynamics of the thermody-
namic equilibrium formation, here proposed, I assume, 
with Einstein’s Quantum Theory of Radiation, the fol-
lowing hypotheses: 

1.	 that the three processes, namely, absorption and 
spontaneous and stimulated emissions, are mutually 
exclusive random processes and their occurrences 
are stochastically independent;

2.	 that thermodynamic equilibrium is the result of the 
persistent action of these elementary processes.

3.	 Einstein–Bohr relation. That the energies exchanged 
during the absorption and emission of quanta processes 
are expressed by the equations, 

 which supersede the current Einstein–Bohr relation.
4.	 Stochastic randomization. That the interaction of mat-

ter with radiation predicted by Einstein occurs accord-
ing to theorem § 1, which characterizes a Markovian 
stochastic process:

•	 the continuity hypothesis: The smaller the time 
interval considered, the smaller the number of 
clusters changing their states.

•	 the independence hypothesis: The removal of any 
cluster (together with the radicles it contains) from 
the vapor will not modify the flow processes that 
take place in the remaining clusters. In other words, 
the flow of radicles in a given cluster is independent 
of the flow that occurs in any other cluster.

Complex Volume of the Phase Space.  The variation ΔΩ , of 
the perfect vapor phase-space volume during the time inter-
val Δt , when the gas and radiation exchange one quantum 
of action, is given by either of the equations,

(17)ΔE = Δmc2 + �cΔp,

(18)ΔE∗ = Δmc2 − �cΔp,

(19)
ΔΩ = ΔEΔt = Δmc2Δt + �cΔpΔt,

ΔΩ∗ = ΔE∗Δt = Δmc2Δt − �cΔpΔt.

Rewritten in their dimensionless terms, we have,

where from we obtain,

Equations (19) and (20) supersede the equations of the 
harmonic oscillator (the Planck resonator) in the current 
derivation of the mathematical expressions of the ladder 
operators in quantum mechanics (§41, Ch. iii [5]), which 
reveals that these operators determine the laws that rule the 
absorption and emission processes of quanta exchange.

 Equations (19) and (20) introduce the imaginary unit �
coupled to Planck’s constant h in quantum mechan-
ics. We can then interpret this couple as an imaginary 
constant endowed with the faculty to transform a dif-
ference operator to which it applies, into a differential 
operator.

4 � Matter–radiation Interaction

For the particles moving in the classical subspace of the 
phase space, Δ𝛼j > h , the Boltzmann entropy is given by

Denoting the variations of the actions (19) and (20) by the 
conventional symbols Δ�

(
a†
)
 and Δ�(a) , respectively, we 

can write the variation of Boltzmann’s entropy in terms of 
the complex logarithmic function (Ln), when the particles of 
the gas are under the action of radiation, i.e., when Δ�j = h , 
a cluster in the liquid phase absorbs or emits one quantum,

The Entropy of the Liquid Phase.   The change of the entropy 
caused by the “stochastic equilibrium” of the two oppo-
site processes of absorption and emission, is given by the 
amount,

Denoting the quotient,

(20)

Δ�

h
=

Δp ⋅ Δz

h
+ �

Δp × Δz

h
,

Δ�∗

h
=

Δp ⋅ Δz

h
− �

Δp × Δz

h
,

(21)(Δ� − Δ�∗) = 2�(Δp × Δz).

Δ�j = ln

(|Δpj ⋅ Δqj|
h

)
.

Δ�k =

{
Ln

[
Δ�k

(
a†
)]

= Ln
[(
Δpk ⋅ Δqk

)
− �

(
Δpk × Δqk

)]
,

Ln
[
Δ�k(a)

]
= Ln

[(
Δpk ⋅ Δqk

)
+ �

(
Δpk × Δqk

)]
.

(22)Ln
(
a
†

k

)
− Ln

(
aj
)
= Ln

[(
pk ⋅ qk

)
− �

(
pk × qk

)
(
pj ⋅ qj

)
+ �

(
pj × qj

)
]
.
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we can rewrite equation (22 in the dimensionless form,

Both the quantities �k and �j are described by the same 
pdf. Denoting by g(�) = �k = �j , the function of the single 
argument � and substituting in (24), we have,

which, as expected, is a scalar magnitude.

Recalling that the partition function of the black body 
radiation is given by,

From identity (15), we obtain the entropy of the liquid 
phase in equilibrium with the black body,

where the integers j = 1, 2,⋯ might represent the contribu-
tion of some yet unknown phenomenon.

From equation (27) derives the eos (11) of the perfect 
vapor 4 where,

It is remarkable that equation (24) describes a conformal 
mapping, thus justifying Prévost’s theory of heat exchange.

5 � Space‑time X Timeless Space

The four-dimensional interval dS has two distinct represen-
tations: in the space-time and in the timeless Minkowskian 
space. While in the Minkowski space, it has the following 
timeless representation,

in the space-time its representation is,

(23)� =
p × q

p ⋅ q

(24)

(
a
†

k

aj

)
=

1 − ��k
1 + ��j

.

(25)
S�

k
= �Ln

��
a†
�

⟨a⟩

�
= 2 arctan (g(�)),

(26)
1

2
csch

(
h�

2kT

)
.

(27)
S�

k
=
{(

j +
1

2

)
� − arctan

[
2 sinh

(
�

2

)]}
,

(28)f (�) =
�

2
sech

(
�

2

)
.

(29)ds2 = x2
1
+ x2

2
+ x2

3
+ x2

4
,

which describes the relativistic restriction (constraint 
|v| ≤ c ), imposed on the motion of Newtonian particles.

The radical difference between the structures of the gase-
ous and liquid phases suggests that the equations (29) and 
(30) describe distinct realities and, therefore, are not equiva-
lent. While the former applies to the liquid phase, character-
ized by molecules, whose structure is stationary and involves 
a non-observable variable, the spin, which is defined in the 
timeless Minkowski domain, the latter applies to the gaseous 
phase, which is a system of classical particles evolving in 
the space-time, where they can, in principle, be observed.

Let us decompose Dirac’s momentum matrix [10] into its 
real and imaginary parts,

Note that the momentum operators p̂x and p̂y are con-
jugate in the xy complex plane. Since the momentum p̂y 
is proportional to h, it is very close to the real line in the 
complex plane, no matter how far its remaining coordinates 
are found. We say that, in the formation of such a system, 
the particles become entangled.

Radiation and Schrödinger Equation.   The evidence pro-
vided by § , leads us to inquire on the following question:

How the independent degrees of freedom of a radi-
cle in the gaseous phase of the perfect vapor become, 
as the consequence of a chemical reaction, conjugate 
inside a cluster?

The variation ΔE of the energy is given by the finite work 
performed by the ‘force’ ṗ,

If this algebraic manipulation is justified, we are allowed 
to assume that ΔE corresponds to a non-conservative 
process.

The connection between the pairs of degrees of freedom 
{p

�
, q

�
} or between {E, �} , can be justified when we realize 

that Planck’s constant cannot be interpreted as a mere scalar 
magnitude. Due to its enigmatic nature, the mathematical 
interconnection of these pairs of quantities were given in 
the formulation of wave mechanics by an unconventional 

(30)ds2 = c2t2 −

Euclidean

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
x2
1
+ x2

2
+ x2

3

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

space-time

,

⎛⎜⎜⎜⎝

mc 0 p̂z p̂x
0 mc p̂x − p̂z
p̂z p̂x − mc 0

p̂x − p̂z 0 − mc

⎞⎟⎟⎟⎠
+ 𝚤p̂y

⎛⎜⎜⎜⎝

0 0 0 − 1

0 0 1 0

0 − 1 0 0

1 0 0 0

⎞⎟⎟⎟⎠

(31)ΔE =
Δp

�

Δ�
Δq

�
= h�.

4  In (28)is an odd function, as expected from the clear half-turn sym-
metry observed in the vapor region (𝜁 < 𝜃∗) , Fig. 2, although around 
a yet indeterminate center. 
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treatment of the mathematical terms involved, as follows. 
Rewriting equations ΔEΔt = h and ΔpΔq = h in the forms,

the difference operators Δ become interpreted, in quantum 
mechanics, as the discrete version of the corresponding dif-
ferential operators of energy and momentum, respectively,

The correspondences (33) and the algebraic properties of 
operators adopted in quantum mechanics establish the rules 
necessary to formulate the operators that characterize atoms 
in atomic theory and molecules in chemistry, as many-body 
quantum systems. We can then interpret these operators as 
conjugators, i.e., entities that merge the degrees of freedom 
of the particles of a system, originally independent, into a 
single conjugated unit, imposed on them by the action of 
radiation, thus destroying half of their original degrees of 
freedom.

6 � Frequency Match Principle

Mathematical Representation of Spectra.   In statistical phys-
ics, it is customary to describe the discrete frequency spec-
trum of a system by the generating function [11] (gf) defined 
in Operational Calculus. Considering that the equilibrium 
formation between radiation and the chemical substance is 
a stochastic process, we adopt the random integer occupancy 
numbers �

�
 of the quantum states as independent coordi-

nates; as the dependent variable, we adopt the corresponding 
probability Prob

(
�
�
= k

)
 of finding k particles in the state j.

The gf of the pdf of the equilibrium occupancy random 
integer variable 𝐫̄

�
 is well-known from the description of 

radiation in terms of the quantum harmonic oscillator given 
by equation (26).

Metastable States.   The description of a thermodynamic 
system requires knowledge of the spectrum of radiation in 
its environment. Recall that no chemical substance is sus-
ceptible to frequencies different from those characterized by 
its molecular structure.

When the black-body radiation interacts with a chemical 
substance, the latter will eventually attain its state of stable 
equilibrium. An arbitrary radiation source might either cause 
no change in the substance or lead it to some metastable 
equilibrium state.

(32)ΔE =
h

Δt
, and Δp =

h

Δq
,

(33)
limΔt→0

h

Δt
→ Ê =

h

2𝜋𝚤

𝜕

𝜕t
,

limΔx→0
h

Δx
→ p̂x =

h

2𝜋𝚤

𝜕

𝜕x
.

The above considerations are relevant if the chemical sub-
stance can be found in different metastable states, as it hap-
pens with clouds in the atmosphere. It is well known that dry 
air is transparent to most of the frequencies found in solar 
radiation. However, it is sensitive to the radiation emitted 
by the earth’s surface, which functions as a geographically 
distributed set of frequency transducers. Its metastable states 
explain the variety of cloud formations observed.

The Equilibrium Condition.   Considering that absorption and 
emission processes are mutually independent, equilibrium 
only occurs when the following equation is satisfied5,

Hence, a many-body system attains its equilibrium state 
only when the number of absorptions is statistically equal 
to the number of emissions, i.e., when the average actions 
accumulated during these processes compensate each other.

During the absorption or the emission processes, photons 
are neither annihilated nor created but merely exchanged 
between matter and radiation.

Random Variables in the Liquid Phase.   We can depict an 
image of the liquid phase of the perfect vapor as a random 
number L of clusters, where a given cluster � is a “molecule” 
composed of a random number �

�
 of radicles of the perfect 

vapor, characterized by the quantum number � . Taking into 
account that these random variables are stochastically inde-
pendent, the number of radicles in the liquid phase, in each 
moment, can therefore be given by the random number �

�
 , 

expressed by the sum,

Equation (35) characterizes a compound process. If we 
denote by

the convolution of the generating functions of the independ-
ent random variables �

�
 , then the gf of the random variable, 

�
�
 , is given by g(s) = g(�(s)) [11].

Since this function is an exclusive function of � , we can 
replace s by � , obtaining,

(34)
⟨Δ�⟩
⟨Δ�∗⟩ ≈ 1.

(35)�
�
= �1 + �2 +⋯ + �

𝓁
⋯ + �

�
.

�(s) = �1(s) ⋅ �2(s)⋯ �
�
(s),

(36)g(s) = g(�(�)).

5  The symbol “ ≈ ” is here used to denote the fluctuation of the values 
of the quantities involved

1839Brazilian Journal of Physics (2021) 51:1833–1843



1 3

The quantity � , defined in (23), can then be expressed in 
terms of a function �(�) of � . Hence, the relation (25) can 
be written in the form,

Migration of Radicles Between Phases.   During the absorp-
tion or emission of one quantum, there is a corresponding 
exchange of radicles between the liquid and the gaseous 
phases. This process takes place according to the laws that 
rule the action of the creation–annihilation operators. Being 
independent and recurrent, they bring the perfect vapor to 
equilibrium after the relaxation time exhausts. The thermo-
dynamic equilibrium is not a stationary state but an incessant 
fluctuation of the number of radicles around its characteristic 
value6.

Hence, we cannot interpret these operators literally as 
something that causes a particle to come from nowhere 
or destroy it to nothing. Instead, they merely describe the 
exchanging of particles between the phases � and �.

The elementary exchange of heat between a molecule and 
radiation allows concluding that the occupation of photons 
in quantum states of radiation corresponds reciprocally to 
the occupancy of particles of the gas in the liquid phase. 
Hence, the form of the partition function for particles in the 
cluster of the quantum number � is the same for photons in 
the quantum state �,

Since we refer to the perfect vapor, we replace the argu-
ment s of the function �(s) by � . The expression of the gf of 
the random variable �

�
 then becomes,

In the particular case in which the perfect vapor is under 
the influence of black-body radiation, the function �(�) is 
given by (37), which gives the generating function of the 
thermodynamic properties of the perfect vapor’s liquid 
phase, whose entropy is given by (27).

7 � Conclusions

In addition to presenting the equation of state of the per-
fect vapor in interaction with electromagnetic radiation and 
explaining the mechanisms of entropy formation during the 

arctan
(
�j
)
= arctan (�(�)).

(37)�(s) ⇒
1

2
csch

(
�

2

)
.

g
(
1

2
csch

(
�

2

))
.

vaporization–condensation processes, the present paper also 
suggests a reinterpretation of the following axiom of quan-
tum mechanics, which turns that theory consistent with both 
thermodynamics and special relativity:

Axiom.  Aux coordonnées xj et aux impulsions pj (j étant le 
numéro du degré de liberté) correspondent dans le système 
de la mécanique quantique les opérateurs Xj et Pj satisfai-
sant aux relations de commutation

où ℏ est la constante de Planck.[5]

It can be seen that the essence of this axiom arises natu-
rally from the algebra that rules the relativistic nature of the 
matter-radiation interaction: 

1.	 it introduces the unit of complex numbers, � , as a natural 
consequence of Minkowski’s timeless representation of 
special relativity;

2.	 the commutation rule derives directly from complex 
algebra;

3.	 it reveals the relativistic nature of the spin, as an angular 
momentum degree of freedom;

4.	 it allows identify, in the imaginary part of the expres-
sions of the ladder operators, the descriptors of the ele-
mentary processes of absorption and emission of quanta, 
as the causes of change of the volume of the phase space 
of the perfect vapor;

5.	 it introduces Planck’s constant h as an imaginary magni-
tude, which endows the physical variables it affects with 
the faculties of differential operators;

6.	 it gives precedence of the ladder operators over the 
indistinguishability and Pauli’s exclusion principles, 
which arise as mere characters of thermodynamic equi-
librium;

7.	 by assigning a different meaning to time, it replaces 
the partial differential time operator �

�t
 in Schrödinger’s 

equation by the Markov difference–differential equation, 
to describe the transient action of the ladder operators, 
thus predicting time asymmetry;

8.	 Eadem mutata resurgo. The incessant action of the lad-
der operators on the liquid phase clusters leads asymp-
totically to the same result given by Schrödinger’s time-
less amplitude equation, which, as an automorphism, 
accurately describes the equilibrium condition;

9.	 the stochastic nature of entropy formation processes 
cause the corresponding necessary collapses of wave 
functions, as the result of the persistent action of radia-
tion on the quantum systems;

(38)XjPk − PkXj = �ℏ�jk�

6  The time-dependent pdf of the occupation numbers is given in [4]
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Furthermore, the present approach shows that the processes 
leading to the eigenvalues of wave functions are not concur-
rent, thus revealing that Schrödinger’s cat paradox does not 
apply, nor does it acknowledges the debatable processes of 
observation and measurement as elements of explanation of 
quantum phenomena.

The Perfect Vapor and Steam

Abstract

This Appendix confronts the pVT data of steam against 
the equation of state of the Perfect Vapor and discusses its 
departure from both the ideal gas law and the Perfect Vapor.

Introduction

While the indeterminacy of function f (�) endows the per-
fect vapor with generality, its universality cannot be claimed 
until an extensive confrontation with the experiment is ful-
filled, an endeavor that is beyond the scope of this paper.

Since z and � are both dimensionless quantities, the plot 
of the pVT data of any substance in the � × z plane is mean-
ingful for both a thermodynamic and a quantum reading. 
The closer these data are to a single curve7, the better the 

substance can be represented by Equation (11), where f (�) 
represents the departure of the perfect vapor from the Cla-
peyron equation.

The Departure of Steam from the Ideal Gas

To form a rough idea of the functional form of f (�) , the 
graphic of � × z of the steam pVT data8 is exhibited in Fig. 1.

The isobaric curves of steam form a family of isomorphic 
shapes, regularly displaced in the vertical direction, suggest-
ing that the departure of the steam pVT data from the ideal 
gas law ( pV = RT  ) is due to the composition of at least two 
phenomena: on one hand, the displacements explained by 
the perfect vapor, and on the other hand, the contribution of 
an independent phenomenon that causes the departure of the 
isobaric curves from the perfect vapor.

Considerations about the causes of the formation of the 
entropy of steam led me to assume that steam is described by 
the superposition of the Clapeyron-Clausius entropy varia-
tion during a phase transition to the perfect vapor behavior, 
supposedly described by the clustering of water molecules, 

Fig. 1   pVT data in the � × z 
plane vapor

liquid
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0.2

0.4

0.6

0.8

1.0

7  The quotient obtained by dividing the area occupied by the pVT 
data, by the total area determined by the selected intervals of z and 
� , gives a rough measure of how close the substance is to the perfect 
vapor.

8  Figures  1,  2 were introduced here for illustration purposes only. 
The data there exhibited were obtained from an old steam table I had 
at hand  [12] when I programmed and used the algorithms to obtain 
the value of the parameter p

�
 , required to produce Fig.  2. Since its 

determination was based on a low accuracy visual trial and error pro-
cedure, higher accuracy in the approximation (39) would be of little 
value.
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a hypothesis justified by its consequences. I, therefore, pro-
pose the following conjecture:

The departure of the isobaric curves from the perfect 
vapor is due to nucleation processes, and that nuclea-
tion and clustering are independent processes.

The Departure of Steam from the Perfect Vapor

To form an idea of the functional form of f (�) , it would be 
necessary to eliminate the influence of the unknown cause 
of the departure of the steam from the perfect vapor.

It is here conjectured that such departure is due to the 
nucleation phenomenon, by assuming that the vapor pressure 
p of a substance is given by the equation,

where ΔH is the variation of the enthalpy of the system dur-
ing a vaporization/condensation process, and p

�
 is a constant 

pressure, characteristic of the liquid state.
For small values of ΔH∕RT , we can write exp (−ΔH∕RT)

≈ 1 − ΔH∕RT  to express the energy equation,

Since in a change of state pΔV = V − V
�
 where V is 

the volume of gas and V
�
 , that of the liquid, we can write 

pΔV ≈ pV  , thus obtaining,

p

p
�

= e
−

ΔH

RT ,

p

p
�

RT + ΔH ≈ RT =
p

p
�

RT + ΔU + pΔV ≈ RT .

Comparing the quantities RT − pV  obtained from Equa-
tions (11) and (39), we conclude that they represent differ-
ent departures from the Clapeyron equation, due to distinct 
phenomena. By assuming that the behavior of the steam is 
the result of their combined action, we obtain its equation 
of state in the following form,

Fig. 2 represents the steam data in the � × � plane9, where,

By suppressing the influence of nucleation, the dispersion 
becomes largely attenuated, so that all isobaric curves in 
the vapor region become confined in a narrow belt, upper-
bounded by a single, sharp limiting curve. Denoting the area 
occupied by the belt of curves by Sb and by Sr the area of 
the rectangle defined by the opposing vertices A = [0, 1] and 
B = [�∗, �∗] , we can say that the Perfect Vapor properly rep-
resents the thermodynamic properties of within the accuracy 
� ≈ Sb∕Sr.

(39)pV +
p

p
�

RT + ΔU ≈ RT ,

(40)z + f (�) +
p

p
�

≈ 1.

(41)� = z − p∕p
�
.

Fig. 2   pVT data in the � × � 
plane
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9  The value of pl ≈ 2341 bar in equation (40) was obtained by a low-
accuracy visual trial and error method, that made the consideration 
L/RT superfluous for a reliable estimation of p

�
.
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Remarkable Symmetries in Steam

The rectangle determined by the vertices A and B delimit 
the vapor region10. It can be seen that around the mid-point 
of the diagonal AB the curve exhibits a remarkable half-turn 
symmetry, which allows concluding that B is symmetric to 
[0, 1], which is confirmed by the theoretical curve described 
by (28), which is an odd function, whose origin is in the 
midpoint of the diagonal AB of the rectangle.

By rotating Fig. 1 of 180o , it is possible, by graphic trans-
lation, make the boundary curves coincide. Denoting by A′ 
and B′ the opposing vertices of the rotated curve, we have, 
A� = B and B� = A , which allows obtain graphically the val-
ues of �∗ and �∗.

It can be seen that, the greater the value of � in the vapor 
region, the more degenerate is the gas and the closer it is to 
its liquid state. It is interesting to confront these symmetries 
against those that arise in the quasi-particles representation 
of collective phenomena.
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