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Abstract
Network analysis is a powerful tool that provides us a fruitful framework to describe phenomena related to social,
technological, and many other real-world complex systems. In this paper, we present a brief review about complex
networks including fundamental quantities, examples of network models, and the essential role of network topology in the
investigation of dynamical processes as epidemics, rumor spreading, and synchronization. A quite of advances have been
provided in this field, and many other authors also review the main contributions in this area over the years. However,
we show an overview from a different perspective. Our aim is to provide basic information to a broad audience and more
detailed references for those who would like to learn deeper the topic.
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1 Introduction

The study of complex networks is inspired by empirical
analysis of real networks. Indeed, complex networks allow
us to understand various real systems, ranging from
technological to biological networks [1]. For instance, we
need a set of neurons connected by synapses to ensure our
ability to read this text; our body is ruled by interactions
between thousands of cells; communication infrastructures,
such as the Internet, are formed by routers and computer
cables and optical fibers; and the society consists of people
connected by social relationships such as friendship and
familiar or professional collaborations [1–3].

These systems are called complex systems because it is
not possible to predict their collective behavior from their
individual components. But understanding the mathematical
description of these systems makes us capable to predict
them and possibly control them. These are some of the
great scientific challenges of the present time, since they
play a key role in our daily life [4]. Examples include
the understanding of the spreading viruses throughout
transportation networks that allowed the prediction of the
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H1N1 pandemic [5] in 2009 or the new coronavirus in
2019/2020 [6], and the use of mobile call network to find
those responsible for the terrorist attack on a train in Madrid
in 2004 [7].

Despite of the differences among complex systems found
in nature or society, the structures of these networks are
much similar to each other, because they are governed
by the same principles. Then, we can use the same set
of mathematical and computational tools to explore these
systems. In general terms, a network is a system that can
be represented as a graph, composed by elements called
nodes or vertices and a set of connecting links (edges) that
represent the interactions among them [8]. In Fig. 1, we
show a classic and famous example of a social network that
became known as Zachary’s karate club [9]. In this example,
nodes represent people and the links between them represent
the interaction among members of the club.

The advantage of modeling a system as a graph is that
problems become simpler and more tractable. For example,
we can cite the Konigsberg problem as a first mathematical
problem solved using a graph. The mathematician Leonard
Euler wanted to solve the following puzzle (see Fig. 2):
if you are in the center of the old city called Konigsberg,
how can you across all seven bridges crossing only once for
each one of them? To solve this problem, a mathematical
abstraction is required: a graph. Euler represented each part
of the city by nodes that are connected by edges or links
(the bridges between them). So, if each node has two or any
even number of links, it is possible to enter and leave in this
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Fig. 1 A network representation of social interactions of a group that
belongs to the same karate club. This social network was studied by
W. W. Zachary [9] from 1971 to 1972 and it captures the links of 34
members who integrated with each other outside the club

region of the city by different bridges. However, if a node
has a odd number of edges, it should be either the starting
or the end point of the pathway. Here is the solution of the
problem: you never find such path, no matter how smart you
are, because all nodes have odd number of links [10].

On the one hand, the language for the description
of networks is found in mathematical graph theory; on
the other hand, the study of very large systems requires
a statistical characterization and also high-performance
computing tools. For instance, the human brain is estimated
to have N ≈ 1011 neurons and the WWW network has
about N ≈ 1012 online documents [2]. In face of this
context, we introduced basic concepts of network theory
and its statistical characterization in the next section. In the
third section, we described network models that can be used
to study dynamical processes such as epidemic spreading;
diffusion of information, gossip, memes in a social network;
or diffusion of energy in a power grid network. Finally, in
the last section, we summarized our review and showed the
interdisciplinary importance of complex networks.

Fig. 2 In the left side: the center
of Konigsberg city and the seven
bridges connecting one part of
the town to another. In the right
side: The representation of the
problem using a graph. Each
node represents one part of the
city and the links between them
represent the bridges

2 Basic Concepts and Statistical
Characterization of Networks

From a mathematical point of view, we can represent a
network by means of an adjacency matrix A. A graph of N

vertices has a N × N adjacency matrix. The edges can be
represented by the elements Aij of this matrix such that [8]

Aij =
{

1, if the vertices i and j are connected
0, otherwise,

(1)

for a undirected and unweighted graph, like the one shown
in Fig. 1. In this case, the adjacency matrix is symmetric, it
means Aij = Aji , while for directed ones (as we showed
in Fig. 3), the matrix is not symmetric and the element
Aij = 1 indicates that the node i points to the node j ,
but the reverse is not necessarily true. We can find different
examples of directed and undirected graphs in natural or
artificial systems. For example, in a ecological web, the
directed links indicate which animal is predator of the other,
while in a social network, the romantic ties are represented
by undirected edges—at least we hope so [4].

Beyond these examples, we also can find networks for
which the links have different weight ωij . The weight can
represent the flow of people on a flight in a transportation
network or the current flowing through a transmission line
in a power grid. In these cases, the elements of the adjacency
matrix are better described as Aij = ωij and, generally,
0 ≤ ωij ≤ 1.

A relevant information that can be obtained from the
adjacency matrix is the degree ki of a vertex i defined as the
number of edges attached to the vertex i, i.e., the number of
nearest neighbors of the vertex i. The degree of the vertices
can be written by means of the adjacency matrix as [8]

ki =
N∑

j=1

Aij . (2)

In Fig. 4a, we show the Zachary’s karate club network
with a scale that differentiates the most connected nodes
from the least connected ones. If this measure is used
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Fig. 3 A simple example of a directed graph

to determine the centrality of an specific node, the most
central nodes is the one with more connections. In directed
networks, the in-degree and the out-degree are, respectively,
defined by

kin
i =

N∑
j=1

Aji and kout
i =

N∑
j=1

Aij , (3)

that also can be used as a centrality measures. The total
number of connections is ki = kin

i + kout
i . A centrality

measure [11], as the name implies, assigns a value to the
nodes according to a specific concept. There are different

Fig. 4 Some most common centrality measures exemplified in the karate club network. We used networkx and matplotlib from python
(python.org) to plot the figures. We used the free code available at https://aksakalli.github.io

types of centrality measures depending on the importance
assessed, as we will see throughout this section.

A central issue in the structure of a graph is the
connectedness of its vertices, i.e., the possibility of
establishing a path between any two nodes [2]. This is
important, for instance, when we have a gossip spreading in
a social network or a nerve impulse propagating in a neural
network [8].

A path Pij is defined as an ordered collection of n + 1
vertices connected by n edges in such a way that connect
the vertices i and j , as shown in Fig. 5. The concept of path
leads us to define the distance between any pair of vertices
in the network. The distance between the nodes i and j is
defined as the number of edges in the shortest connecting
path denoted as �ij . The average shortest path length is
defined as the value of �ij averaged over all the possible
pairs of vertices in the network [12] according to

〈l〉 = 1

N(N − 1)

∑
i �=j

lij . (4)

Typically, the number of neighbors in a complex network
at a distance � can be approximated by 〈k〉�, considering
that each vertex has degree equal to the average degree of
the network 〈k〉 and there is no loop. A loop or a cycle is a
closed path Pij (i = j) in which all nodes and all edges are
distinct [8]. Since the quantity 〈k〉� rapidly grows with �, we
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Fig. 5 One possible path connecting the node A to the node B in a
network is highlighted

can thus roughly estimate 〈�〉 by the condition 〈k〉� ∼ N ,
then [2, 12]

〈�〉 � ln N

ln〈k〉 . (5)

For a d-dimensional lattice, the number of neighbors
at a distance � scales as �d implies that 〈�〉 ∼ N1/d .
So, the growth of 〈�〉 slower than any positive power
of N characterizes the network with the small-world
property [2]. This scaling behavior is observed in many
real-world phenomena, including websites, social networks,
food chains, metabolic processing networks, etc [1, 3, 8].

Beyond the small-world characteristic, a network can be
also described by the structure of the neighborhood of a
vertex. The tendency to form cliques (fully connected sub-
graphs) in the neighborhood of a given vertex is observed
in many natural networks; for example, a group of people
that interact with each other as friends. This property is
called clustering and implies that if the vertex i is connected
to the node j , and this one is connected to l, there is a
high probability that i is also connected to l. The clustering
C(i) can be measured as the relative number of connections
among the neighbors of i [12]:

C(i) = ni

ki(ki − 1)/2
. (6)

Here, ki is the degree of the node i and ni is the total number
of edges among its nearest neighbors. The mean clustering
coefficient is given by

〈C〉 = 1

N

∑
i

C(i). (7)

We can also define other measures that can be classified
as centrality measures. For example, it is possible to define
the importance of a node observing how many times it
behaves like a bridge connecting any two vertices of the
network along the shortest path between them [13]. Thus,
the betweenness of a vertex i,

b(i) =
∑

k �=i �=j

σ (kij)

σ (kj)
(8)

where σ(kj) is the total number of the shortest paths
from k and j and σ(kij) is the quantity of such paths that
pass through the node i. This centrality measure was also

calculated for the nodes that composed the Zachary’s karate
club (see Fig. 4b).

The relevance of a node can also be based on the shortest
path. From this point of view, the centrality measure, called
closeness centrality, is given by the inverse of the average
distance of a node to all others [11]

g(i) = 1∑
i �=j lij

. (9)

Consequently, the lower is the distance of a node in relation
to the others, the more central (influence) it is considered. In
Fig. 4c, this measure is shown for nodes of Zachary’s karate
club network.

Another useful measure of the influence of the nodes is
the eigenvector centrality [14] that quantifies the importance
of a node according to the concept that connections to
high-influencer nodes contribute more to the significance
of the node in question. Let us assume that the vector
x has the centrality score of a node i, so we can write
an eigenvalue equation: A	x = λ	x, where A is the
adjacency matrix and λ is an eigenvalue. The Perron-
Frobenius theorem [11] ensures that if all components of
the eigenvector x are positive, there is only one eigenvalue
able to satisfy this equation and it is possible to determine a
unique eigencentrality to each node.

To put this measure in more practical terms, we can
analyze the PageRank, which is a variation of eigenvector
centrality developed by Google. This measurement analyzes
the importance of a web page according to the number of
pages that link to it [15, 16]. Although this measure was
created as a tool to search web site, it has been used to
rank nodes of any network, as for example, in Ref. [17], the
authors used this measure for ranking researchers in a co-
citation network. It also can be used on Twitter to inform
users with suggestions of other accounts that they would
like to follow [18] or even to rank public streets, trying to
predict human movement and traffic flow [19, 20]. We can
calculate a pagerank of each node i of a network according
to an algorithm that provides the following relation [15]:

PR(i) =
∑

jεVi
PR(j)

N
, (10)

where PR(j) is the pagerank of each neighbor j of the
node i. Both measures, eigenvector and pagerank, were also
calculated for Zachary’s karate club network as we see in
Fig. 4 d and e.

Apart from such properties described above, looking at
very large systems as a social network or the World Wide
Web, an appropriate description can be done by means of
statistical measures as the degree distribution P(k). The
degree distribution provides the probability that a vertex
chosen at random has k edges [1, 21]. The average degree
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is an information that can be extracted from P(k) and it is
given by the average value of k over the network, it means,

〈k〉 = 1

N

N∑
i=1

ki =
∑

k

kP (k). (11)

Similarly, it is useful to generalize and calculate the nth
moment of the degree distribution [2]

〈kn〉 =
∑

k

knP (k). (12)

We can classify networks according to their degree
distribution. The basic classes are homogeneous and
heterogeneous networks. The first ones exhibit a fast
decaying tail, for example, a Poisson distribution. Here,
the average degree value corresponds to the typical value
in the system. On the other hand, heterogeneous networks
exhibit heavy tail that can be approximated by a power-
law decay, P(k) ∼ k−γ . In this second case, the vertices
will often have a small degree, but there is a non-negligible
probability of finding nodes with very large degree values;
thus, depending on γ , the average degree does not represent
any characteristic value of the distribution [2]. The contrast
between these types of distributions is illustrated in Fig. 6,
where both Poisson and power-law degree distributions with
the same average degree value are compared.

The role of the heterogeneity can be understood by
looking at the first two moments of a power-law distribution
P(k) ∼ k−γ . In the thermodynamic limit, 〈k2〉 → ∞,
for 2 < γ ≤ 3. This means that the fluctuations around
the average degree are unbounded. We observe a scale
free network since the absence of any intrinsic scale for
the fluctuations implies that the average degree is not a
characteristic scale for the system [1, 12]. However, for γ ≥
3, the second moment remains finite. Indeed, besides the
shape of the power-law degree distribution, the exponent γ

has profound implications on dynamical processes running
on top of heterogeneous substrates.

For example, the susceptible-infected-susceptible
(SIS) model [22, 23] is the classical epidemic model widely
used to study epidemic dynamics in networks. In this

approach, each vertex j of the network can be infected
or susceptible. A susceptible node can become infected by
its infected neighbors with rate λ and, an infected node
can become spontaneously healthy at rate μ [24]. This
dynamics exhibits a phase transition between a disease-
free state and an active stationary phase where a finite
fraction of nodes is infected. These regimes are separated
by an epidemic threshold λc [24, 25]. Different mean-
field approaches provide different epidemic thresholds. The
quenched mean-field (QMF) theory [26] explicitly takes
into account the actual connectivity of the network through
its adjacency matrix. While in the heterogeneous mean-
field (HMF) theory, the density of infected individuals
depends only on the vertex degree. Both theories predict a
vanishing threshold, in the thermodynamic limit, for random
uncorrelated networks with a power-law degree distribution
with γ < 3, despite of different scaling for 5/2 < γ < 3.
But QMF also predicts a vanishing threshold for γ > 3
while HMF predicts a finite threshold in this range [27].
In fact, Chatterjee and Durrett [28] proved that the SIS
model presents a null epidemic threshold, as the system size
increases, for uncorrelated random networks with any γ .

However, the dynamics of Kuramoto oscillators on het-
erogeneous scale-free networks [29] behaves differently.
The Kuramoto model is one of the most studied cou-
pled phase oscillator models to describe synchronization
processes, observed in many physical, technological, and
biological systems [30]. This model also presents a phase
transition among a state that the oscillators are moving
incoherently, and a state where all oscillators are in phase
(synchronization). The HMF and QMF present the same
results that those obtained for the SIS model. However,
for the Kuramoto model, the HMF theory forecast for the
critical coupling Kc is in better agreement with numerical
calculations because, for γ > 3, the Kc converges to a con-
stant value in the thermodynamic limit while vanishes for
γ < 3.

Other typical feature of networks is the tendency of
nodes with a given degree to connect with nodes with
similar or dissimilar degree. When high or low degree

Fig. 6 Comparison of Poisson
and power-law degree
distributions in a linear scale
(left side) and in a log-log plot
(right side) that highlights the
heavy tail of the heterogeneous
distribution. Full circles
represent the Poisson
distribution and empty squares
represent the power-law one
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vertices connect to other vertices with similar degree with
higher probability, one says the correlations presented in the
network are assortative. Conversely, if nodes of different
degree are more likely to attach, the correlations are called
disassortative [31].

One way to quantify the degree correlations is in terms
of the conditional probability P(k′|k) that a node with
degree k is connected with a vertex with degree k′ [2].
Since determining P(k′|k) can be a rather complicated task,
a simple approach is given by the average degree of the
nearest neighbors of a vertex i with degree ki [32],

knn,i = 1

ki

∑
j∈N (i)

kj , (13)

where the sum runs over by the nearest neighbors of i. Then,
the behavior of the degree correlations is obtained by the
average degree of the nearest neighbors, knn(k), for vertices
of degree k [33]:

knn(k) = 1

Nk

∑
i/ki=k

knn,i , (14)

where Nk is the number of nodes of degree k and the
sum runs over all vertices with the same degree k. This
quantity is related to the correlations between the degrees of
connected nodes because in average it can be expressed as

knn(k) =
∑
k′

k′P(k′|k). (15)

If degrees of neighboring vertices are uncorrelated, P(k′|k)

is just a function of k′ and knn(k) is a constant. If knn

increases with k, then vertices with high degrees have a
larger likelihood of being connected to each other. On the
other hand, if knn decreases with k, high degree vertices
have larger probabilities of having neighbors with low
degrees [2, 33, 34].

3 Networks Classes

In general, a network model produces graphs with properties
similar to the real system. However, the advantage of using a
model is to reduce the complexity of the real world to a level
that one can be treated in a more practical way. Therefore,
networks are considered a powerful means of representing
patterns of connections between parts of systems such as
Internet, power grid, food webs, and social networks [3, 8,
35].

On the one hand, technological networks as Internet are
physical infrastructure networks that can be represented
by static networks, i.e., the nodes and edges are fixed or

change very slowly over time [11]. On the other hand,
networks that describe some form of social interaction
between people have an intrinsic time-varying nature that
should be taken into account. For instance, in a scientific
collaboration network, the authors are not in contact with
all their collaborators simultaneously during all the time.
Indeed, real contact networks are dynamic with connections
that appear and disappear with different characteristic time
scales [36, 37].

From the viewpoint of dynamical processes, both classes
of networks—static and temporal—are important. The
first one has been widely studied and it is convenient
for analytical tractability, whereas the second one is, in
some cases, more realistic. Within these two large classes,
there are several sub-classes in which we can distinguish
networks according to their degree distribution, elements
of connections such as Euclidean distance or other metrics.
Network models have been improved because of the need to
take into account more and more real characteristics. In this
section, we presented the historical evolution from simple
models as lattices and homogeneous networks until more
refined models with heterogeneous connectivity, temporal
feature, or more elaborated types of connection, such as
multilayers and metapopulations.

3.1 Regular Lattices

Lattice models are the simplest example of networks. They
are used in studies involving cellular automata and agent-
based models [38, 39]. In a regular lattice, each site can
represent, for example, an individual positioned on a regular
grid of points. They are connected only with their nearest
neighbors as we can see in the Fig. 7. The regular lattices
are homogeneous since all sites have the same number of
connections.

They were very used to study dynamical process in
general, such as reaction-diffusion process and epidemic
dynamics [40, 41] but their simplified topology is unrealistic
compared with real systems. The advantage of this kind of
network is the convenience of solving analytical problems
exactly, as Ising Model [42] and Voter Model [43].

3.2 Random Regular Network

The other simple prototype of a network was investigated by
Erdős and Rényi, in 1959 [44]. In its original formulation,
a graph is constructed starting from a set of N nodes
and all edges among them have the same probability of
existing. This generates a homogeneous graph in which the
vertices have a number of neighbors that do not differ much
from the average degree 〈k〉 (see Fig. 8), with connectivity
distribution as a Poisson.
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Fig. 7 Regular lattices of one, two, and three dimensional, respectively

3.3 Small-World Networks

Afterwards, in 1998, Watts and Strogatz (WS) proposed
a more realistic model inspired by social networks that
became known as the small-world model [45]. WS networks
are constructed from N vertices initially arranged in one-
dimensional lattice with periodic boundary conditions, each
vertex has m connections with the nearest neighbors.
Vertices are then visited clockwise and for each of
them the clockwise edges are rewired with probability p.
The rewiring process generates connected networks and
conserves the number of edges (〈k〉 = m). However,
even at small p, the emergence of shortcuts among distant
nodes greatly reduces the average shortest path length (see
Fig. 9). This algorithm produces a network with small-world
property but it is not capable to generate a heterogeneous
degree distribution with a power-law form.

3.4 Growth and Preferential Attachment Networks

3.4.1 Barabasi-Albert Model

Concomitantly, Barabási and Albert [46] proposed a
preferential attachment model suited to reproduce the
feature of time growth of many real networks. In this model,
new vertices are added to the system at every step. Each
new vertex is connected to those nodes already present in

Fig. 8 A simple example of a random regular graph

the network with a probability proportional to their degrees
at that time. The properties of growth and preferential
attachment are suitable to model realistic networks as the
Internet and the World Wide Web [3, 8]. This class of
networks provides an example of the emergence of graphs
with a power-law degree distribution [P(k) ∼ k−γ ], with
γ = 3 (see Fig. 10) and small-world properties. Despite
considering the addition of new nodes, when we deal with
a dynamic process in this network, we consider it static
since it is grown first and after the dynamics run through the
substrate.

3.4.2 Fitness Model

The Barabasi-Albert model does not take into account
that nodes can have other attributes that make them more
attractive to receive new links. Bianconi and Barabasi [47]
proposed a model where each individual has a characteristic
that determine its ability to make links. The model is similar
to the BA network but, besides the degree, the fitness of
each node is also involved in the completion for making
new connections. The network has the growth property, the
same as BA model, but now the nodes are characterized by
their fitness parameter η chosen randomly according to an
arbitrary distribution ρ(η) and the probability that a new
edge will connect to a node i is

∏
i

= ηiki∑
j ηj kj

, (16)

where the sum is over all nodes already present in the
network. In the case of a uniform distribution of the
parameter fitness in the interval [0, 1], one also obtains
a network with a power-law degree distribution P(k) ∼
k−γ but with γ ≈ 2.25. It is interesting because a little
randomness in fitness leads to a network with a non-trivial
power-law degree exponent.

3.4.3 Homophilic Model

In some situations, it can be reasonable to assume that
besides degrees and fitness, nodes are more likely to connect
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Fig. 9 A Watts-Strogatz network with size N = 20 in which as the p value increases, the network becomes more and more random. In the first
case, p = 0; in the second graph, p = 0.1; and finally, in the last illustration, p = 1

with their similar. The impact of homophily has already
been studied on social networks [48, 49]. Just think a little
to understand that this behavior is really quite predictable.
People tend to create ties of friendship with others of similar
job, the same religion, or even fans of the same soccer team.

To consider this tendency, de Almeida and collabora-
tors [50] include a homophilic term in the BA model. So, the
probability that a node j entering the network will connect
to another node i already present in the network is

∏
i

= (1 − Aij )ki∑
l(1 − Ail)kl

, (17)

where the parameter Aij = |ηi − ηj | represents the
similitude of the nodes i and j , since we named ηi

as a intrinsic property (fitness) of each node i. This
algorithm also generates a network with a power-law degree
distribution but with γ = 2.75.

These models based on growth and preferential attach-
ment have been successful in the area of complex networks
because through a simple dynamical principle, a power-law
degree distribution and small-world properties are able to
emerge from these graphs.

3.5 Uncorrelated RandomNetworks

In addition to their power-law degree distributions, real
networks are also characterized by the presence of degree
correlations reflected on their conditional probabilities

P(k′|k) (as we saw in Section 2). For uncorrelated networks,
P(k′|k) can be estimated as the probability that any edge
points to a vertex with degree k′, leading to Punc(k

′|k) =
k′P(k′)/〈k〉 [51]. Thus, using (15) the average nearest-
neighbor degree becomes

kunc
nn (k) = 〈k2〉

〈k〉2
, (18)

that is independent of the degree k.
Although most real networks show the presence of

correlations, uncorrelated random graphs are important
from a numerical point of view, since we can test the
behavior of dynamical systems whose theoretical solution
is available only in the absence of correlations. For this
purpose, Catanzaro et al. [34] presented an algorithm
to generate uncorrelated random networks with power
law degree distributions, called uncorrelated configuration
model (UCM). The steps of the algorithm are the following:

(i) In a set of N disconnected vertices, each node i

is signed with a number ki of stubs, where ki is a
random variable with distribution P(k) ∼ k−γ under
the restrictions k0 ≤ ki ≤ N1/2 and

∑
i ki even. It

means that no vertex can have either a degree smaller
than the minimum degree k0 or larger than the cutoff
kc = N1/2.

(ii) The network is constructed by randomly choosing two
stubs and connecting them to form edges, avoiding
both multiple and self-connections.

Fig. 10 An illustration of a
small Barabasi-Albert network
(left side) and the connectivity
distribution of a large (N = 106)
BA network (right side). We can
note the presence of hubs—
nodes with high degree—in the
power-law degree distribution.
The dashed line is a guide to the
eyes with slope P(k) ∼ k−3
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It is possible to show that [51], to avoid correlations in
the absence of multiples and self-connections, the random
network must have a structural cutoff scaling at most as
kc(N) ∼ N1/2.

In Fig. 11a, we show a power-law degree distribution for
the UCM model [34] with different values of the degree
exponent γ and we checked the lack of correlations. We
can observe in Fig. 11b a flat behavior of knn(k) [see 15
and 18] for all values of γ . In each realization of the degree
sequence, one obtains a random maximum degree kmax,
with an average 〈kmax〉 = kc. For γ > 3, both mean and
the standard deviation of kmax scale as kc ∼ N1/γ−1. As
we can see in Fig. 11b, this implies that kmax has large
fluctuations for different network realizations [52]. As said
previously, this algorithm is very useful in order to check the
accuracy of many analytical solutions of dynamical process
on networks.

3.6 Networks with Euclidean Distance

Most of scale-free networks does not consider the relevant
Euclidean distance between nodes. But real-life systems are,
in fact, on top of a geographical space. City streets can
be mapped as a square lattice, an ecological network that
describes a food chain is embedded in a three-dimensional
space, etc. In the next models, the Euclidean metric is taking
into account.

3.6.1 Euclidean Distance as a Characteristic for Preferential
Attachment

The physical proximity is a great factor in social tie
formation even in virtual social networks [53, 54], so we
can take the geographical proximity in account using the
network model proposed by Soares and collaborators [55].
They consider a square lattice substrate and starting with
one node located in some arbitrary origin of the space. The
second node is added in the network and it is connected
to the first node. Its localization is randomly chosen at a
distance r from the first node. This distance r is distributed
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1

2

3

Fig. 12 An example of a network with size N = 20 generated according
to the rules proposed by Soares et. al. [55]. Here αA = αG = 2. Note
that the nearest links are more likely but long-range connections can
also happen

according to PG(r) ∝ 1
r2+αG

; where αG > 0 represents the
growth pattern of the network, because of this, we named
it with the sub-index G. The new center of mass (origin) is
calculated, considering that each node has mass m = 1. A
third node includes obeying the same spatial distribution but
it will be connected to node i = 1 or i = 2 according to the
probability

PA ∝ ki

r
αA

i

, (19)

where αA ≥ 0 characterizes the attachment pattern of
the network, therefore, sub-index A. Both processes are
repeated until the network completes N nodes. If we take
αA = 0, we return to the well-known Barabasi-Albert
model. This model maintains the preferential attachment
according to the degree of the nodes, but it also uses the
geographical distance as a criterion to compete for links, as
we can observe in Fig. 12.

For this network, the degree distribution is given by

P(k) = P(0)e
−k/κ
q (20)

Fig. 11 a Power-law degree
distribution P(k) ∼ k−γ and b
average nearest-neighbor degree
for networks generated
according to the algorithm
proposed by the uncorrelated
configuration model, with
different values of the degree
exponent γ
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Fig. 13 An example of a network with size N = 20 generated
according to the Waxman algorithm [56]

where κ > 0 is the characteristic number of connections,
P(0) is a constant to be normalized, q is the entropic index,
and eq(x) is the q-exponential defined by

ex
q = [1 + (1 − q)x]1/(1−q) (ex

1 = ex). (21)

The parameter αG does not affect the behavior of the
connectivity distribution P(k) because it refers just to the
distance distribution in relation to the center of mass and
does not impact on the preferential attachment rules. But
as αA increases, the connectivity distribution changes and
a topological phase transition occurs. The network changes
from a completely heterogeneous network (αA = 0)
to an increasingly homogeneous network as αA becomes
bigger [55].

3.6.2 Spatial WaxmanModel

In 1988, Waxman [56] proposed a random graph (see
Fig. 13) considering that longer links are more expensive
or difficult to construct so they should be less likely. His
model is a generalization of the Erdos-Renyi graph and it
is very realistic when we consider, for example, a power
grid or a land transport network. In this model, a pair of
nodes i and j is randomly chosen from a set of nodes
distributed in a square lattice and they link with each other
with a probability that depends on their distance, given by
the function

P(dij ) = a exp(−bdij ), (22)

where a and b are positive parameters that control
the geographical constraints which must be estimated
depending on the type of network that is modeled. The
parameter a is related to short and long edges while the
parameter b controls the edge density. Although Waxman
model is favorable in considering geographical properties of

networks, it does not yield a power-law degree distribution,
failing to predict most real systems.

3.6.3 Scale Free on Lattice

In paper [57], Rozenfeld and colleagues proposed a model
that consists in a network with a power-law degree
distribution, P(k) ∼ k−γ , with γ > 2, embedded in a d-
dimensional lattice. They consider a d-dimensional regular
network with periodic boundary conditions. Each site is
randomly chosen and it connects to its nearest neighbors
until it reaches k neighbors, previously determine by the
power-law degree distribution or until all nodes that are in a
pre-established limit radius r(k) ∼ k1/d have been explored.

This method predicts longer-range interaction due to the
power-law property of the degree distribution previously
imposed, but consider the Euclidean distance as a important
factor to make links between nodes.

3.7 Temporal Networks

As shown in the previous sections, the network structure
helps us to understand the behavior of dynamical systems.
However, in many cases, the edges are not continuously
active. For example, in communication networks via email,
edges represent sequences of instantaneous contacts [36].
In closed gatherings of individuals such as schools and
conferences, the agents are not simultaneously establishing
interactions in the system [58, 59]. Similarly to the network
topology, the intrinsic time evolution of the network can
also affect the system’s dynamics as, for example, disease
contagion or information diffusion [60–62].

Indeed, this mixing of time scales can induce new phe-
nomenology on the dynamics on temporal networks, in stark
contrast with what is observed in static networks. Moreover,
the time evolution of temporal network contacts [63–65],
characterized by long time of inactivity, alternate with peri-
ods of intense activity, can induce, for example, a slow
dynamical in spreading processes as epidemics, diffusion,
or synchronization [66–70].

3.7.1 Activity-Driven Model

One of many examples of temporal networks is the activity-
driven network [37]. Indeed, it represents a class of social
temporal network models based on the observation that the
establishment of social contacts is driven by the activity
of individuals, prompting them to interact with their peers
at different levels of intensity. Based on the empirical
measurement of heterogeneous levels of activity denoted by
a, across different datasets, activity strength has been found
to be distributed according to a power-law form, F(a) ∼
a−γ [37].
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The activity-driven network model proposed by Perra
et al. [37] is defined as follows: N nodes (individuals) in the
network are endowed with an activity ai ∈ [ε, 1], extracted
randomly from an activity distribution F(a). Every time
step t = 1/N , an agent i is uniformly chosen at random.
With probability ai , the agent becomes active and generates
m links that are connected to m other agents, uniformly
chosen at random. Those links last for a period of time t .
Time is updated as t → t + t . The topological properties
of the integrated network at time t (i.e., the network in
which nodes i and j are connected if there has ever been a
connection between them at any time t ′ ≤ t) were studied
in Ref. [71]. The main result is that the integrated degree
distribution at time t , Pt(k), scales in the large t limit as the
activity distribution, i.e.,

Pt(k) ∼ t−1F

(
k

t
− 〈a〉

)
, (23)

considering m = 1.
Empirical measurements report activity distributions in

real temporal networks exhibiting heavy tails of the form
F(a) ∼ a−γ [37]. This expression thus relates in a simple
way the functional form of the activity distribution and the
degree distribution of the integrated network at time t , and
allows to explain the power-law form of the latter observed
in social networks [72].

3.7.2 Adaptive Networks

In adaptive networks, the connection between nodes and
the states of these nodes evolves together in a dependent
way [73]. In traditional temporal networks, the connections
between nodes evolve independently of the dynamics
running on top of this network. However, in adaptive
networks, topologies change adaptively with respect to the
changes in the states of each individual. An appropriate
example is the disease spreading. Let us suppose that the
nodes are individuals that can be in two states: infected
or susceptible. Infected nodes can become susceptible
spontaneously and susceptible ones, if it is in contact with
an infected person, can also become infected with a given
probability. This is the rule, in a simplified way, of the SIS
model [22, 23] as it was explained before in Section 2.
However, if this dynamical process is running on top of
a adaptive network, susceptible nodes can cut links to
infected neighbors with a certain probability, in an attempt
to minimize contagion. In other words, the evolution of the
disease affects the network topology but the dynamics of the
node connections also affects the prevalence of the disease.

Adaptive networks are very useful to model many
real systems, including transportation networks, neural
networks, biological networks, and social networks[73, 74].

3.8 MetapopulationModel

Metapopulations are characterized as a set of nodes that
corresponds to the inter-population level and inside of
each node, an intra-population level. Basically, one has a
complex network composed by nodes that do not represent
individuals but represent a population of them; this means
that a metapopulation network is formed by a set of
networks characterizing interconnected populations [75,
76]. The inner structured can be a homogeneously mixed of
individuals or can constitute by a network of any topology—
lattice, scale free, etc. Inside of each population, there are
particles or individuals that can be in the states A, B, or
C. For example, if we study a rumor propagation, these
individuals can be separated in three groups: those who
spread the news (or gossip), called spreaders; those who
know the information but are not interested in spreading
anymore, name stiflers; and finally, there are a group of
people who does not yet know the news but is able to receive
it (ignorants). Or, if we have an epidemic spreading, these
individuals can be infected, susceptible, or recovered, as
represented in the Fig. 14.

In metapopulation, the dynamic spreading occurs inside
of each population but the interaction between one
population to another occurs due to the mobility of the
individuals that can migrate [77]. This model is widely used
because the mobility is a relevant factor in the spread of
human diseases [78] such Sars-Cov-2 pandemic [79, 80],
and also vector-borne [81–83] and livestock diseases [84,
85].

3.9 Multilayer Networks

In most real-world systems, a set of components can link
with each other in multiple type of relationships. To model
such systems, multilayers appear as a crucial tool, in which
multiple systems are included as layers of connectivity. In

Fig. 14 Illustration of a simple example of a metapopulation network
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Fig. 15 An illustration of a multilayer network that was drawn using
the package pymnet from python (www.mkivela.com/pymnet)

each layer, we have a set of nodes that can be the same or
not in the other layers (see Fig. 15). The dynamic process
can spread in different ways horizontally (inside the layer)
and vertically (between layers) [86, 87].

To make clear, let us go to the following example
involving vector-borne diseases. There are many infectious
diseases that are transmitted from a human to another by a
vector. The most well-known vectors are insects for diseases
including malaria, dengue fever, or Zika virus [83]. So, we
can model this phenomena using a multilayer composed by
two layers, one representing the human population and its
mobility, and other representing the same for insects. The
disease propagation just occurs between layers since one
infected human can infect a insect which, in turn, can sting
a healthy human and infect him.

Other example is related to social interactions. We
can think a multilayer network composed by layers that
represent social networking site such as Facebook, Twitter,
and Instagram. Each node is an individual that might
currently be logged into all social networks or just into
Instagram, for example, but not logged in Facebook and
Twitter. In addition, the friendships of a particular person on
a website may be different from the friendships (followers)
that the same person has on other networks.

4 Final Remarks

In this paper, we briefly reviewed complex systems. We
introduced this field for a broad audience, on the purpose
of summarizing tools and models of complex networks. We
synthesized the primary literature on this topic over the
years and we provided a comprehensive list of citations for
those who desire to learn further.

In addition to the references cited throughout the paper,
the reader can also find great material about other traditional
complex network measurements in reference [88], an
interesting explanation about community structures and
algorithms to detect them in graphs can be found in
reference [89], a current and complete survey of theory and
applications of random walks on networks can be obtained
in reference [90], and a suitable and recent investigation
showed how transformations between systems can generate
complex networks can be found in reference [91] .

We expected that the reader is able to identify scenarios
which can use complex networks tools to model real-world
systems and to solve feasible problems. In fact, the applica-
bility of this subject is wide-ranging and powerful. Due to
its interdisciplinarity, we are capable of investigating many
dynamical processes that really affect our daily lives, from
biological until technological contexts. From this knowl-
edge, we can make useful predictions involving, for exam-
ple, epidemic dynamics [6, 79, 80, 92–95], vector-borne
or livestock diseases [40, 41, 82, 84, 85, 96], spreading
rumors [97–101], and synchronization [29, 30, 70, 102].

It is important to mention that nowadays the tools of com-
plex networks go beyond such traditional applications men-
tioned above. In fact, there are many relevant applications
involving machine learning [103], semantic representation
of language [104, 105], systems biology investigations [106,
107], and public sector as intelligent system and policy
networks [108–111].

In conclusion, we emphasized that there are other
methods to quantify the basic structure of networks such as
node similarity and network’s community [112–115]. Such
measures are important in a range of practical problems,
including the advancements in artificial intelligence and
deep learning areas in which approaches related to
struc2vec, node2vec, and sim2vec algorithms are used [116,
117]. However, as mentioned before, the aim of this paper is
not to provide a detailed analysis about all areas concerning
complex networks, but we hope that the overview presented
here is enough to supply the necessary background to
sharpen the reader’s curiosity to go beyond.

References

1. R. Albert, A.-L. Barabási, Statistical mechanics of complex
networks. Rev. Mod. Phys. 74, 47–97 (2002)
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4. A.L. Barabási, M.Ã.. PÃ3sfai, Network Science (Cambridge
University Press, Cambridge, 2016)

669Braz J Phys  (2020) 50:658–672



5. D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J.J.
Ramasco, D. Paolotti, N. Perra, M. Tizzoni, W.V.D. Broeck,
V. Colizza, A. Vespignani, Seasonal transmission potential and
activity peaks of the new influenza a(h1n1): a monte carlo
likelihood analysis based on human mobility. BMC Med. 7, 45
(2009)

6. B. Rader, S. Scarpino, A. Nande, A. Hill, B. Dalziel, R. Reiner,
D. Pigott, B. Gutierrez, M. Shrestha, J. Brownstein, M. Castro,
H. Tian, B. Grenfell, O. Pybus, J. Metcalf, M.U.G. Kraemer,
Crowding and the epidemic intensity of covid-19 transmission
medRxiv (2020)

7. C. Wilson, Searching for saddam: a five-part series on how the
us military used social networking to capture the iraqi dictator. Is
online available at:https://slate.com/news-and-politics/2010/02/
searching-for-saddam-a-five-part-series-on-how-socialnetwork
ing-led-to-the-capture-the-iraqi-dictator.html (2010)

8. G. Caldarelli, Scale-Free Networks: Complex Webs in Nature and
Technology (University Press Oxford, Oxford, 2007)

9. W. Wayne, Zachary. an information flow model for conflict and
fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

10. T. Paoletti, Leonard Euler’s Solution to the Konigsberg Bridge
Problem, Convergence (2011)

11. M. Newman, Networks: an Introduction. Inc (Oxford University
Press, New York, 2010)

12. S.N. Dorogovtsev, J.F.F. Mendes, Complex Systems and Inter-
disciplinary Science (The shortest path to complex networks)
World Scientific (2005)

13. M.E.J. Newman, Scientific collaboration networks. i. network
construction and fundamental results. Phys. Rev. E 64, 016131
(2001)

14. P. Bonacich, Power and centrality: a family of measures. Am. J.
Sociol. 92(5), 1170–1182 (1987)

15. S. Brin, L. Page, The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. 30, 107–117 (1998)

16. F. Pedroche, M. Romance, R. Criado, A biplex approach to
pagerank centrality: from classic to multiplex networks. Chaos
Interdiscip. J. Nonlinear Sci. 26(6), 065301 (2016)

17. Y. Ding, E. Yan, A. Frazho, J. Caverlee, Pagerank for ranking
authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol.
60(11), 2229–2243 (2009)

18. P. Gupta, A. Goel, J.J. Lin, A. Sharma, D. Wang, R. Zadeh,
Wtf: the who to follow service at twitter. in WWW, (2013),
pp. 505–514

19. B. Jiang, S. Zhao, J. Yin, Self-organized natural roads for
predicting traffic flow: a sensitivity study. J. Stat Mech-Theory
Exp. 2008(07), P07008 (2008)

20. P. Crucitti, V. Latora, S. Porta, Centrality in networks of urban
streets. Chaos Interdiscip. J. Nonlinear Sci. 16(1), 015113 (2006)

21. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks. Adv.
Phys. 51, 1079–1187 (2002)

22. R.M. Anderson, R.M. May, Infectious Diseases in Humans
(Oxford University Press, Oxford, 1992)

23. O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology
of Infectious Diseases: Model Building, Analysis and Interpreta-
tion (Wiley, New York, 2000)

24. R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-
free networks. Phys. Rev Lett. 86, 3200–3203 (2001)

25. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Critical phe-
nomena in complex networks. Rev. Mod Phys. 80, 1275–1335
(2008)

26. C. Castellano, R. Pastor-Satorras, Thresholds for epidemic
spreading in networks. Phys. Rev Lett. 105, 218701 (2010)

27. C. Castellano, R. Pastor-Satorras, Competing activation mecha-
nisms in epidemics on networks. Sci Rep. 2, 371 (2012)

28. S. Chatterjee, R. Durrett, Contact processes on random graphs
with power law degree distributions have critical value 0. Ann
Probab. 37, 2332–2356 (2009)

29. Y. Moreno, A.F. Pacheco, Synchronization of kuramoto oscil-
lators in scale-free networks. Europhysics Lett. (EPL) 68(4),
603–609 (2004)

30. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R.
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