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period. Patients experience less pain and less scarring [2]. 
In addition to these clinical advantages, high patient satis-
faction has led to its widespread application in gynecologic 
surgery such as hysterectomy, general surgery such as cho-
lecystectomy and colorectal cancer surgery, and urologic 
surgery [3, 4]. More recently, single-port laparoscopic sur-
gery, in which surgery is performed through a single pas-
sage, has also been performed. In the field of gynecology, 
laparoscopic surgery is frequently performed due to its dis-
tinct advantages from a cosmetic point of view.

Laparoscopic surgery is performed by viewing the 
image transmitted through an endoscope camera rather than 
directly observing the surgical site. It is difficult to see a wide 
range of searches due to observing only a narrow space, and 
flat-screen images lack three-dimensional information such 
as distance. Because the surgery is performed with a long, 
straight surgical instrument through a trocar, with only four 
degrees-of-freedom of motion: forward, backward, and 
rotation, movement is limited compared to open surgery, 
where hands are used to operate directly inside the abdomi-
nal cavity. Tactile sensation is also desensitized due to the 

1  Introduction

Minimally invasive surgery is an irresistible megatrend of 
recent advances in surgical techniques. Since the end of 
the 20th century, open abdominal surgery has been rapidly 
replaced by laparoscopic surgery [1]. Laparoscopic sur-
gery is performed without opening the abdomen, through 
a passageway created by several small incisions, usually 
less than 15 mm in diameter, through which an endoscopic 
camera and specialized elongated surgical instruments are 
inserted. The smaller wound created by the surgery results 
in less bleeding, less risk of infection, and a shorter recovery 
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Abstract
Purpose  The current state of soft tissue surgery robots is surveyed, and the key technologies underlying their success are 
analyzed. State-of-the-art technologies are introduced, and future directions are discussed.
Methods  Relevant literature is explored, analyzed, and summarized.
Results  Soft tissue surgical robots had rapidly spread in the field of laparoscopic surgery based on the multi-degree-of-free-
dom movement of intra-abdominal surgical tools and stereoscopic imaging that are not possible in conventional surgery. The 
three key technologies that have made surgical robots successful are wire-driven mechanisms for multi-degree-of-freedom 
movement, master devices for intuitive remote control, and stereoscopic imaging technology. Recently, human-robot inter-
action technologies have been applied to develop user interfaces such as vision assistance and haptic feedback, and research 
on autonomous surgery has begun.
Conclusion  Robotic surgery not only replaces conventional laparoscopic surgery but also allows for complex surgeries that 
are not possible with laparoscopic surgery. On the other hand, it is also criticized for its high cost and lack of clinical supe-
riority or patient benefit compared to conventional laparoscopic surgery. As various robots compete in the market, the cost 
of surgical robots is expected to decrease. Surgical robots are expected to continue to evolve in the future due to the need to 
reduce the workload of medical staff and improve the level of care demanded by patients.
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large distance between the tip of the surgical tool and the 
operating hand. The above disadvantages greatly increase 
the difficulty of surgery, making the outcome highly depen-
dent on the skill of the surgeon and making it impossible to 
perform complex surgeries that were previously performed 
in open surgery [5].

Launched after receiving FDA (Food and Drug Admin-
istration) clearance in 2000, Intuitive Surgical Inc. (U.S.)’s 
da Vinci Si is a surgical robot that combines the benefits of 
laparoscopic surgery while addressing its drawbacks [6]. It 
uses a binocular endoscopic camera and an eyepiece dis-
play on the console to create a stereoscopic view, provid-
ing the same sense of distance as open surgery. The surgical 
tools are equipped with a wrist-type mechanism driven by a 
wire, allowing various movements like a surgeon’s hand in 
open surgery. In addition, the surgeon can intuitively oper-
ate the robotic arm through a master device on the control 
console, enabling complex surgeries. Through the control 
technology, the tremor of the operator’s hand is filtered, and 
scalable motion is available, enabling precise and safe sur-
gery that is difficult to achieve in conventional surgery [7]. 
Robotic surgery is not only replacing conventional laparo-
scopic surgery but also enabling complex surgeries that are 
not possible in laparoscopic surgery. Recently, rather than 
adapting robots to existing surgeries, on the contrary, surgi-
cal techniques tailored to robots have been developed and 
published [8]. In line with the development direction of 
minimally invasive surgery, the da Vinci SP, which can per-
form single-hole surgery, has been developed and entered 
the market [9].

As more cases of robotic surgery are accumulated and 
analyzed, more neutral research on the efficacy of surgi-
cal robots is emerging [10]. The disadvantages of robotic 
surgery include high costs and increased operative time. 
While there are some procedures, such as prostatectomy, 
where robotic surgery has clear advantages [11], there are 
also a growing number of reports of no clinical difference 
or patient benefit compared to conventional laparoscopic 
surgery for relatively simple procedures such as chole-
cystectomy and right colectomy [12]. Currently, the lapa-
roscopic surgical robot market is dominated by Intuitive 
Surgical Inc.‘s Da Vinci System. However, with the recent 
expiration of key patents, various companies are developing 
and launching laparoscopic surgical robots [13]. As more 
robots compete in the market, the cost of surgical robots 
is expected to decrease. Robotic technology is constantly 
evolving to provide safer and higher-quality surgeries. In 
recent years, rather than improving the mechanical per-
formance of robots, research and development have been 
focused on user interfaces to provide surgeons with rich 
and accurate information and easier operation. In addition, 
research on autonomous surgery using robots continues.

This review paper introduces various surgical robots and 
describes their core technologies, focusing on laparoscopic 
surgical robots that handle flexible tissues. The current state 
of the art is reviewed, and the future direction of develop-
ment is discussed.

2  Overview of surgical robot for soft tissue 
surgery

The success of the da Vinci system has led to the develop-
ment and market introduction of a variety of subsequent sur-
gical robots, from multi-port surgical robots, which operate 
through multiple incisions in the body, to single-port surgical 
robots, which operate through a single orifice, following a 
philosophy about minimally invasive surgery. Furthermore, 
flexible surgical robots have emerged, which have a flexible 
structure and perform surgeries or procedures through natu-
ral human orifices. In this paper, we have divided the robot’s 
structure into rigid and flexible tubes. A tube in a surgical 
robot is defined as a structure that is inserted into the body 
via a trocar. A rigid tube is a structure that is inserted into 
the body through a rigid straight tube and a flexible tube is a 
structure that is inserted into the body through a soft struc-
ture. While there are many different robots out there, we 
prioritized listing the ones that are licensed to the best of our 
knowledge. Table  1 summarizes information about repre-
sentative surgical robots. We searched for information using 
Scholar Google based on robot names, focusing on licensed 
robots. All information was retrieved by June 15th, 2023.

2.1  Surgical robot with rigid tube for multi-port 
surgery

Intuitive Surgical Inc. has released a series of robots, start-
ing with the initial version, the da Vinci Si, followed by 
the da Vinci Xi (Fig. 1(a)), the most advanced robot, and 
the da Vinci X, an entry-level robot with reduced features 
and a lower price. The da Vinci Xi moves the robotic arm 
overhead to allow access to more areas of the body. Like 
the older Si model, da Vinci X limits access to the surgical 
object because the robotic arm is mounted on a side cart. 
Today, the da Vinci system has sold more than 6,000 units 
worldwide and has recorded more than 8.5 million surgeries 
[14]. All examples of laparoscopic surgery, prostatectomy, 
cholecystectomy, and so on mentioned in the introduction, 
were all performed by the da Vinci system. Its overwhelm-
ing advantage over other surgical robots is that it has devel-
oped an extensive lineup of robotic surgical tools, including 
various types of graspers, needle drivers, and scissors, as 
well as energy devices, suction, and irrigation. It also holds 
clearances applicable to a variety of surgical specialties, 

1 3

562



Biomedical Engineering Letters (2023) 13:561–569

including urology, gynecology, general surgery, cardiac sur-
gery, and otolaryngology. However, it is being challenged by 
various surgical robotics companies as key patents expire.

The Versius (Fig.  1 (b)) is a surgical robot developed 
by CMR Surgical Ltd. (U.K.) that features a portable and 
modular design. While the da Vinci has all four robotic arms 
mounted on one base cart, the Versius has one robotic arm 
mounted on one cart. Multiple robots can be positioned 

around the operating table to perform the surgery [15, 16], 
making efficient use of space in small operating rooms. 
They focused on improving the user interface compared to 
the da Vinci system [17]. With an open console, it is easy 
to communicate with the surrounding medical staff while 
controlling the robot, and it also has the performance of a 
collaborative robot that allows medical staff to intervene 
and interact with the robot during surgery. Currently, it is 

Table 1  Summary of soft tissue surgical robots
Product Release Company/Country Specialization Configuration Clearance
da Vinci Xi 2014 Intuitive Surgical Inc.

U.S.
Urology, General Surgery, 
Gynecology, Otorhinolaryn-
gology, Thyroid Diseases [6]

Rigid type with four arms on one cart for 
multi-port surgery

FDA, CE 
[6, 60]

da Vinci SP 2018 Intuitive Surgical Inc.
U.S.

Urology, TORS procedures 
[27, 30]

Rigid type with four wire-driven snake-type 
arms on one overtube for single-port surgery

FDA [30]

Versius 2019 CMR Surgical Ltd.
U.K.

Gynecology, Colorectal 
Surgery, Thoracic Surgery, 
General Surgery, Urology 
[6, 15]

Rigid type with one arm on one cart for multi-
port surgery with multiple robots in a modular 
configuration

CE [6]

Hugo™ 
RAS

2022 Medtronic
U.S.

Urology, Gynecology [20, 
21]

Rigid type with one arm on one cart for multi-
port surgery with multiple robots in a modular 
configuration

CE [24]

Senhance® 2016 Asensus Surgical Inc.
U.S.

General Surgery, Gynecol-
ogy [6]

Rigid type with one arm on one cart for multi-
port surgery with multiple robots in a modular 
configuration

FDA, CE 
[6, 58]

Revo-i 2017 Meere Company Inc.
South Korea

Urology, Gynecology, ENT, 
Colorectal and Anal Surgery 
[23]

Rigid type with four arms on one cart for 
multi-port surgery

MFDS 
[13]

Avatera 2019 avateramedical® GmbH
Germany

Urology, Gynecology [24] Rigid type with four arms on one cart for 
multi-port surgery

CE [24]

Hinotori 2020 Medicaroid Inc.
Japan

Urology [25] Rigid type with four arms on one cart for 
multi-port surgery

MHLW, 
HAS [59]

Toumai 2022 Shanghai MicroPort Med-
Bot Co., Ltd.
China

Urology [26] Rigid type with four arms on one cart for 
multi-port surgery

NMPA 
[26]

Flex Robotic 
System

2017 Medrobotics Corp.
U.S.

Natural Orifice surgery [33] One flexible robotic endoscope and two flex-
ible manual surgical instruments for ELS [36]

FDA, CE 
[6, 33]

Ion Endo-
luminal 
System

2019 Intuitive Surgical Inc.
U.S.

Biopsy in the Peripheral 
Lung [36]

Flexible type for endoluminal biopsies FDA [36]

MONARCH 
Platform

2018 Ethicon Inc.
U.S.

Biopsy in the Peripheral 
Lung, Urology [36]

Flexible type for endoluminal biopsies FDA [36]

Clearance: FDA: U.S. Food and Drug Administration; CE: Conformité Européene; MFDS: The Korean Ministry of Food and Drug Safety; 
MHLW: Japanese Ministry of Health, Labour and Welfare; HSA: Singapore Health Sciences Authority; NMPA: China National Medical Prod-
ucts Administration

Fig. 1  Rigid-type surgical robot 
for multi-port surgery; (a) da 
Vinci Xi [28], (b) Versius [16], 
(c) Hugo™ RAS [21], (d) Revo-i 
[60]
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surgery through natural orifices such as transoral or trans-
anal surgery is also possible [30, 31].

2.3  Surgical robot with flexible tube for 
endoluminal surgery

The development of flexible robots has opened up new 
possibilities in the field of surgical robotics. Flexible sur-
gical robots can enter through natural orifices such as the 
bronchi, nasal passages, and urethra and traverse complex 
pathways to access surgical and procedural sites. Combined 
with image guidance and navigation technologies, they have 
the potential to advance high-level endoscopic procedure. 
It is hoped that the robot’s payload can be improved and 
expanded to the gastrointestinal field in the future [32]. 
Since the late 2000s, NOTES (Natural Orifice Translumi-
nal Endoscopic Surgery) research utilizing flexible surgical 
robots has been actively studied, and recently, the concept 
has been slightly changed to ELS (Endoluminal Surgery).

The Flex Robotic System (Fig. 2 (b)) was developed by 
Medrobotics Corp. (U.S.) and received FDA clearance for 
ENT (ear, nose, and throat) in 2015. A flexible endoscope 
driven by a robot is remotely controlled by the surgeon, 
and flexible surgical instruments are inserted along the side 
guides, allowing the operator to perform the surgery manu-
ally. It shows superior accessibility compared to conven-
tional surgical robots in transoral surgery [33].

Developed by Intuitive Surgical Inc. following da Vinci 
system, the Ion Endoluminal System (Fig. 2 (c)) is a flexible 
endoscopic robot for bronchoscopy-assisted and peripheral 
lung biopsy. It received FDA clearance in 2019. It utilizes 
shape detection technology for easy localization. It can 
accurately access and biopsy lesions and reduce examina-
tion time [34].

The MONARCH Platform (Fig. 2 (d)) is a flexible robot 
for the diagnosis and biopsy of lung lesions, similar to the 
Ion Endoluminal System. It was developed by Auris Health 
Inc. (U.S.) and received FDA clearance in 2018. In 2019, 
Johnson & Johnson, a global medical device company, 
acquired Auris Health Inc. and the robot is now handled by 
its subsidiary Ethicon Inc. In 2022, it also received FDA 
approval for urology, making it the first flexible surgical 

accumulating surgical cases in Europe after obtaining CE 
(Conformite Europeenne) [18].

The Hugo™ RAS (Fig.  1 (c)) is a robot released by 
Medtronic (U.S.), a well-known global medical device com-
pany, and has a portable and modular structure similar to the 
Versius. The main feature is the haptic feedback function 
that allows the operator to feel the rebound force of soft 
tissue [19]. It is accumulating surgical cases in gynecologic 
and urologic surgery [20, 21].

The Senhance® is a robot developed by Asensus Surgi-
cal Inc. (U.S.) that features an eye-tracking camera. It can 
recognize the user’s eye movements and manipulate the 
endoscopic camera accordingly, improving control, reduc-
ing distractions, and optimizing visualization during sur-
gery. It is available in the U.S. and Europe and has been 
applied to prostate surgery [22].

The Revo-I (Fig. 1 (d)) is a surgical robot developed by 
Meere Company Inc. (South Korea) and was the second sur-
gical robot in the world at the time, after da Vinci. It has 
a similar structure to da Vinci Si and can perform surgical 
operations such as incision, cutting, electrocautery, sutur-
ing, insertion, and fixation It was applied to prostate surgery 
[23] and more, achieving a record of more than 100 domes-
tic surgeries in 2021.

In addition, surgical robots similar to the da Vinci sys-
tem, such as Avatera (avateramedical® GmbH) [24] in Ger-
many, Hinotori (Medicaroid Inc.) [25] in Japan, and Toumai 
(Shanghai MicroPort MedBot Co., Ltd.) [26] in China, have 
been developed and released in each country.

2.2  Surgical robot with rigid tube for single-port 
surgery

Recently, many laparoscopic surgeries have been performed 
with a single port, mainly in gynecology, by mounting a 
multi-port cover on a single wound protector. The da Vinci 
system also enables single-site surgery by crossing the 
robotic arms [27, 28]. The da Vinci SP (Fig. 2 (a)), released 
in 2017, goes even further, with four wire-driven robotic 
arms inserted through a single overtube, using one as a cam-
era and three as surgical tools to perform single-port sur-
gery. In addition to conventional abdominal surgery [29], 

Fig. 2  Surgical robot for single-
port surgery and flexible robot for 
endoluminal surgery; (a) da Vinci 
SP [28], (b) Flex Robotic System 
[6], (c) Ion Endoluminal System 
[34], (d) MONARCH Platform 
[35]
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recently, artificial intelligence has been used to improve the 
precision of the model [41].

Improvements to the mechanism are continually being 
researched to enable more consistent motion and higher 
payloads with smaller diameters [42].

3.2  Master device with teleoperation

The master device, mounted on the control console of the 
da Vinci system, allows the surgeon to maneuver the robot 
as intuitively as if they were sitting in a chair and holding 
surgical tools such as forceps. The master device can also 
generate reaction forces or damping to sensually convey 
information to the operator about the acceptable workspace 
and singularities of the robot arm’s posture [43]. Control 
algorithms can filter out the physiological tremors of the 
operator and implement scalable motion to enable safer 
and more precise surgery. This is an important factor that 
directly affects the operability and usability of the device 
as it is held and controlled by the operator. This technology 
is continuously being studied to realize advanced functions 
such as haptic feedback while having the degree-of-freedom 
of operation that fits the characteristics of each surgical 
robot as shown in Fig. 3(b) [44].

3.3  Imaging technology

The da Vinci system acquires images with a binocular 
endoscope and presents them in stereoscopic images on the 
console’s eyepiece display, allowing surgeons to immerse 
themselves in the operation without the need for estimation. 
The stereoscopic images assisted the surgeon in perform-
ing surgical techniques and improved the quality of surgical 
outcomes [45]. Recent advances in electronics have led to 
the development of high-resolution CCD (charge coupled 
device) that are small enough to fit in a cell phone, but it 
is the optical technology, such as the lens, that ultimately 
determines the quality of the endoscopic view.

robot with multispecialty capabilities. A study evaluating its 
performance compared to the Ion Endoluminal System was 
reported [35, 36].

3  Key technologies

Three technologies have led to significant advances over 
conventional laparoscopic surgery and have contributed to 
the widespread adoption of robotic-assisted surgery. These 
are wire-driven joints that enable multi-degree-of-freedom 
movement within the abdominal cavity, a remote-controlled 
master device that allows intuitive manipulation of the sur-
gical tools as if they were done by the surgeon’s hands, and 
finally, vision technology that provides crisp three-dimen-
sional images.

3.1  Wire-driven manipulator

Where robotic surgery directly differs from traditional lap-
aroscopic surgery in terms of functionality is in the wire-
driven articulation mechanism. The wire-driven articulation 
mechanisms can be miniaturized to less than 8  mm in 
diameter, and the wire-driving unit manipulates the surgi-
cal tool from outside the body like a puppet. Various types 
of mechanisms have been developed and patents have been 
registered, including wrist-type mechanisms and snake-like 
continuum mechanisms [37]. Since the joints of robotic sur-
gical instruments are very small to solicit and feedback to 
sensors, modeling is essential for sensitive wire drive per-
formance [38]. Wire driving models and real-time compen-
sation algorithms have been studied to prevent phenomena 
such as slack, where the wire loses tension and backlash 
increases as shown in Fig. 3(a) [39].

Flexible surgical robots have a tendon-sheath mecha-
nism (TSM) to compensate for wire length as the flexion 
path changes. Techniques have been studied to model and 
compensate for the hysteresis of the TSM [40], and more 

Fig. 3  Key technologies of soft 
tissue surgical robots; (a) wire-
driven surgical robotic arm [39], 
(b) master device [44], (c) ste-
reoscopic views with fluorescent 
images [47]
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during surgery. Recently, the convergence of artificial intel-
ligence technology and image processing technology has 
led to advanced research results. Surgical tools and organs 
are recognized and segmented within the screen, and their 
positions can be estimated [50]. Various information can be 
extracted and quantified from surgical images to evaluate 
surgery, and VR (Virtual Reality) can be utilized for sur-
gical training. Image processing techniques pave the way 
for future advances in autonomous surgery as shown in 
Fig. 4(a) [51].

AR (Augmented Reality) technology, which extracts 
important information from images acquired by MRI (Mag-
netic Resonance Imaging) or CT (Computed Tomography) 
before surgery and merges them in real-time on the screen 
during surgery, is also being researched to provide the oper-
ator with information beyond fluorescent images. Image-to-
image matching is a technology already in use in hard tissue 
surgical robots, but soft tissue surgery requires a more chal-
lenging technique that considers tissue displacement [52].

4.2  Haptic device with force feedback

Haptic feedback technology that transmits the force exerted 
by the tip of a surgical robot to a master device held by 
the operator is an ongoing area of research. Because lapa-
roscopic surgery uses elongated surgical tools, it relies on 
sensations that are insensitive compared to open surgery. 
Currently, surgical robots are unable to transmit the sensi-
tive reaction forces generated by the jaws of the surgical 
tools to the operator. The size of the surgical tool is too 
small to mount the sensor on the tip, and there is not enough 
room for wiring. Wire-driven surgical robots are modeled 
similarly to long spring-damper systems and have high hys-
teresis, making it difficult to extrapolate small forces at the 
tip into wire tension.

Recently, researchers have been working to miniaturize 
sensors that can be attached to surgical tools to directly mea-
sure and feedback force as shown in Fig. 4(b) [53]. Other 
approaches include indirect force estimation and feedback 
based on other information that can be acquired from the 
surroundings, such as visual information and impedance 
[54].

Furthermore, Intuitive Surgical Inc. has developed a 
FireFly™ feature that allows superimposed fluorescent 
images to be viewed on the robotic endoscope. A fluorescent 
substance such as indocyanine green (ICG) is injected into 
the body to allow visualization and identification of critical 
areas such as lymph nodes or the thyroid gland during endo-
scopic surgery [46]. There are reports of safer and improved 
surgical outcomes than conventional surgery using this fea-
ture as shown in Fig. 3(c) [47].

4  Recent research trends and challenges

The main negative evaluation of surgical robots by medi-
cal staff is that they are uncomfortable. There is a need for 
robots that perform tasks precisely according to the sur-
geon’s intentions without interfering too much with exist-
ing techniques, surrounding equipment, or medical staff. 
Furthermore, recent research directions are aimed at reduc-
ing human error and improving the comfort of surgery by 
providing surgeons with a lot of information in real-time 
that cannot be given by conventional equipment. T here-
fore, human-robot interaction technologies such as image 
guidance and haptic feedback have been mainly researched 
recently.

Technically, the ultimate goal of surgical robotics 
research is autonomous surgery. Similar to autonomous 
vehicles, the degree of autonomy is categorized from 0 to 5 
levels [48]. Currently, soft tissue surgical robots are in level 
1, as they are remotely operated with the help of control 
technology. Research is underway to automate relatively 
simple procedures to reduce the burden on medical staff. 
Recent advances in artificial intelligence are having a major 
impact on autonomous surgical techniques.

As the objects and methods of surgery are vast, so are the 
needs of the field for new types of surgical robots. Robots 
for microsurgery, such as retinal surgery, are also being 
researched [49].

4.1  Vision assistance with AR/VR

One of the characteristics of laparoscopic surgery is the ease 
of obtaining high-resolution image information in real-time 

Fig. 4  State-of-the-art technolo-
gies; (a) virtual reality for surgi-
cal training [51], (b) sensorized 
robotic forceps for haptic 
feedback [53], (c) autonomous 
laparoscopic soft tissue anasto-
mosis [57]
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4.3  Autonomous surgery

Autonomous surgery is a complex and advanced technology 
that requires a combination of technologies such as robust 
mechanism design, path planning, control algorithms, and 
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algorithms during surgery to achieve optimal views [55]. 
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roscopic surgical tools, robotic-assisted surgery, and auton-
omous surgery in animal models as shown in Fig. 4(c) [57]. 
While there are still many issues to be resolved, researchers 
are taking on the challenge of developing technology for 
autonomous surgery.

5  Conclusion

Soft tissue surgical robots have established themselves as 
successful professional service robots for minimally inva-
sive surgery. It is encouraging to see a variety of products 
competing in a market once dominated by the da Vinci 
system of Intuitive Surgical Inc., and the diversification of 
robots, including soft tissue surgical robots and microsurgi-
cal robots. However, they have also been criticized for their 
high cost compared to traditional laparoscopic surgery and 
lack of clinical superiority or patient benefit. To overcome 
these challenges, research and development of surgical 
robots must continue, including advancing their capabilities 
and improving their user interface.

Communication between medical staff and engineers is 
crucial to the development of surgical robots. In particular, 
if developers don’t have a good understanding of the medi-
cal field and medical fee regulation, it’s difficult to develop 
a solution that will succeed in the market. Medical staff can-
not provide meaningful feedback if they don’t have a good 
eye for engineering. Surgical robots are expected to con-
tinue to evolve in the coming years due to the increasing 
workload of medical staff and the demand for a higher level 
of care from patients.
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